System Robustness

Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2015 | #FallPoCS2015

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

PoCS | @pocsvox System

System Robustness

Robustness

HOT theory

Narrative causality
Random forests
Self-Organized Criticality
COLD theory

Network robustness

These slides are brought to you by:

PoCS | @pocsvox

System Robustness

Robustness

HOT theory Narrative causality Self-Organized Criticality Network robustness

Outline

Robustness

HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

References

PoCS | @pocsvox System Robustness

Robustness

Narrative causality
Random forests
Self-Organized Criticality
COLD theory

Network robustness
References

THE THRESHOLDS OF PERCOLATION

PoCS | @pocsvox

System Robustness

Robustness

Narrative causality Random forests Self-Organized Criticality Network robustness

- Many complex systems are prone to cascading catastrophic failure: exciting!!!
 - ▶ Blackouts
 - Disease outbreaks
 - Wildfires
 - Earthquakes
- But complex systems also show persistent robustness (not as exciting but important...)
- Robustness and Failure may be a power-law story...

PoCS | @pocsvox System

Robustness

Robustness HOT theory

Narrative causality
Random forests
Self-Organized Criticali
COLD theory
Network robustness

Our emblem of Robust-Yet-Fragile:

PoCS | @pocsvox

System Robustness

Robustness

HOT theory

Narrative causality Self-Organized Criticality Network robustness

"Trouble ..."

PoCS | @pocsvox

System Robustness

Robustness

HOT theory Narrative causality

Random forests
Self-Organized Criticality
COLD theory
Network robustness

- System robustness may result from
 - Evolutionary processes
 - 2. Engineering/Design
- Idea: Explore systems optimized to perform under uncertain conditions.
- ► The handle: 'Highly Optimized Tolerance' (HOT) [4, 5, 6, 10]
- ► The catchphrase: Robust yet Fragile
- ▶ The people: Jean Carlson and John Doyle 🗹
- ► Great abstracts of the world #73: "There aren't any." [7]

Robustness HOT theory

Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

Features of HOT systems: [5, 6]

- High performance and robustness
- Designed/evolved to handle known stochastic environmental variability
- ► Fragile in the face of unpredicted environmental signals
- Highly specialized, low entropy configurations
- ▶ Power-law distributions appear (of course...)

PoCS | @pocsvox
System
Robustness

Robustness HOT theory

Narrative causality
Random forests
Self-Organized Criticali
COLD theory
Network robustness

HOT combines things we've seen:

- Variable transformation
- ▶ Constrained optimization
- Need power law transformation between variables: $(Y = X^{-\alpha})$
- Recall PLIPLO is bad...
- ▶ MIWO is good: Mild In, Wild Out
- ▶ X has a characteristic size but Y does not

PoCS | @pocsvox
System
Robustness

Robustness HOT theory

Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

Forest fire example: [5]

- ▶ Square $N \times N$ grid
- ▶ Sites contain a tree with probability ρ = density
- ▶ Sites are empty with probability 1ρ
- lackbox Fires start at location (i,j) according to some distribution P_{ij}
- Fires spread from tree to tree (nearest neighbor only)
- Connected clusters of trees burn completely
- Empty sites block fire
- Best case scenario:
 Build firebreaks to maximize average # trees left intact given one spark

PoCS | @pocsvox
System
Robustness

Robustness HOT theory Narrative causality

Random forests
Self-Organized Criticality
COLD theory
Network robustness

Forest fire example: [5]

- Build a forest by adding one tree at a time
- ▶ Test D ways of adding one tree
- ▶ D = design parameter
- \blacktriangleright Average over $P_{i,i}$ = spark probability
- $\triangleright D = 1$: random addition
- $\triangleright D = N^2$: test all possibilities

Measure average area of forest left untouched

- ightharpoonup f(c) = distribution of fire sizes c (= cost)
- ightharpoonup Yield = $Y = \rho \langle c \rangle$

PoCS | @pocsvox System

Robustness

Robustness HOT theory Narrative causality

Self-Organized Criticality Network robustness

Specifics:

•

$$P_{ij} = P_{i;a_x,b_x} P_{j;a_y,b_y}$$

where

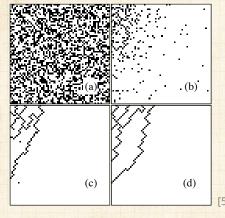
$$P_{i;a,b} \propto e^{-[(i+a)/b]^2}$$

- In the original work, $b_y > b_x$
- Distribution has more width in y direction.

PoCS | @pocsvox System

Robustness

Robustness HOT theory


Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

HOT Forests

$$N = 64$$

- (a) D = 1
- (b) D = 2
- (c) D = N
- (d) $D = N^2$

 P_{ij} has a Gaussian decay

- Optimized forests do well on average (robustness)
- But rare extreme events occur (fragility)

PoCS | @pocsvox System Robustness

Robustness **HOT** theory

Narrative causality

Self-Organized Criticality COLD theory Network robustness

HOT Forests

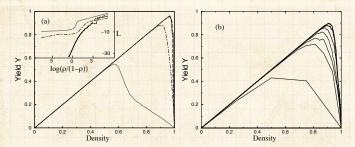


FIG. 2. Yield vs density $Y(\rho)$: (a) for design parameters D=1 (dotted curve), 2 (dot-dashed), N (long dashed), and N^2 (solid) with N=64, and (b) for D=2 and $N=2,2^2,\ldots,2^7$ running from the bottom to top curve. The results have been averaged over 100 runs. The inset to (a) illustrates corresponding loss functions $L=\log[\langle f \rangle/(1-\langle f \rangle)]$, on a scale which more clearly differentiates between the curves.

PoCS | @pocsvox

System Robustness

Robustness HOT theory

Narrative causality
Random forests
Self-Organized Criticality
COLD theory

Network robustness
References

HOT Forests:

PoCS | @pocsvox System Robustness

Y = 'the average density of trees left unburned in a configuration after a single spark hits.' [5]

HOT theory Narrative causality Self-Organized Criticality COLD theory

Robustness

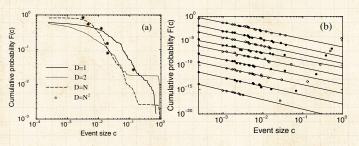


FIG. 3. Cumulative distributions of events F(c): (a) at peak yield for D = 1, 2, N, and N^2 with N = 64, and (b) for D = N^2 , and N = 64 at equal density increments of 0.1, ranging at $\rho = 0.1$ (bottom curve) to $\rho = 0.9$ (top curve).

Narrative causality:

PoCS | @pocsvox

System Robustness

Robustness HOT theory

Narrative causality
Random forests

Self-Organized Criticality
COLD theory
Network robustness

Random Forests

D=1: Random forests = Percolation [11]

- Randomly add trees.
- ▶ Below critical density ρ_c , no fires take off.
- Above critical density ρ_c , percolating cluster of trees burns.
- ▶ Only at ρ_c , the critical density, is there a power-law distribution of tree cluster sizes.
- Forest is random and featureless.

PoCS | @pocsvox
System
Robustness

Robustness
HOT theory

Narrative causality

Random forests

Self-Organized Criticality

COLD theory

Network robustness

HOT forests nutshell:

- Highly structured
- Power law distribution of tree cluster sizes for $\rho > \rho_c$
- \blacktriangleright No specialness of ρ_c
- Forest states are tolerant
- Uncertainty is okay if well characterized
- ▶ If P_{ij} is characterized poorly, failure becomes highly likely

PoCS | @pocsvox
System
Robustness

Robustness HOT theory

Narrative causality
Random forests
Self-Organized Criticality

COLD theory

Network robustness

HOT forests—Real data:

"Complexity and Robustness," Carlson & Dolye [6]

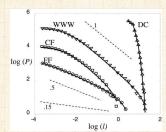


Fig. 1. Log-log (base 10) comparison of DC, WWW, Cf. and FF data (symbol) with PLR models (sold lines) (of g = 0.0, 9.0, 18.5 c or <math>a = 1/8.5, etc.) (1.3), especially and the SOC FF model (a = 0.15, dashed). Reference lines of a = 0.5, 1 dashed) are included. The cumulative distributions of Fepurence 197 (g = 1.0), describe the areas burned in the largest 4,284 fires from 1986 to 1995 on all of the U.S. Fish and Wildlife Service Lands (Ff [17], the a = 1.000 Largest California brushfires from 1878 to 1999 (CF) (18), 130,000 web file transfers at Boston Univestity during 1994 and 1995 (WWW), (19), and code work from DC. The size units [1,000 km² (FF and CF), megabytes (WWW), and bytes (IC)) and the logarithmic decimation of the data are chosen for visualization.

- PLR = probability-lossresource.
- Minimize cost subject to resource (barrier) constraints:

$$\begin{split} C &= \sum_i p_i l_i \\ \text{given} \\ l_i &= f(r_i) \text{ and } \sum r_i \leq R. \end{split}$$

- $t_i = f(t_i)$ and $\sum t_i \le tt$. ▶ DC = Data Compression.
- Horror: log. Screaming: "The base! What is the base!? You monsters!"

PoCS | @pocsvox

System Robustness

Robustness

Narrative causality
Random forests
Self-Organized Criticality

Network robustness
References

HOT theory:

The abstract story, using figurative forest fires:

- ▶ Given some measure of failure size y_i and correlated resource size x_i . with relationship $y_i = x_i^{-\alpha}$, $i = 1, ..., N_{\text{sites}}$.
- ▶ Design system to minimize $\langle y \rangle$ subject to a constraint on the x_i .
- ► Minimize cost:

$$C = \sum_{i=1}^{N_{\rm sites}} Pr(y_i) y_i$$

Subject to $\sum_{i=1}^{N_{\text{sites}}} x_i = \text{constant.}$

PoCS | @pocsvox System Robustness

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

1. Cost: Expected size of fire:

$$C_{ ext{fire}} \propto \sum_{i=1}^{N_{ ext{sites}}} p_i a_i.$$

 a_i = area of ith site's region, and p_i = avg. prob. of fire at ith site over some time frame.

2. Constraint: building and maintaining firewalls. Per unit area, and over same time frame:

$$C_{ ext{firewalls}} \propto \sum_{i=1}^{N_{ ext{sites}}} a_i^{1/2} a_i^{-1}.$$

- ▶ We are assuming isometry.
- ▶ In d dimensions, 1/2 is replaced by (d-1)/d
- 3. Insert question from assignment 6 🗹 to find:

$$\mathbf{Pr}(a_i) \propto a_i^{-\gamma}.$$

PoCS | @pocsvox
System
Robustness

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory

Network robustness

Continuum version:

1. Cost function:

$$\langle C \rangle = \int C(\vec{x}) p(\vec{x}) \mathrm{d}\vec{x}$$

where C is some cost to be evaluated at each point in space \vec{x} (e.g., $V(\vec{x})^{\alpha}$), and $p(\vec{x})$ is the probability an Ewok jabs position \vec{x} with a sharpened stick (or equivalent).

2. Constraint:

$$\int R(\vec{x})\mathsf{d}(\vec{x}) = \mathsf{c}$$

where c is a constant.

▶ Claim/observation in [4] is that typically

$$A(\vec{x}) \sim R^{-\beta}(\vec{x})$$

▶ For spatial systems with barriers: $\beta = d$.

PoCS | @pocsvox
System
Robustness

Robustness HOT theory

Narrative causality
Random forests
Self-Organized Criticality

COLD theory
Network robustness

The Emperor's Robust-Yet-Fragileness:

PoCS | @pocsvox

System Robustness

Robustness

HOT theory Narrative causality

Random forests

Self-Organized Criticality Network robustness

PoCS | @pocsvox

System Robustness

Robustness HOT theory

Narrative causality Random forests

Self-Organized Criticality

Network robustness

References

9 9 0 29 of 43

SOC theory

SOC = Self-Organized Criticality

- ▶ Idea: natural dissipative systems exist at 'critical states';
- Analogy: Ising model with temperature somehow self-tuning;
- Power-law distributions of sizes and frequencies arise 'for free';
- Introduced in 1987 by Bak, Tang, and Weisenfeld ^[3, 2, 8]:
 "Self-organized criticality - an explanation of 1/f noise" (PRL, 1987);
- Problem: Critical state is a very specific point;
- Self-tuning not always possible;
- Much criticism and arguing...

PoCS | @pocsvox
System
Robustness

Robustness

HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory

Network robustness

"How Nature Works: the Science of Self-Organized Criticality"
by Per Bak (1997). [2]

Avalanches of Sand and Rice ...

PoCS | @pocsvox System

Robustness

Robustness

HOT theory

Narrative causality

Self-Organized Criticality

COLD theory

Network robustness

"Complexity and Robustness"

Carlson and Doyle, Proc. Natl. Acad. Sci., **99**, 2538–2545, 2002. [6]

HOT versus SOC

- ▶ Both produce power laws
- Optimization versus self-tuning
- ► HOT systems viable over a wide range of high densities
- SOC systems have one special density
- ▶ HOT systems produce specialized structures
- ▶ SOC systems produce generic structures

PoCS | @pocsvox

System

Robustness

Robustness HOT theory

Narrative causality
Random forests
Self-Organized Criticality

COLD theory

Network robustness

HOT theory—Summary of designed tolerance [6]

Table 1. Characteristics of SOC, HOT, and data

	Property	SOC	HOT and Data
1	Internal	Generic,	Structured,
	configuration	homogeneous,	heterogeneous,
		self-similar	self-dissimilar
2	Robustness	Generic	Robust, yet
			fragile
3	Density and yield	Low	High
4	Max event size	Infinitesimal	Large
5	Large event shape	Fractal	Compact
6	Mechanism for	Critical internal	Robust
	power laws	fluctuations	performance
7	Exponent α	Small	Large
8	α vs. dimension d	$\alpha \approx (d-1)/10$	$\alpha \approx 1/d$
9	DDOFs	Small (1)	Large (∞)
10	Increase model	No change	New structures,
	resolution		new sensitivities
11	Response to forcing	Homogeneous	Variable

PoCS | @pocsvox

System Robustness

Robustness

HOT theory Narrative causality

Self-Organized Criticality COLD theory

Network robustness

References

9 9 € 33 of 43

COLD forests

Avoidance of large-scale failures

- Constrained Optimization with Limited Deviations [9]
- Weight cost of larges losses more strongly
- ▶ Increases average cluster size of burned trees...
- ... but reduces chances of catastrophe
- Power law distribution of fire sizes is truncated

PoCS | @pocsvox System Robustness

Robustness HOT theory

Narrative causality
Random forests
Self-Organized Criticality
COLD theory

Network robustness
References

Cutoffs

Observed:

Power law distributions often have an exponential cutoff

$$P(x) \sim x^{-\gamma} e^{-x/x_c}$$

where x_c is the approximate cutoff scale.

May be Weibull distributions:

$$P(x) \sim x^{-\gamma} e^{-ax^{-\gamma+1}}$$

PoCS | @pocsvox
System
Robustness

Robustness HOT theory

Narrative causality Random forests Self-Organized Criticality COLD theory

Network robustness
References

We'll return to this later on:

- ▶ Network robustness.
- ► Albert et al., Nature, 2000: "Error and attack tolerance of complex networks" [1]
- General contagion processes acting on complex networks. [13, 12]
- ► Similar robust-yet-fragile stories ...

PoCS | @pocsvox System

System Robustness

Robustness

HOT theory

Narrative causality
Random forests
Self-Organized Criticality
COLD theory

Network robustness

The Emperor's Robust-Yet-Fragileness:

PoCS | @pocsvox

System Robustness

Robustness

HOT theory

Narrative causality

Random forests

Self-Organized Criticality

COLD theory

Network robustness

References I

[1] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. Nature, 406:378-382, 2000. pdf

P. Bak. [2] How Nature Works: the Science of Self-Organized Criticality. Springer-Verlag, New York, 1997.

P. Bak, C. Tang, and K. Wiesenfeld. [3] Self-organized criticality - an explanation of 1/f noise.

Phys. Rev. Lett., 59(4):381-384, 1987. pdf

J. M. Carlson and J. Doyle. [4] Highly optimized tolerance: A mechanism for power laws in designed systems. Phys. Rev. E, 60(2):1412-1427, 1999. pdf

PoCS | @pocsvox System Robustness

Robustness

HOT theory Narrative causality Self-Organized Criticality COLD theory Network robustness

References II

[6]

PoCS | @pocsvox System Robustness

[5] J. M. Carlson and J. Doyle. Highly optimized tolerance: Robustness and design in complex systems. Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

J. M. Carlson and J. Doyle.

Complexity and robustness.

Proc. Natl. Acad. Sci., 99:2538–2545, 2002. pdf

References

Robustness

References III

- [8] H. J. Jensen.
 Self-Organized Criticality: Emergent Complex
 Behavior in Physical and Biological Systems.
 Cambridge Lecture Notes in Physics. Cambridge
 University Press, Cambridge, UK, 1998.
- [9] M. E. J. Newman, M. Girvan, and J. D. Farmer. Optimal design, robustness, and risk aversion. Phys. Rev. Lett., 89:028301, 2002.
- [10] D. Sornette.

 <u>Critical Phenomena in Natural Sciences.</u>

 <u>Springer-Verlag, Berlin, 1st edition, 2003.</u>
- [11] D. Stauffer and A. Aharony.
 Introduction to Percolation Theory.
 Taylor & Francis, Washington, D.C., Second edition, 1992.

PoCS | @pocsvox
System
Robustness

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticalit
COLD theory

Network robustness References

References IV

pdf

[12] D. J. Watts and P. S. Dodds. Influentials, networks, and public opinion formation. Journal of Consumer Research, 34:441–458, 2007.

[13] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf

PoCS | @pocsvox
System
Robustness

Robustness

HOT theory
Narrative causality
Random forests
Self-Organized Criticali
COLD theory
Network robustness

