Singular Value Decomposition Matrixology (Linear Algebra)—Episode 25/25 MATH 124, Spring, 2015

Prof. Peter Dodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Episode 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Hubs and Authorities

Approximating matrices with SVD

Show me the SVD!!

UNIVERSITY VERMONT

ჟ q (~ 1 of 34

Fundamental Theorem of Linear Algebra

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^T .

Where \vec{x} lives:

- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- $\blacktriangleright \ \dim C(A^T) + \dim N(A) = r + (n-r) = n$
- ▶ Orthogonality: $C(A^T) \bigotimes N(A) = R^n$

Where \vec{b} lives:

- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^T) \subset R^m$.
- ▶ Orthogonality: $C(A) \bigotimes N(A^T) = R^m$

Episode 25/25:

Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

Hubs and Authorities

少 Q (~ 4 of 34

Episode 25/25: Singular Value Decomposition

The Fundamental

Linear Algebra

Hubs and Authorities

 \mathbb{R}^m

Column Space

 $\vec{0}$

Left Null

Approximating matrices with SVD

Episode 25/25:

Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

Hubs and

 \mathbf{R}^n

Best solution \vec{x}_* when $\vec{b} = \vec{p} + \vec{e}$:

These slides are brought to you by:

Episode 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Hubs and

Approximating matrices with SVD

•9 q (~ 2 of 34

Episode 25/25:

Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

Hubs and Authorities

Fundamental Theorem of Linear Algebra

 $A\vec{x_r} = \vec{p}$

 $= \vec{x_r} + \vec{x_n}$

 $A\vec{x_n} = \vec{0}$

Now we see:

- ▶ Each of the four fundamental subspaces has a 'best' orthonormal basis
- ▶ The \hat{v}_i span R^n
- ▶ We find the \hat{v}_i as eigenvectors of A^TA .
- ▶ The \hat{u}_i span R^m

- ▶ We find the \hat{u}_i as eigenvectors of AA^T .

Happy bases

- $\blacktriangleright \{\hat{v}_1, \dots, \hat{v}_r\}$ span Row space
- $\blacktriangleright \{\hat{v}_{r+1}, \dots, \hat{v}_n\}$ span Null space
- $\blacktriangleright \{\hat{u}_1, \dots, \hat{u}_r\}$ span Column space
- $lackbox{} \{\hat{u}_{r+1},\ldots,\hat{u}_m\}$ span Left Null space

少 Q ← 3 of 34

Show me

Outline

The Fundamental Theorem of Linear Algebra

Hubs and Authorities

Approximating matrices with SVD

Fundamental Theorem of Linear Algebra

How $A\vec{x}$ works:

$$\boxed{A\hat{v}_i = \sigma_i \hat{u}_i} \text{ for } i=1,\dots,r.$$

and

$$\boxed{ \overrightarrow{A\hat{v}_i} = \hat{\mathbf{0}} } \text{ for } i = r+1, \dots, n.$$

► Matrix version:

$$A = U\Sigma V^T$$

- ▶ A sends each $\hat{v}_i \in C(A^T)$ to its partner $\hat{u}_i \in C(A)$ with a positive stretch/shrink factor $\sigma_i > 0$.
- ▶ *A* is diagonal with respect to these bases.
- ▶ When viewed in the right way, every A is a diagonal matrix Σ .

Episode 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Hubs and Authorities

Approximating matrices with SVD

Hubs and Authorities

- ▶ Give each node two scores:
 - 1. x_i = authority score for node i
 - 2. y_i = hubtasticness score for node i
- ▶ We connect the scores of neighboring nodes.
- ▶ I: a good authority is linked to by good hubs.
- ▶ Means x_i should increase as $\sum_{j=1}^{N} a_{ji} y_j$ increases.
- ightharpoonup Note: indices are ji meaning j has a directed link to i.
- ▶ II: good hubs point to good authorities.
- ▶ Means y_i should increase as $\sum_{j=1}^{N} a_{ij}x_j$ increases.
- Linearity assumption:

$$\vec{x} \propto A^T \vec{y}$$
 and $\vec{y} \propto A \vec{x}$

Episode 25/25:

Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

Episode 25/25:

Singular Value Decomposition

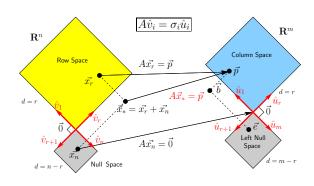
The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

Hubs and Authorities

$x \propto A^{-}y$ and $y \propto Ax$

The complete big picture:



Episode 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Hubs and

Approximating matrices with SVD

Show me the SVD!!

UNIVERSITY OF

•9 q (~ 8 of 34

Hubs and Authorities

So let's say we have

$$\vec{x} = c_1 A^T \vec{y}$$
 and $\vec{y} = c_2 A \vec{x}$

where c_1 and c_2 must be positive.

▶ Above equations combine to give

$$\vec{x} = c_1 A^T c_2 A \vec{x} = \lambda A^T A \vec{x}.$$

where $\lambda=c_1c_2>0$.

▶ It's all good: we have the heart of singular value decomposition before us...

Episode 25/25:

Singular Value Decomposition

Hubs and Authorities

- Idea: allow nodes in a knowledge network to have two attributes:
 - 1. Authority: how much knowledge, information, etc., held by a node on a topic.
 - Hubness (or Hubosity or Hubbishness or Hubtasticness): how well a node 'knows' where to find information on a given topic.
- ▶ Original work due to the legendary Jon Kleinberg.
- ▶ Best hubs point to best authorities.
- Recursive: Hubs authoritatively link to hubs, authorities hubbishly link to other authorities.
- More: look for dense links between sets of 'good' hubs pointing to sets of 'good' authorities.
- ► Known as the HITS algorithm (Hyperlink-Induced Topics Search).

Episode 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Hubs and Authorities

Approximating matrices with SVD

We can do this:

- $ightharpoonup A^T A$ is symmetric.
- ▶ A^TA is semi-positive definite so its eigenvalues are all ≥ 0 .
- $lackbox{}{\hspace{0.1cm}}{\hspace{0$
- $ightharpoonup A^T A'$ s eigenvectors form a joyful orthogonal basis.
- ▶ The splendid Perron-Frobenius theorem tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.
- ▶ So: linear assumption leads to a solvable system.
- What would be very good: find networks where we have independent measures of node 'importance' and see how importance is actually distributed.

Hubs and Authorities

Approximating matrices with SVD

Image approximation (80x60)

Singular Value Decomposition

Idea: use SVD to approximate images

▶ Interpret elements of matrix *A* as color values of an image.

Hubs and Authorities

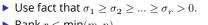
▶ Truncate series SVD representation of *A*:

Approximating matrices with SVD

The Fundamental Theorem of Linear Algebra

Episode 25/25:

$$A = U \Sigma V^T = \sum_{i=1}^{\mathbf{r}} \sigma_i \hat{u}_i \hat{v}_i^T$$



▶ Rank $r \leq \min(m, n)$.

- $\blacktriangleright \ \, {\rm Rank} \,\, r \leq \# \,\, {\rm of} \,\, {\rm pixels} \,\, {\rm on} \,\, {\rm shortest} \,\, {\rm side}.$
- ► For color: approximate 3 matrices (RGB).

少 Q (~ 13 of 34