Dispersed: Wednesday, April 22, 2015.
Due: By start of lecture, Thursday, April 30, 2015.
Sections covered: 6.5, 6.7.

Some useful reminders:
Instructor: Prof. Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds@uvm.edu
Office hours: 12:30 to 3:00 pm Mondays
Course website: http://www.uvm.edu/~pdodds/teaching/courses/2015-01UVM-124

- All questions are worth 3 points unless marked otherwise.
- Please use a cover sheet and write your name on the back and the front of your assignment.
- You must show all your work clearly.
- You may use Matlab to check your answers for non-Matlab questions (usually Qs. 1–8).
- Please list the names of other students with whom you collaborated.

Reminder: This assignment cannot be dropped.

1. (Q 4, 6.5) Show that the function $f(x_1, x_2) = x_1^2 + 4x_1x_2 + 3x_2^2$ does not have a minimum at $(0, 0)$ even though it has positive coefficients.

Do this by rewriting $f(x_1, x_2)$ as $[x_1 \ x_2]^T A [x_1 \ x_2]$ and finding the pivots of A and noting their signs (and explaining why the signs of the pivots matter).

Write f as a difference of squares and find a point (x_1, x_2) where f is negative.

Note of caution: All of this signs matching for pivots and eigenvalues falls apart if we have to do row swaps in our reduction.

2. (Q 9, 6.5) Find the 3 by 3 matrix A and its pivots, rank, eigenvalues, and determinant:

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \end{bmatrix} A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 4(x_1 - x_2 + 2x_3)^2.$$

Is this matrix positive definite, semi-positive definite, or neither?
3. (following set of questions based on Q 7, Section 6.7)

Singular Value Decomposition = Happiness.

Consider

\[A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}. \]

(a) What are \(m, n, \) and \(r \) for this matrix?

(b) What are the dimensions of \(U, \Sigma, \) and \(V? \)

(c) Calculate \(A^T A \) and \(AA^T. \)

4. For the matrix \(A \) given above, find the eigenvalues and eigenvectors of \(A^T A \), and thereby construct \(V \) and \(\Sigma. \)

See this tweet for some post-it based help:

https://twitter.com/matrixologyvox/status/593540446845947904

5. For the same \(A \), now find the basis \(\{ \hat{u}_i \} \) using the essential connection \(A \hat{v}_i = \sigma_i \hat{u}_i. \)

Construct \(U \) from the basis you find.

Again see this tweet for some post-it based help:

https://twitter.com/matrixologyvox/status/593540446845947904

6. Next find the \(\{ \hat{u}_i \} \) in a different way by finding the eigenvalues and eigenvectors of \(AA^T. \)

7. (a) Put everything together and show that \(A = U \Sigma V^T. \)

(b) Draw the ‘big picture’ for this \(A \) showing which \(\hat{v}_i \)’s are mapped to which \(\hat{u}_i \)’s.

(c) Which basis vectors, if any, belong to the two nullspaces?

8. Finally, for this same \(A \), perform the following calculation:

\[\sigma_1 \hat{u}_1 \hat{v}_1^T + \sigma_2 \hat{u}_2 \hat{v}_2^T + \ldots + \sigma_r \hat{u}_r \hat{v}_r^T \]

where \(r \) is the rank of \(A. \)

You should obtain \(A... \)

Verify the signs you found for the pivots of \(A \) in question 1 by using Matlab to find \(A \)’s eigenvalues.

10. Matlab question.

Use Matlab to compute the SVD for the matrix \(A \) you explored in questions 3–8.

11. (The bonus one pointer)

Where does the fearsome kiwi rank among among rattites and what’s unusual about the kiwi egg?