Review

Matrixology (Linear Algebra)—Episode 7/26 MATH 124, Spring, 2015

Prof. Peter Dodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Episode 7/26: Review

Review for Challenge Level 1

Basics:

Episode 7/26: Review Review for Challenge Level 1

Material covered on first midterm:

- ▶ Episodes 1–7, online here .
- ▶ Chapter 1 and Chapter 2 (Sections 2.1–2.7).
- ▶ Chapter 2 is our focus.
- ▶ Knowledge of Chapter 1 as needed for Chapter 2 = solving $A\vec{x} = \vec{b}$.
- Want 'understanding' and 'doing' abilities.

少 Q (~ 4 of 13

Episode 7/26:

Review for Challenge Level 1

These slides are brought to you by:

Episode 7/26: Review

Ĭ♥ Ā͡⋧=b̄

UNIVERSITY OF

少 Q (~ 1 of 13

Stuff to know:

Row, Column, & Matrix Pictures of Linear Systems $(A\vec{x} = \vec{b})$

- ▶ What dimensions of *A* mean:
 - ightharpoonup m = number of equations.
 - ightharpoonup n = number of unknowns ($x_1, x_2, ...$).
- ▶ How to draw the row and column pictures.
- ▶ Be able to identify row picture (e.g., as representing 2 planes in 3-d).
- ▶ How to convert between the three pictures.

Episode 7/26:

Review for Challenge Level 1

Review

Episode 7/26: Review

Review for Challenge Level 1

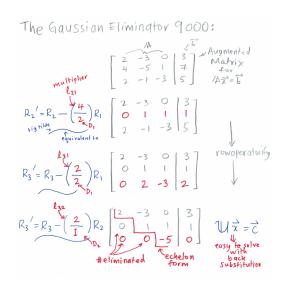
Solving $A\vec{x} = \vec{b}$ by elimination

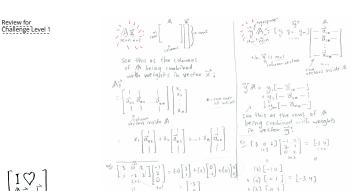
Solve four equivalent ways:

- 1. Simultaneous equations (snore).
- 2. Row operations on augmented matrix:
 - Systematically transform $A\vec{x} = \vec{b}$ into $U\vec{x} = \vec{c}$ (and soon into $R\vec{x} = \vec{d}$).
 - Solve by back subsitution.
- 3. Row operations with E_{ij} and P_{ij} matrices.
- **4.** Factor A as A = LU:
 - Solve two triangular systems by forward and back substitution
 - First $L\vec{c} = \vec{b}$ then $U\vec{x} = \vec{c}$.
 - ▶ More generally, PA = LU and sometimes PA = LDU where D is the pivot matrix.

Understand number of solutions business:

▶ 0, 1, or ∞: why, when, ...




9α (~ 6 of 13

Outline

Episode 7/26: Advanced matrix wrangling 1/2: Review

Episode 7/26: Review

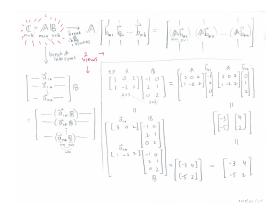
Review for Challenge Level 1

IQ

UNIVERSITY OF

少 q (~ 10 of 13

Episode 7/26:


Video explanation here ☑.

Stuff to know:

More on PA = LU and PA = LDU:

- ▶ If A is m by n then P is m by m, L is m by m, and Uis m by n.
- ▶ Be able to find the pivots of A (they live in U and are hidden in A).
- ▶ Understand how elimination matrices ($E_{i,i}$'s). are constructed from multipliers (l_{ij} 's).
- ▶ Understand how *L* is made up of inverses of elimination matrices
 - e.g.: $L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} A$.
- ▶ Understand how L is made up of the l_{ij} multipliers.
- ▶ Understand how inverses of elimination matrices are simply related to elimination matrices.

Episode 7/26: Advanced matrix wrangling 2/2: Review

Review for Challenge Level 1

UNIVERSITY VERMONT ൗ < ॡ 11 of 13

ൗ q 🥆 8 of 13 Episode 7/26:

Review for Čhallenge Level 1

/A₹=B

UNIVERSITY VERMONT

少 q (~ 9 of 13

Review

UNIVERSITY OF VERMONT

UNIVERSITY OF VERMONT

ჟა(~ 7 of 13

Review for Challenge Level 1

Stuff to know:

Video explanation here ☑.

Episode 7/26: Review

Review for Challenge Level 1

Matrix algebra:

- Understand basic matrix algebra (wrangling).
- ▶ Understand matrix multiplication.
- ▶ Understand multiplication order matters.
- ▶ Understand AB = BA is rarely true.

Inverses:

- ▶ Understand identity matrix *I*.
- ▶ Understand $AA^{-1} = A^{-1}A = I$.
- ▶ Find A^{-1} with Gauss-Jordan elimination.
- Perform row reduction on augmented matrix [A | I].
- ▶ Understand that that finding A^{-1} solves $A\vec{x} = \vec{b}$ but is often prohibitively expensive to do.
- $(AB)^{-1} = B^{-1}A^{-1}$.

Transposes

- ▶ Definition: flip entries across main diagonal.
- ▶ $A = A^T$: A is symmetric.
- ▶ Important property: $(AB)^T = B^T A^T$.

Extra pieces:

- ▶ If $A\vec{x} = \vec{0}$ has a non-zero solution, A has no inverse.
- ▶ If $A\vec{x} = \vec{0}$ has a non-zero solution, then $A\vec{x} = \vec{b}$ always has infinitely many solutions.
- $(A^{-1})^T = (A^T)^{-1}$.

Episode 7/26: Review

Review for Challenge Level 1

