Mechanisms for Generating Power-Law Size Distributions, Part 1 Principles of Complex Systems | @pocsvox CSYS/MATH 300, Fall, 2015 | #FallPoCS2015

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

References

200 1 of 58

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

Sealie & Lambie Productions

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

References

The UNIVERSITY VERMONT

20f 58

Outline

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PLIPLO

References

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

References

200 3 of 58

The deal:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

Great moments in Televised Random Walks:

Plinko! C from the Price is Right.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

References

200 5 of 58

Mechanisms:

A powerful story in the rise of complexity:

- structure arises out of randomness.
- ► Exhibit A: Random walks.

The essential random walk:

- One spatial dimension.
- Time and space are discrete
- Random walker (e.g., a drunk) starts at origin x = 0.

• Step at time t is ϵ_t :

 $\epsilon_t = \left\{ \begin{array}{ll} +1 & \text{with probability 1/2} \\ -1 & \text{with probability 1/2} \end{array} \right.$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

Variable transformation Basics Holtsmark's Distribution PLIPLO

A few random random walks:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PLIPLO

References

The Survey of States

200 9 of 58

Random walks:

Displacement after *t* steps:

$$x_t = \sum_{i=1}^t \epsilon_i$$

Expected displacement:

$$\langle x_t \rangle = \left\langle \sum_{i=1}^t \epsilon_i \right\rangle = \sum_{i=1}^t \left\langle \epsilon_i \right\rangle = 0$$

- At any time step, we 'expect' our drunkard to be back at the pub.
- Obviously fails for odd number of steps...
- But as time goes on, the chance of our drunkard lurching back to the pub must diminish, right?

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

Variable transformation Basics Holtsmark's Distribution PUPLO

$$\begin{aligned} &\mathsf{Var}(x_t) = \mathsf{Var}\left(\sum_{i=1}^t \epsilon_i\right) \\ &= \sum_{i=1}^t \mathsf{Var}\left(\epsilon_i\right) = \sum_{i=1}^t 1 = t \end{aligned}$$

So typical displacement from the origin scales as:

$$\sigma = t^{1/2}$$

 A non-trivial scaling law arises out of additive aggregation or accumulation.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples Variable transformation Basics

Holtsmark's Distribution

References

990 11 of 58

Stock Market randomness:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks

The First Return Problem

Variable transformation Basics Holtsmark's Distribution PUPLO

References

Also known as the bean machine **C**, the quincunx (simulation) **C**, and the Galton box.

na 12 of 58

Random walk basics:

Counting random walks:

- ► Each specific random walk of length t appears with a chance 1/2^t.
- We'll be more interested in how many random walks end up at the same place.
- Define N(i, j, t) as # distinct walks that start at x = i and end at x = j after t time steps.
- ▶ Random walk must displace by +(j-i) after t steps.
- Insert question from assignment 3 I

$$N(i,j,t) = {t \choose (t+j-i)/2}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem

Variable transformation Basics Holtsmark's Distribution PUPLO

References

UNIVERSITY 9

How does $P(x_t)$ behave for large t?

- Take time t = 2n to help ourselves.
- ▶ $x_{2n} \in \{0, \pm 2, \pm 4, \dots, \pm 2n\}$
- ▶ x_{2n} is even so set $x_{2n} = 2k$.
- Using our expression N(i, j, t) with i = 0, j = 2k, and t = 2n, we have

$$\mathbf{Pr}(x_{2n}\equiv 2k)\propto {\binom{2n}{n+k}}$$

▶ For large *n*, the binomial deliciously approaches the Normal Distribution of Snoredom:

$$\mathbf{Pr}(x_t\equiv x)\simeq \frac{1}{\sqrt{2\pi t}}e^{-\frac{x^2}{2t}}$$

Insert question from assignment 3 🕑 ▶ The whole is different from the parts. #nutritious See also: Stable Distributions I

Power-Law Mechanisms, Pt. 1 Random Walks Variable transformation Holtsmark's Distribution PIPIO UNIVERSITY DQ @ 14 of 58

Universality 🗹 is also not left-handed:

- This is Diffusion C: the most essential kind of spreading (more later).
- View as Random Additive Growth Mechanism.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem

Variable transformation Basics Holtsmark's Distribution PUPLO

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random walks are even weirder than you might think...

- ξ_{r,t} = the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- ▶ The most likely number of lead changes is... 0.

• In fact:
$$\xi_{0,t} > \xi_{1,t} > \xi_{2,t} > \cdots$$

Even crazier:

The expected time between tied scores = ∞

See Feller, Intro to Probability Theory, Volume I^[3]

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

Random walks #crazytownbananapants

The problem of first return:

- What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our drunkard always return to the origin?
- What about higher dimensions?

Reasons for caring:

- 1. We will find a power-law size distribution with an interesting exponent.
- 2. Some physical structures may result from random walks.
- 3. We'll start to see how different scalings relate to each other.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem

Variable transformation Basics Holtsmark's Distribution PUPLO

References

20 of 58

NIVERSITY 6

DQ @ 21 of 58

- A return to origin can only happen when t = 2n.
- In example above, returns occur at t = 8, 10, and 14.
- Call $P_{fr(2n)}$ the probability of first return at t = 2n.
- Probability calculation = Counting problem (combinatorics/statistical mechanics).
- Idea: Transform first return problem into an easier return problem.

- Can assume drunkard first lurches to x = 1.
- Observe walk first returning at t = 16 stays at or above x = 1 for $1 \le t \le 15$ (dashed red line).
- Now want walks that can return many times to x = 1.
- $\begin{array}{l} \blacktriangleright \ P_{\rm fr}(2n) = \\ 2 \cdot \frac{1}{2} Pr(x_t \geq 1, 1 \leq t \leq 2n-1, \ {\rm and} \ x_1 = x_{2n-1} = 1) \end{array}$
- ▶ The $\frac{1}{2}$ accounts for $x_{2n} = 2$ instead of 0.
- The 2 accounts for drunkards that first lurch to x = -1.

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- ► Again, N(i, j, t) is the # of possible walks between x = i and x = j taking t steps.
- Consider all paths starting at x = 1 and ending at x = 1 after t = 2n 2 steps.
- ▶ Idea: If we can compute the number of walks that hit x = 0 at least once, then we can subtract this from the total number to find the ones that maintain $x \ge 1$.
- Call walks that drop below x = 1 excluded walks.
- We'll use a method of images to identify these excluded walks.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem

Variable transformation Basics Holtsmark's Distribution PUPLO

References

DQ @ 23 of 58

Examples of excluded walks:

Key observation for excluded walks:

- ► For any path starting at x=1 that hits 0, there is a unique matching path starting at x=-1.
- Matching path first mirrors and then tracks after first reaching x=0.
- # of t-step paths starting and ending at x=1 and hitting x=0 at least once

 # of t-step paths starting at x=−1 and ending at x=1 = N(−1, 1, t)
- $\blacktriangleright \ \, {\rm So} \ \, N_{\rm first \ return}(2n) = N(1,1,2n-2) N(-1,1,2n-2)$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

Probability of first return:

Insert question from assignment 3 🗹 :

Find

$$N_{\rm fr}(2n) \sim \frac{2^{2n-3/2}}{\sqrt{2\pi}n^{3/2}}.$$

Normalized number of paths gives probability.
 Total number of possible paths = 2²ⁿ.

$$P_{\mathsf{fr}}(2n) = \frac{1}{2^{2n}} N_{\mathsf{fr}}(2n)$$

$$\simeq \frac{1}{2^{2n}} \frac{2^{2n-3/2}}{\sqrt{2\pi} n^{3/2}}$$

$$= \frac{1}{\sqrt{2\pi}} (2n)^{-3/2} \propto t^{-3/2}.$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

- $\blacktriangleright \ \ {\rm We \ have \ } P(t) \propto t^{-3/2}, \ \gamma = 3/2.$
- Same scaling holds for continuous space/time walks.
- P(t) is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite.
 #totalmadness
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Higher dimensions 🗗:

- Walker in d = 2 dimensions must also return
- Walker may not return in $d \ge 3$ dimensions

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem

Variable transformation Basics Holtsmark's Distribution PUPLO

Random walks

On finite spaces:

- In any finite homogeneous space, a random walker will visit every site with equal probability
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

On networks:

- ▶ On networks, a random walker visits each node with frequency \propto node degree #groovy
- Equal probability still present: walkers traverse edges with equal frequency.

#totallygroovy

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

Scheidegger Networks^[8, 2]

▶ Random directed network on triangular lattice.

- Toy model of real networks.
- 'Flow' is southeast or southwest with equal probability.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

Scheidegger networks

- Creates basins with random walk boundaries.
- Observe that subtracting one random walk from another gives random walk with increments:

 $\epsilon_t = \left\{ \begin{array}{ll} +1 & \text{with probability } 1/4 \\ 0 & \text{with probability } 1/2 \\ -1 & \text{with probability } 1/4 \end{array} \right.$

- Random walk with probabilistic pauses.
- Basin termination = first return random walk problem.
- ▶ Basin length ℓ distribution: $P(\ell) \propto \ell^{-3/2}$
- ▶ For real river networks, generalize to $P(\ell) \propto \ell^{-\gamma}$.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

- For a basin of length ℓ , width $\propto \ell^{1/2}$
- ▶ Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$
- Invert: $\ell \propto a^{2/3}$

•
$$d\ell \propto d(a^{2/3}) = 2/3a^{-1/3}da$$

- ► **Pr**(basin area = a)da = **Pr**(basin length = ℓ)d ℓ $\propto \ell^{-3/2} d\ell$ $\propto (a^{2/3})^{-3/2} a^{-1/3} da$ = $a^{-4/3} da$
 - $=a^{- au}\mathsf{d}a$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

- Both basin area and length obey power law distributions
- Observed for real river networks
- \blacktriangleright Reportedly: $1.3 < \tau < 1.5$ and $1.5 < \gamma < 2$

Generalize relationship between area and length:

▶ Hack's law^[4]:

 $\ell \propto a^h$.

- ▶ For real, large networks $h \simeq 0.5$
- Smaller basins possibly h > 1/2 (see: allometry).
- ▶ Models exist with interesting values of *h*.
- **>** Plan: Redo calc with γ , τ , and h.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PLIPLO

References

VERMONT

Given

$$\ell \propto a^h, \ P(a) \propto a^{-\tau}, \ {\rm and} \ P(\ell) \propto \ell^{-\gamma}$$

$$\blacktriangleright \, \mathsf{d}\ell \, \propto \mathsf{d}(a^h) = ha^{h-1}\mathsf{d}a$$

Find τ in terms of γ and h.

► **Pr**(basin area = a)da = **Pr**(basin length = ℓ)d ℓ $\propto \ell^{-\gamma} d\ell$ $\propto (a^h)^{-\gamma} a^{h-1} da$ = $a^{-(1+h(\gamma-1))} da$

$$\tau = 1 + h(\gamma - 1)$$

 Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

With more detailed description of network structure, $\tau = 1 + h(\gamma - 1)$ simplifies to: ^[1]

$$\tau = 2 - h$$

and

$$\gamma = 1/h$$

- Only one exponent is independent (take h).
- Simplifies system description.
- Expect Scaling Relations where power laws are found.
- ► Need only characterize Universality ⊂ class with independent exponents.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

References

UNIVERSITY

Other First Returns or First Passage Times:

Failure:

- ▶ A very simple model of failure/death: ^[10]
- x_t = entity's 'health' at time t
- Start with $x_0 > 0$.
- Entity fails when *x* hits 0.

Streams

- Dispersion of suspended sediments in streams.
- Long times for clearing.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

More than randomness

- Can generalize to Fractional Random Walks^[6, 7, 5]
- Levy flights, Fractional Brownian Motion
- See Montroll and Shlesinger for example: ^[5]
 "On 1/f noise and other distributions with long tails."

Proc. Natl. Acad. Sci., 1982.

> In 1-d, standard deviation σ scales as

 $\sigma \sim t^{\,\alpha}$

 $\alpha = 1/2$ — diffusive $\alpha > 1/2$ — superdiffusive $\alpha < 1/2$ — subdiffusive

Extensive memory of path now matters...

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

Neural reboot (NR):

Desert rain frog/Squeaky toy:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PLIPLO

References

UNIVERSITY

The deal:

MINISTRY OF RANDOM WALKS

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics

Holtsmark's Distribution PLIPLO

Variable Transformation

Understand power laws as arising from

- 1. Elementary distributions (e.g., exponentials).
- 2. Variables connected by power relationships.
- Random variable X with known distribution P_x
- Second random variable *Y* with y = f(x).

$$\begin{array}{ll} \blacktriangleright & P_Y(y) \mathrm{d}y = \\ & \sum_{x \mid f(x) = y} P_X(x) \mathrm{d}x \\ = \\ & \sum_{y \mid f(x) = y} P_X(f^{-1}(y)) \frac{\mathrm{d}y}{\mid f'(f^{-1}(y))} \end{array}$$

$$\blacktriangleright & \text{Often easier to do by} \\ & \text{hand...} \end{array}$$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation

Basics Holtsmark's Distribution PLIPLO

General Example

- ▶ Assume relationship between *x* and *y* is 1-1.
- ▶ Power-law relationship between variables: $y = cx^{-\alpha}$, $\alpha > 0$
- Look at y large and x small

$$\mathsf{d} y = \mathsf{d} \left(c x^{-\alpha} \right)$$

$$= c(-\alpha) x^{-\alpha-1} \mathsf{d} x$$

invert:
$$dx = \frac{-1}{c\alpha}x^{\alpha+1}dy$$

$$\mathrm{d}x \,= \frac{-1}{c\alpha} \left(\frac{y}{c}\right)^{-(\alpha+1)/\alpha} \mathrm{d}y$$

$$\mathsf{d}x = \frac{-c^{1/\alpha}}{\alpha} y^{-1-1/\alpha} \mathsf{d}y$$

Now make transformation:

$$P_y(y)dy = P_x(x)dx$$

$$P_y(y)\mathsf{d} y = P_x \overbrace{\left(\left(\frac{y}{c}\right)^{-1/\alpha}\right)}^{(x)} \overbrace{\frac{dx}{\alpha} y^{-1-1/\alpha} \mathsf{d} y}^{\mathbf{d} x}$$

• If $P_x(x) \to \text{non-zero constant as } x \to 0$ then $P_x(y) \propto y^{-1-1/\alpha} \text{ as } y \to \infty.$ • If $P_x(x) \to x^\beta \text{ as } x \to 0$ then $P_y(y) \propto y^{-1-1/\alpha-\beta/\alpha} \text{ as } y \to \infty.$

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation

Basics Holtsmark's Distribution PUPLO

Example

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation

Basics Holtsmark's Distribution PLIPLO

References

Exponential distribution Given $P_x(x) = \frac{1}{\lambda}e^{-x/\lambda}$ and $y = cx^{-\alpha}$, then $P(y) \propto y^{-1-1/\alpha} + O(y^{-1-2/\alpha})$

Exponentials arise from randomness (easy)...More later when we cover robustness.

200 45 of 58

Gravity

- Select a random point in the universe \vec{x}
- Measure the force of gravity $F(\vec{x})$
- Observe that $P_{F}(F) \sim F^{-5/2}$.

POCS

What's the Story?

PoCS | @pocsvox

Power-Law

Matter is concentrated in stars: ^[9]

- ▶ *F* is distributed unevenly
- Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

 $P_r(r) {\rm d} r \, \propto r^2 {\rm d} r$

- Assume stars are distributed randomly in space (oops?)
- Assume only one star has significant effect at \vec{x} .
- Law of gravity:

$$F \propto r^{-2}$$

invert:

$$r \propto F^{-1/2}$$

Also invert: $dF \propto d(r^{-2}) \propto r^{-3} dr \rightarrow dr \propto r^3 dF \propto F^{-3/2} dF$.

Transformation:

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Using
$$\boxed{r\propto F^{-1/2}}$$
 , $\boxed{{\rm d}r\,\propto F^{-3/2}{\rm d}F}$, and $\boxed{P_r(r)\propto r^2}$

$$P_F(F)\mathsf{d} F = P_r(r)\mathsf{d} r$$

$$\propto P_r({\rm const}\times F^{-1/2})F^{-3/2}{\rm d} F$$

$$\propto \left(F^{-1/2}\right)^2 F^{-3/2} \mathrm{d} F$$

$$= F^{-1-3/2} \mathsf{d} F$$

$$= F^{-5/2} dF$$

20 A 49 of 58

Gravity:

 $P_F(F)=F^{-5/2}\mathrm{d} F$

$$\gamma=5/2$$

- Mean is finite.
- Variance = ∞ .
- A wild distribution.
- Upshot: Random sampling of space usually safe but can end badly...

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation

Basics

Holtsmark's Distribution

Doctorin' the Tardis

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation

Basics

Holtsmark's Distribution

п

References

20 0 51 of 58

□ Todo: Build Dalek army.

Extreme Caution!

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO References

PLIPLO = Power law in, power law out

- Explain a power law as resulting from another unexplained power law.
- ▶ Yet another homunculus argument
- Don't do this!!! (slap, slap)
- We need mechanisms!

Neural reboot (NR):

Zoomage in slow motion

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

References

200 55 of 58

References I

P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf C

P. S. Dodds and D. H. Rothman.
 Scaling, universality, and geomorphology.
 Annu. Rev. Earth Planet. Sci., 28:571–610, 2000.
 pdf C

[3] W. Feller. An Introduction to Probability Theory and Its Applications, volume I. John Wiley & Sons, New York, third edition, 1968.

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

References

20 56 of 58

References II

[4] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland. United States Geological Survey Professional Paper, 294-B:45–97, 1957. pdf C

[5] E. W. Montroll and M. F. Shlesinger. On the wonderful world of random walks, volume XI of Studies in statistical mechanics, chapter 1, pages 1–121. New-Holland, New York, 1984.

 [6] E. W. Montroll and M. W. Shlesinger. On 1/f noise aned other distributions with long tails.
 Proc. Natl. Acad. Sci., 79:3380–3383, 1982. pdf PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PUPLO

References

200 57 of 58

References III

- [7] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/*f* noise: a tale of tails.
 J. Stat. Phys., 32:209–230, 1983.
- [8] A. E. Scheidegger. The algebra of stream-order numbers. United States Geological Survey Professional Paper, 525-B:B187–B189, 1967. pdf ^C
- [9] D. Sornette. Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 1st edition, 2003.
- [10] J. S. Weitz and H. B. Fraser. Explaining mortality rate plateaus. Proc. Natl. Acad. Sci., 98:15383–15386, 2001. pdf C

PoCS | @pocsvox

Power-Law Mechanisms, Pt. 1

Random Walks The First Return Problem Examples

Variable transformation Basics Holtsmark's Distribution PLIPLO

References

200 58 of 58