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- Scale-free networks

» Networks with power-law degree distributions
have become known as scale-free networks.

» Scale-free refers specifically to the degree

distribution having a power-law decay in its tail:

P,, ~ k=7 for 'large’ k

» One of the seminal works in complex networks:
Laszlo Barabasi and Reka Albert, Science, 1999:

“Emergence of scaling in random networks” %]
Times cited:; ~ 20 7348 (as of September 23, 2014)

» Somewhat misleading nomenclature...
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Scale-free networks

» Scale-free networks are not fractal in any sense.

» Usually talking about networks whose links are
abstract, relational, informational, ...(non-physical)

» Primary example: hyperlink network of the Web

» Much arguing about whether or networks are
‘scale-free’ or not...
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- Some real data (we are feeling brave):
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

325,729, (k) =
slopes (A)

Yactor

5.

2.3, (B) Yoy = 2.1 and (C)

Ypower

= 4,
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Scale-free networks

» We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.

» How does the exponent v depend on the
mechanism?

» Do the mechanism details matter?
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Scale-free
networks

» Barabasi-Albert model = BA model. Scale-free

networks
Main stol

» Key ingredients: Mol deais
Growth and Preferential Attachment (PA).

» Step 1: start with m disconnected nodes.
» Step 2:
1. Growth—a new node appears at each time step
t=0,1,2,...
2. Each new node makes m links to nodes already
present.
3. Preferential attachment—Probability of
connecting to ith node is « k;.

Nutshe

References
» -

» In essence, we have a rich-gets-richer scheme. i
» Yes, we've seen this all before in Simon’s model. - 7
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‘ % ! PoCS | @poesvox
: BA m O d el Scale-free -

networks
» Definition: Ay is the attachment kernel foranode =
with degree k. networks

Mail

Mod!

» For the original model: st

» Definition: P.cn(k,t) is the attachment
probability.
» For the original model:

Nuts

eferences
- k(1) k; (t) Relorsliee
Piitach(node i, t) = s g = — i
DR LN, ()
where N(t) = my + t is # nodes at time ¢ = g

and N, (t) is # degree k nodes at time ¢. : ‘
B B
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- Approximate analysis
» When (N + 1)th node is added, the expected
increase in the degree of node i is

kzN

SHATY

==t

E(ki,NJrl e ki,N) =

» Assumes probability of being connected to is
small.

» Dispense with Expectation by assuming (hoping)
that over longer time frames, degree growth will
be smooth and stable.

> Approximate k; n.q —k; n With Lk,
d k,(¢)
£ (t)

where t = N(t) — mg.
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» Deal with denominator: each added node brings m

new edges.
N(t)

Z k;(t) = 2tm

g—:

» The node degree equation now simplifies:

d k,;(t) k,;(t) 1

T P S £ s =m——>=—
i, )

dt Zj:1 k;(t) AN A 2

» Rearrange and solve:

deddr e e e
Bl 2t R

» Next find ¢, ...

k;i(t)
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Approximaté analysis

» Know ith node appears at time

; [ i—mg fori>mg,
GEER 0 fori < m,

» So fori > mg (exclude initial nodes), we must have

1/2
) fort >t; star-

k:i(t):m(

ti,start

» All node degrees grow as /2 but later nodes have
larger t, «.re Which flattens out growth curve.

» First-mover advantage: Early nodes do best.
» Clearly, a Ponzi scheme (.,
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» m =3 Jiker ,‘,m

> ti,start e
1;2:5 and 10. Vit
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Degree distribution R
networks

» So what's the degree distribution at time ¢?
Scale-free

» Use fact that birth time for added nodes is networks
distributed uniformly between time 0 and t: :

dti,start

Pr(ti,start>dti,start = ‘

» Also use

1/2 5
3 m2t

ki(t) =m ( ) Sp o e
,start ]{:Z (t>2

tz‘,start References
" .

Transform variables—Jacobian:

2 D -, )
dti,start e m=t En g

3
dk; ki (t) |
.”"Y o
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Degree distribution alli )
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4 le-fi
Scale-free
PI‘(k‘l)dkﬁI = Pr<ti,start>dti,start networks
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 Degree distribution R
networks

Scale-free
networks

» We thus have a very specific prediction of
Pr(k) ~.k Y with v = 3.
» Typical for real networks: 2 < ~ < 3.

» Range true more generally for events with size
distributions that have power-law tails.

» 2 < ~ < 3: finite mean and ‘infinite’ variance (wild)

» In practice, v < 3 means variance is governed by
upper cutoff.

» ~ > 3: finite mean and variance (mild)

e O
ﬁ UNIVERSITY |9|
-8 virvont lo

DA 210of55


http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Back to that real data:

40 10° & 10° §
. | €
Y 03 *
10 3 2 R\ -1 \\
10 5 10 o
10° L \.\ ‘¥
g 0k !\\ 10% £ .\Q
n
o 104 L \5\ 0&
10° [ i Ba: -
10° S0 )
10° L L il [ 10° e i 10” i RN
10 10 10 10 10° 10 1& 16404 1107 10’

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

325,729, (k) =
slopes (A)

Yactor

5.

23, (8)

Ywww

= 2.1and (Q)

Ypower

= 4,
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‘ Exa m p | eS Scale-free -
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Analysis

Web ~ =~ 2.1 forin-degree
Web ~ =~ 2.45 for out-degree
Movie actors -~ =~ 2.3
Words (synonyms) =~ 2.8

The Internets is a different business...
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| Thlngs to do and questlons PoCS | @poesvox

Scale-free -
networks

Scale-free

> Vary attaCh ment kernel. networks
» Vary mechanisms: o

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

» Deal with directed versus undirected networks.

» Important Q.: Are there distinct universality
classes for these networks?

» Q.: How does changing the model affect ~? Relsiie

» Q.: Do we need preferential attachment and
growth?

» Q.: Do model details matter? Maybe ...
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 Preferential attachment a5
networks

Scale-free

» Let's look at preferential attachment (PA) a little i
more closely.

» PA implies arriving nodes have complete i
knowledge of the existing network’s degree
distribution.

» For example: If Py cn (k) x k, we need to
determine the constant of proportionality.

» We need to know what everyone’s degree is...

» PAis = an outrageous assumption of node
capability.

» But a very simple mechanism saves the day...

Nutshell

References
» -
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- Preferential attachment through
randomness

» Instead of attaching preferentially, allow new
nodes to attach randomly.

» Now add an extra step: new nodes then connect
to some of their friends’ friends.

» Can also do this at random.

» Assuming the existing network is random, we
know probability of a random friend having

degree k is
Qp X kP,

» So rich-gets-richer scheme can now be seen to
work in a natural way.
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Scale-free
networks
» Albert et al., Nature, 2000:
“Error and attack tolerance of complex B
networkS" [1] n/etworks
» Standard random networks (Erdés-Rényi) o
versus Scale-free networks: e

Krapivisky & Redner’s
model

Generalized model
Analysis
Universality?
Sublinear attachment
kernels

kernels
Nutshell

References
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- Robustness

o
o a0 A
w0 a8 a0 A0 s0TAR 0 80 o

from Albert et al., 2000

Plots of network
diameter as a function
of fraction of nodes
removed

Erd&s-Rényi versus
scale-free networks

blue symbols =
random removal

red symbols =
targeted removal
(most connected first)
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- Robustness |

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.

» But: nextissue is whether hubs are vulnerable or
not.

» Representing all webpages as the same size node
is obviously a stretch (e.g., google vs. a random
person’s webpage)

» Most connected nodes are either:

1. Physically larger nodes that may be harder to
‘target’
2. or subnetworks of smaller, normal-sized nodes.

» Need to explore cost of various targeting schemes.
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Robustness Pocsx@poc§va

Scale-free
networks

Scale-free
networks
Main story

Model details

“The “Robust yet Fragile” nature of the poa

QU o=t e e e
25

6. | Internet'(s

Doyle et al.,

Proc. Natl. Acad. Sci., 2005, 14497-14502,

2005. B

» HOT networks versus scale-free networks

» Same degree distributions, different
arrangements.

» Doyle et al. take a look at the actual Internet.
» Excellent project material.

©r i
el
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- Generalized model

» 2001: Krapivsky & Redner (KR)“ explored the
general attachment kernel:

Pr(attach to node i) oc A, = k¥

where A, is the attachment kernel and v > 0.

» KR also looked at changing the details of the
attachment kernel.

» KR model will be fully studied in CoNKS.
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Generalized model AL o v
networks

» We'll follow KR’'s approach using rate equations (4.

Scale-free
networks

» Here's the set up:

dN 1
Ttk Ty [Ap_1Ng_1 — AgNg] + g1

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes ara
becoming degree k nodes. Nutshel

3. The second term corresponds to degree k nodes Referpiies

becoming degree k — 1 nodes. N

A is the correct normalization (coming up).

Seed with some initial network A

(e.g., a connected pair) e g

6. Detail: Ag =0 |
"liﬁf\iwnksrr)( |8|
“3 ¥ VERMONT 1Ol
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- Generalized model

» In general, probability of attaching to a specific
node of degree k at time t is

Pr(attach to node i) = j(’;)

where A(t) = 377 | ANy (t).

» E.g, for BAmodel, A, =kand A =37 kNy(t).

» For 4, =k, we have

At)= > KNy (t) =2t
KL=
since one edge is being added per unit time.

» Detail: we are ignoring initial seed network’s
edges.
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- Generalized model

» So now
dd]\trk = % [Ag_1Ng_1 — AR Ni] + 61
becomes
dé\ik = % (k= YN, ¢ — EN o 8

» As for BA method, look for steady-state growing
solution: N, = n,t.

» We replace dN, /dt with dnt/dt = n,.
» We arrive at a difference equation:

Ny = 2%4 [(k — D)ng_1f — kngf] + 0xy

PoCS | @poesvox
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| Universality?

» As expected, we have the same result as for the
BA model:

N, (t) = n, ()t < k=3t for large k.

» Now: what happens if we start playing around

with the attachment kernel 4,7
> Again, we're asking if the result v = 3 universal (47

» KR’s natural modification: 4, = & with v # 1.

» But we'll first explore a more subtle modification
of A, made by Krapivsky/Redner “!

» Keep A4, linear in k but tweak details.
» |dea: Relax from A4, = kto A, ~ kask — oc.
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Universality?

» Recall we used the normalization:

A(t) = > K Ny (t) = 2t for large t.
fof—1!

» We now have

A=Y ANy ()

kdals

where we only know the asymptotic behavior of
it
» We assume that A = it

» We'll find p later and make sure that our
assumption is consistent.

» As before, also assume N, (t) = n,t.
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- Universality? rocs | pocie

Scale-free
networks
» For A, = kwe had
Scale-free
]- networks
{00 5[(k Dng_y — kng] + 0py -
» This now becomes -
1 ‘qre\ah ed model
N = — [Ap_1mp_1 — Agng] + k1 s
LBt
= (Ak: e M)nk} i Ak;flnk;fl =k M(Skl N.n;-\:u

References

» Again two cases:

Apoa
pt+ Ay

u

k:]?r[, =
Yt A

k>1mp =ng
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3 ‘Universalit‘y?w

» Time for pure excitement: Find asymptotic

behavior of n,, given A,, — k as k — oc.

» For large k, we find:

» Since p depends on 4,, details matter...

Ealte

ekt
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Universality?

» Now we need to find p.
» Our assumption again: A= ut = 3" Ny (1)A,
» Since N, = n.t, we have the simplification
iz Z:il ng Ay,
» Now subsitute in our expression for n,:

=3 Sl

A

» Closed form expression for .
» We can solve for p in some cases.

» Our assumption that A = ut looks to be not too
horrible.
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| ; . ."” - PoCS | @poesvox
Universality? sctetee
networks

» Consider tunable A, = o and A, =k for k > 2.
» Again, we can find v = u + 1 by finding . e e
» Closed form expression for y: o

i (k+1DT'(2+ p)

= DPlhk+p+1)
#mathisfun
> N 'k‘:":” el
wu—1) =t p=2TV T2
» Since v = u + 1, we have
o <co=2<y<00 ;‘m‘;
» Craziness... P [2)

Qv 46 of 55


http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Sublinear attachment kernels

M

v

Wi VWL Y

Rich-get-somewhat-richer:

A, ~ kY with0 <v < 1.
General finding by Krapivsky and Redner: 4
~ J—Ve—c1 kI correction terms.

N

Stretched exponentials (truncated power laws).
aka Weibull distributions.
Universality: now details of kernel do not matter.

Distribution of degree is universal providing v < 1.
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networks

p-FOFil 2t -

—n ( kl-v_ol-v )
nk AL k*lje I-—v

» For1/3<v<1/2:

1-v 2 p1-2v
Maedk Ve P et ey

» Andfor1/(r+1) < v < 1/r, we have r pieces in
exponential.
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Superlinear attachment kernels

» Rich-get-much-richer:
Ak} v kl/ W'th v > 1.

» Now a winner-take-all mechanism.

» One single node ends up being connected to
almost all other nodes.

» For v > 2, all but a finite # of nodes connect to one
node.

PoCS | @poesvox

Scale-free
networks

Scale-free
networks

Main story

The O
ﬁ UNIVERSITY |9|
2l VERMONT |0

A 510f55


http://www.uvm.edu
http://www.uvm.edu/~pdodds

- Nutshell:

» Obvious connections with the vast extant field of
graph theory.

» But focus on dynamics is more of a
physics/stat-mech/comp-sci flavor.

» Two main areas of focus:

1. Description: Characterizing very large networks
2. Explanation: Micro story = Macro features

» Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...

» Still much work to be done, especially with respect
to dynamics... #excitement
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Tuvlrning the corner:
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