

Random Walks

Variable transformation Basics Holtsmark's I PLIPLO References

PoCS Complex Syste Opocavor. What's the Sto

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Outline

Random Walks

The First Return Problem Examples

Variable transformation

Basics Holtsmark's Distribution PLIPLO

References

Random Walks The First Return Proble Examples

Mt. Whatever

Mt. Meh

Mt. ZZZZ

The Snormals

Mt. Who cales .

Mt. Quite

·Mt.

Mt. OMGI Exogenous

Financial Collapse

MH.

horing

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

References

VERMONT ୬ ୦ ୦ ୦ 4 of 58

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks The First Return Pr Examples Variable transformation Basics Holtsmark's Distributio PLIPLO References

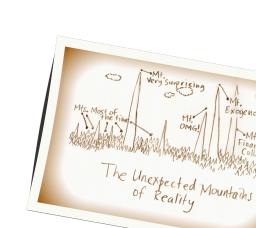
VERMONT • n q (≈ 6 of 58

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks The First Return Proble Examples

Variable transformation Basics Holtsmark's Distributior References

UNIVERSITY



PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

transformation Basics Holtsmark's Distribution

The First Return Examples

Variable

References

The deal:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

The First Reti Examples

Mechanisms:

A powerful story in the rise of complexity:

- structure arises out of randomness.
- ▶ Exhibit A: Random walks.

The essential random walk:

- One spatial dimension.
- ▶ Time and space are discrete
- Random walker (e.g., a drunk) starts at origin x = 0.
- Step at time t is ϵ_t :

 $\epsilon_t = \left\{ \begin{array}{ll} +1 & \mbox{with probability 1/2} \\ -1 & \mbox{with probability 1/2} \end{array} \right.$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

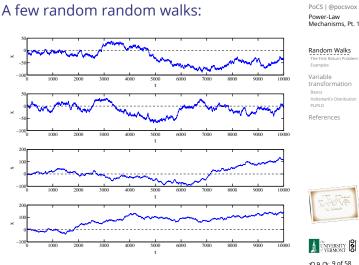
Random Walks

transformation

Basics Holtsmark's Distributic

Variable

References



Random walks:

Displacement after *t* steps:

$$x_t = \sum_{i=1}^t \epsilon_i$$

Expected displacement:

$$\langle x_t \rangle = \left\langle \sum_{i=1}^t \epsilon_i \right\rangle = \sum_{i=1}^t \langle \epsilon_i \rangle = 0$$

- > At any time step, we 'expect' our drunkard to be back at the pub.
- Obviously fails for odd number of steps...
- But as time goes on, the chance of our drunkard lurching back to the pub must diminish, right?

Variances sum: 🗗

$$\begin{split} & \mathsf{Var}(x_t) = \mathsf{Var}\left(\sum_{i=1}^t \epsilon_i\right) \\ & = \sum_{i=1}^t \mathsf{Var}\left(\epsilon_i\right) = \sum_{i=1}^t 1 = t \end{split}$$

* Sum rule = a good reason for using the variance to measure spread; only works for independent distributions.

So typical displacement from the origin scales as:

A non-trivial scaling law arises out of additive aggregation or accumulation.

• Each specific random walk of length *t* appears

We'll be more interested in how many random

• Define N(i, j, t) as # distinct walks that start at x = i and end at x = j after t time steps.

walks end up at the same place.

UNIVERSITY

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

transformation

Variable

PLIPLO

References

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

```
Random Walks
Variable
transfori
             ation
 Basics
```

References

A UNIVERSITY •ງ q (マ→ 13 of 58

- Using our expression N(i, j, t) with i = 0, j = 2k,

$$\mathbf{Pr}(x_{2n}\equiv 2k)\propto {\binom{2n}{n+k}}$$

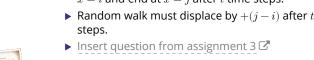
▶ For large *n*, the binomial deliciously approaches the Normal Distribution of Snoredom:

$$\mathbf{Pr}(x_t\equiv x)\simeq \frac{1}{\sqrt{2\pi t}}e^{-\frac{x^2}{2t}}.$$

Insert question from assignment 3 🖸

- ▶ The whole is different from the parts. #nutritious
- ▶ See also: Stable Distributions 🖸

Variable transformation PLIPLO References



VERMONT •⊃ < C+ 9 of 58

Power-Law Mechanisms, Pt. 1

Random Walks Variable transformation

References

VERMONT

の q C 10 of 58

 $N(i, j, t) = \binom{t}{(t+j-i)/2}$

steps.

How does $P(x_t)$ behave for large t?

Random walk basics:

Counting random walks:

with a chance $1/2^t$.

- Take time t = 2n to help ourselves.
 - ▶ $x_{2n} \in \{0, \pm 2, \pm 4, \dots, \pm 2n\}$
- x_{2n} is even so set $x_{2n} = 2k$.

$$p$$
, we have

$$\mathbf{Pr}(x_{2n} \equiv 2k) \propto \binom{2n}{n+k}$$

$$(x_t \equiv x) \simeq \frac{1}{\sqrt{2t}} e^{-\frac{x^2}{2t}}.$$

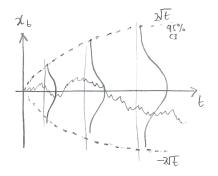
ocsvox Power-Law Mechanisms, Pt. 1

Random Walks

and
$$t = 2n$$
, we

$$\mathbf{Pr}(x_{2} = 2k)$$

Universality C is also not left-handed:



- ▶ This is Diffusion ^C: the most essential kind of spreading (more later).
- View as Random Additive Growth Mechanism.

References

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks

transformation

Basics Holtsmark's Distributic

VERMONT

୬ ଏ (୦ 15 of 58

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

Variable transformation

References

VERMONT

の q へ 16 of 58

PoCS | @pocsvox

Variable

References

Random walks are even weirder than you might think...

- $\xi_{r,t}$ = the probability that by time step *t*, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- ▶ The most likely number of lead changes is... 0.
- In fact: $\xi_{0,t} > \xi_{1,t} > \xi_{2,t} > \cdots$
- Even crazier:
 - The expected time between tied scores = ∞

See Feller, Intro to Probability Theory, Volume I^[3]

VERMONT

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

Variable transfori

References

The First Return Probler

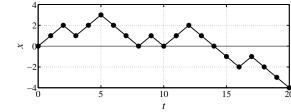
. mation Basics

Random walks #crazytownbananapants

The problem of first return:

- ▶ What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- ▶ Will our drunkard always return to the origin?
- What about higher dimensions?
- 1. We will find a power-law size distribution with an interesting exponent.
- walks.
- 3. We'll start to see how different scalings relate to each other.

For random walks in 1-d:



A return to origin can only happen when t = 2n.

- ▶ In example above, returns occur at t = 8, 10, and 14.
- ▶ Call $P_{fr(2n)}$ the probability of first return at t = 2n.
- Probability calculation \equiv Counting problem (combinatorics/statistical mechanics).
- Idea: Transform first return problem into an easier return problem.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks

transformation

Basics Holtsmark's Distrit

References

Variable

PLIPLO

Reasons for caring:

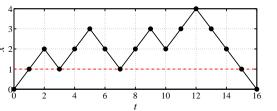
- 2. Some physical structures may result from random

A UNIVERSITY •⊃ < へ 20 of 58

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks The First Return Proble

Variable transformation PLIPLO References



Power-Law Mechanisms, Pt. 1 Random Walks The First Return Problem Variable transformation

PoCS | @pocsvox

Basics Holtsmark's Distribution

VERMONT

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

Variable transformation

Basics Holtsmark's Distribution PLIPLO

References

The First Return Problem

References

• Can assume drunkard first lurches to x = 1.

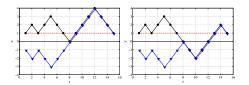
- Observe walk first returning at t = 16 stays at or above x = 1 for $1 \le t \le 15$ (dashed red line).
- Now want walks that can return many times to x = 1.
- $P_{\rm fr}(2n) =$ $2 \cdot \frac{1}{2} Pr(x_t \ge 1, 1 \le t \le 2n - 1, \text{ and } x_1 = x_{2n-1} = 1)$
- The $\frac{1}{2}$ accounts for $x_{2n} = 2$ instead of 0.
- The 2 accounts for drunkards that first lurch to x = -1.

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- Again, N(i, j, t) is the # of possible walks between x = i and x = j taking t steps.
- Consider all paths starting at x = 1 and ending at x = 1 after t = 2n - 2 steps.
- Idea: If we can compute the number of walks that hit x = 0 at least once, then we can subtract this from the total number to find the ones that maintain $x \ge 1$.
- Call walks that drop below x = 1 excluded walks.
- We'll use a method of images to identify these excluded walks.

Examples of excluded walks:



Key observation for excluded walks:

- For any path starting at x=1 that hits 0, there is a unique matching path starting at x=-1.
- Matching path first mirrors and then tracks after first reaching x=0.
- \blacktriangleright # of *t*-step paths starting and ending at x=1 and hitting x=0 at least once = # of *t*-step paths starting at x=-1 and ending at x=1 = N(-1, 1, t)
- ▶ So $N_{\text{first return}}(2n) = N(1, 1, 2n 2) N(-1, 1, 2n 2)$

Probability of first return:

Insert question from assignment 3 🗹 :

Find

$$N_{\rm fr}(2n) \sim rac{2^{2n-3/2}}{\sqrt{2\pi}n^{3/2}}$$

- Normalized number of paths gives probability.
- ▶ Total number of possible paths = 2^{2n} .

$$P_{\mathsf{fr}}(2n) = \frac{1}{2^{2n}} N_{\mathsf{fr}}(2n)$$

$$\simeq \frac{1}{2^{2n}} \frac{2^{2n-3/2}}{\sqrt{2\pi}n^{3/2}}$$
$$= \frac{1}{\sqrt{2\pi}} (2n)^{-3/2} \propto t^{-3/2}.$$

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem

Variable transformation Basics Holtsmark's Distribu

PLIPLO References

UNIVERSITY ୬ < ເ∾ 25 of 58

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

Variable transformation

Basics

References

UNIVERSITY

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

Variable

PLIPLO

References

The First Return Probler

transformation

The First Return Probler

- We have $P(t) \propto t^{-3/2}$, $\gamma = 3/2$.
- Same scaling holds for continuous space/time walks.
- \blacktriangleright P(t) is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite. #totalmadness
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Higher dimensions **∠**^{*}:

- Walker in d = 2 dimensions must also return
- ▶ Walker may not return in $d \ge 3$ dimensions

On finite spaces:

- In any finite homogeneous space, a random walker will visit every site with equal probability
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

On networks:

- On networks, a random walker visits each node with frequency \propto node degree #groovy
- Equal probability still present: walkers traverse edges with equal frequency. #totallygroovy

•ጋ ዓ. ලං 27 of 58

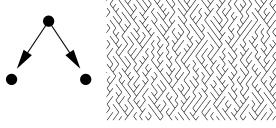
Random Walks The First Return Problem Variable

transformation References

VERMONT

•ጋ < C 24 of 58

Scheidegger Networks^[8, 2]



- Random directed network on triangular lattice.
- Toy model of real networks.
- 'Flow' is southeast or southwest with equal probability.

Scheidegger networks

- Creates basins with random walk boundaries.
- Observe that subtracting one random walk from another gives random walk with increments:

 $\epsilon_t = \left\{ \begin{array}{ll} +1 & \text{with probability } 1/4 \\ 0 & \text{with probability } 1/2 \\ -1 & \text{with probability } 1/4 \end{array} \right.$

- Random walk with probabilistic pauses.
- Basin termination = first return random walk problem.
- ▶ Basin length ℓ distribution: $P(\ell) \propto \ell^{-3/2}$
- ▶ For real river networks, generalize to $P(\ell) \propto \ell^{-\gamma}$.

- For a basin of length ℓ , width $\propto \ell^{1/2}$
- ▶ Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$
- ▶ Invert: $\ell \propto a^{2/3}$
- ▶ $d\ell \propto d(a^{2/3}) = 2/3a^{-1/3}da$
- \blacktriangleright **Pr**(basin area = a)da
- $= \mathbf{Pr}(\text{basin length} = \ell) d\ell$ $\propto \ell^{-3/2} d\ell$
- $\propto (a^{2/3})^{-3/2}a^{-1/3}\mathsf{d}a$
- $=a^{-4/3}\mathsf{d}a$
- $= a^{-\tau} \mathsf{d}a$

Connections between exponents:

- Both basin area and length obey power law distributions
- Observed for real river networks
- Reportedly: $1.3 < \tau < 1.5$ and $1.5 < \gamma < 2$

Generalize relationship between area and length:

 $\ell \propto a^h$.

For real, large networks $h \simeq 0.5$

▶ Hack's law^[4]:

- Smaller basins possibly h > 1/2 (see: allometry).
- ▶ Models exist with interesting values of *h*.
- ▶ Plan: Redo calc with γ , τ , and h.

今 Q Q → 32 of 58

Connections between exponents:

Given

 $\ell \propto a^h, \ P(a) \propto a^{-\tau}, \text{ and } P(\ell) \propto \ell^{-\gamma}$

- ► $\mathsf{d}\ell \propto \mathsf{d}(a^h) = ha^{h-1}\mathsf{d}a$
- Find τ in terms of γ and h. **Pr**(basin area = a)da
- $= \mathbf{Pr}(\text{basin length} = \ell) d\ell$ $\propto \ell^{-\gamma} \mathrm{d} \ell$ $\propto (a^h)^{-\gamma}a^{h-1}\mathsf{d} a$ $= a^{-(1+h(\gamma-1))} \mathsf{d}a$

$$\tau = 1 + h(\gamma - 1)$$

Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

Connections between exponents:

With more detailed description of network structure, $\tau = 1 + h(\gamma - 1)$ simplifies to:^[1]

- Only one exponent is independent (take h).
- Simplifies system description.
- Expect Scaling Relations where power laws are found.
- ▶ Need only characterize Universality class with independent exponents.

VERMONT •ጋ < C + 34 of 58

Random Walks

transformation

Examples

Variable

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks
The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO

References

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks The First Re Examples

Variable transformation Basics Holtsmark's Distribi PLIPLO

References

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

The First R Examples Variable transformation

Random Walks

References

and

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

transformation

Basics Holtsmark's Distribution

UNIVERSITY VERMONT

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

Variable transformation

Basics Holtsmark's Distribution PLIPLO

References

Examples

The First Re Examples

Variable

References

UNIVERSITY

わくひ 30 of 58

Other First Returns or First Passage Times:

Failure:

- ▶ A very simple model of failure/death: ^[10]
- $\blacktriangleright x_t$ = entity's 'health' at time t
- Start with $x_0 > 0$.
- ▶ Entity fails when *x* hits 0.

Streams

- Dispersion of suspended sediments in streams.
- Long times for clearing.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

transformation

Basics Holtsmark's Distributio

The First Re Examples

Variable

References

The deal:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

Basics Holtsmark's Distributio PLIPLO

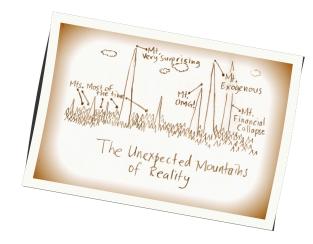
References

Examples Variable transformation

- Can generalize to Fractional Random Walks^[6, 7, 5]
- Levy flights, Fractional Brownian Motion
- See Montroll and Shlesinger for example: ^[5] "On 1/f noise and other distributions with long tails."
 - Proc. Natl. Acad. Sci., 1982.
- \blacktriangleright In 1-d, standard deviation σ scales as

 $\sigma \sim t^{\,\alpha}$

- $\alpha = 1/2$ diffusive
- $\alpha > 1/2$ superdiffusive
- $\alpha < 1/2$ subdiffusive
- Extensive memory of path now matters...

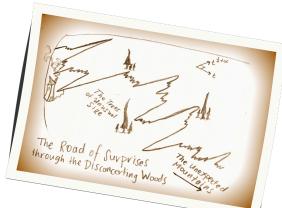


VERMONT

わくで 36 of 58

Random Walks The First Re Examples Variable transformation Basics Holtsmark's Distribution References

UNIVERSITY • ኃ ዓ ር · 37 of 58



PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks Examples Variable transformation

Basics Holtsmark's Disi PLIPLO References

UNIVERSITY かへで 38 of 58

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks The First Return F Examples

Variable transformation

References

 \hat{U}

UNIVERSITY •⊃ < へ ↔ 40 of 58

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks The First Return Probl Examples

Variable transformation Basics PLIPLO References

e

Variable Transformation

$$\label{eq:product} \begin{split} \blacktriangleright \ P_Y(y) \mathrm{d}y \ = \\ \sum_{-x \mid f(x) = y} P_X(x) \mathrm{d}x \end{split}$$

Often easier to do by

hand...

Understand power laws as arising from

1. Elementary distributions (e.g., exponentials).

2. Variables connected by power relationships.

Second random variable Y with y = f(x).

 $\sum_{y|f(x)=y} P_X(f^{-1}(y)) \frac{\mathrm{d} y}{|f'(f^{-1}(y))|}$

▶ Random variable X with known distribution P_x

General Example

- Assume relationship between x and y is 1-1.
- Power-law relationship between variables: $y = cx^{-\alpha}, \alpha > 0$
- \blacktriangleright Look at y large and x small

$$\mathrm{d} y = \mathrm{d} \left(c x^{-\alpha} \right)$$

$$= c(-\alpha) x^{-\alpha-1} \mathsf{d} x$$

invert:
$$dx = \frac{-1}{c\alpha} x^{\alpha+1} dy$$

 $dx = \frac{-1}{c\alpha} \left(\frac{y}{c}\right)^{-(\alpha+1)/\alpha} dy$
 $dx = \frac{-c^{1/\alpha}}{\alpha} y^{-1-1/\alpha} dy$

Now make transformation:

$$P_{y}(y)\mathsf{d}y = P_{x}(x)\mathsf{d}x$$

$$P_y(y) \mathsf{d} y = P_x \underbrace{\left(\left(\frac{y}{c} \right)^{-1/\alpha} \right)}^{(x)} \frac{\mathsf{d} x}{\alpha^2 y^{-1-1/\alpha} \mathsf{d} y}$$

▶ If $P_x(x) \rightarrow$ non-zero constant as $x \rightarrow 0$ then

$$P_x(y) \propto y^{-1-1/\alpha} \text{ as } y \to \infty.$$

• If $P_x(x) \to x^\beta$ as $x \to 0$ then

$$P_y(y) \propto y^{-1-1/\alpha - \beta/\alpha} \text{ as } y \to \infty.$$

Example

Exponential distribution

Given $P_x(x) = \frac{1}{\lambda} e^{-x/\lambda}$ and $y = cx^{-\alpha}$, then

$$P(y) \propto y^{-1-1/\alpha} + O\left(y^{-1-2/\alpha}\right)$$

- > Exponentials arise from randomness (easy)...
- More later when we cover robustness.

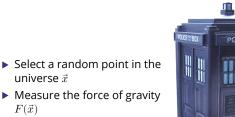
PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks The First Return P Examples Variable transformation Basics Holtsmark's Distribution

Variable transformation Basics Holtsmark's Distribution PLIPLO References

UNIVERSITY

うへで 45 of 58



Observe that $P_F(F) \sim F^{-5/2}.$

universe \vec{x}

 $F(\vec{x})$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Pro Examples

Variable transformation

Holtsmark's Distribution

Complex 9 @poc

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Matter is concentrated in stars:^[9]

- ▶ *F* is distributed unevenly
- Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

$$P_r(r) \mathrm{d} r \propto r^2 \mathrm{d} r$$

- Assume stars are distributed randomly in space (oops?)
- Assume only one star has significant effect at \vec{x} .
- ► Law of gravity:

$$F\propto r^{-2}$$

$$r \propto F^{-1/2}$$

Also invert: $\mathsf{d} F \propto \mathsf{d}(r^{-2}) \propto r^{-3} \mathsf{d} r \to \mathsf{d} r \propto r^3 \mathsf{d} F \propto F^{-3/2} \mathsf{d} F.$

Using $r \propto F^{-1/2}$, $dr \propto F^{-3/2} dF$, and $P_r(r) \propto r^2$ $P_F(F)\mathsf{d}F = P_r(r)\mathsf{d}r$ $\propto P_r({\rm const} imes F^{-1/2})F^{-3/2}{\rm d}F$ $\propto \left(F^{-1/2}\right)^2 F^{-3/2} \mathsf{d}F$ $= F^{-1-3/2} \mathsf{d} F$ $= F^{-5/2} \mathrm{d}F$.

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks The First Return Proble Examples

Variable transformation Holtsmark's Distribution

References

UNIVERSITY • ク < (~ 49 of 58

Gravity:

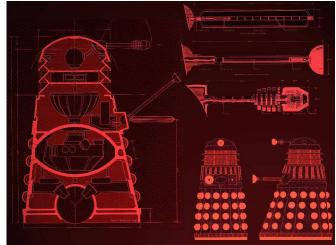
$$P_F(F) = {\pmb F}^{-5/2} \mathsf{d} F$$

 $\gamma = 5/2$

- Mean is finite.
- Variance = ∞ .
- A wild distribution.
- Upshot: Random sampling of space usually safe but can end badly...

VERMONT • ⊃ < C + 50 of 58

□ Todo: Build Dalek army.



Extreme Caution!

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

- PLIPLO = Power law in, power law out
- Explain a power law as resulting from another unexplained power law.
- ▶ Yet another homunculus argument
- Don't do this!!! (slap, slap)
- We need mechanisms!

References I

- [1] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf
- [2] P. S. Dodds and D. H. Rothman. Scaling, universality, and geomorphology. Annu. Rev. Earth Planet. Sci., 28:571-610, 2000. pdf
- [3] W. Feller. An Introduction to Probability Theory and Its Applications, volume I. John Wiley & Sons, New York, third edition, 1968.

UNIVERSITY • A A A 56 of 58

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return F Examples

Variable transformation

Basics Holtsmark's Distribut PLIPLO

References

References II

- Studies of longitudinal stream profiles in Virginia and Maryland. United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf
- [5] E. W. Montroll and M. F. Shlesinger. On the wonderful world of random walks, volume XI of Studies in statistical mechanics, chapter 1, pages 1-121. New-Holland, New York, 1984.
- [6] E. W. Montroll and M. W. Shlesinger. On 1/f noise aned other distributions with long tails.

A UNIVERSITY • 𝔍 𝔄 🖓 𝔄 𝔤

PoCS | @pocsvox Power-Law Mechanisms, Pt. 1

Random Walks The First Return Probl Examples

Variable transformation Basics Holtsmark's Distribu PLIPLO

References

VERMONT • 𝔍 𝔍 𝔍 𝔅 58 of 58

Holtsmark's Distribution

References

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

Variable transformation

The First Retur Examples

Power-Law Mechanisms, Pt. 1

PoCS | @pocsvox

Random Walks The First Return Probl Variable transformation Basics Holtsmark's Distribu

PLIPLO References

- [4] J. T. Hack.

Proc. Natl. Acad. Sci., 79:3380–3383, 1982. pdf 🖸

References III

- [7] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails. J. Stat. Phys., 32:209-230, 1983.
- [8] A. E. Scheidegger. The algebra of stream-order numbers. United States Geological Survey Professional Paper, 525-B:B187–B189, 1967. pdf 🖸
- [9] D. Sornette. Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 1st edition, 2003.
- [10] J. S. Weitz and H. B. Fraser. Explaining mortality rate plateaus. Proc. Natl. Acad. Sci., 98:15383-15386, 2001. pdf 🕑

Random Walks The First Re Examples Variable transformation PLIPLO