1. Find bases for the four subspaces associated with \(A\), possibly known as Prince Humperdinck:

\[
\begin{bmatrix}
1 & 2 & 4 \\
2 & 4 & 8
\end{bmatrix}
\]

You can do this most easily and most joyfully by finding the reduced row form of both \(A \) and \(A^\top \).

2. True or false (give a reason if true or a counterexample if false):

(a) If \(m = n \) then the row space of \(A \) equals the column space.

(b) The matrices \(A \) and \(-A \) share the same four subspaces.

(c) If \(A \) and \(B \) share the same four subspaces then \(A \) is a multiple of \(B \).

3. Suppose the 3 by 3 matrix \(A \) is invertible (hint: what will \(R_A \) be?). Write down bases for the four subspaces of \(A \), and also for the 3 by 6 matrix \(B = [A \ A] \) (i.e., two copies of \(A \) placed side by side).
4. Draw the ‘big picture’ for the following matrix:

\[
\begin{bmatrix}
1 & 2 \\
3 & 6
\end{bmatrix}
\]

(Hint: first find the rank \(r \), and the dimensions and bases for all four subspaces.)

On your diagram, please indicate subspace name, dimensions, and indicate how a point in row space maps to column space.

Note: this is not the abstract big picture but rather the particular big picture of this \(A \). So please sketch the actual subspaces of \(A \).

5. If \(S \) is a subspace of a vector space \(V \), then we use the notation \(S^\perp \) for its orthogonal complement.

 (a) If \(S \) is the subspace of \(\mathbb{R}^3 \) containing only the zero vector, what is \(S^\perp \)?

 (b) If \(S \) is spanned by \(\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \) and \(\begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix} \), what is \(S^\perp \)?

 (c) If \(S \) is spanned by \(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \), what is \(S^\perp \)?

6. Construct a matrix with the required property or explain why you can’t:

 (a) Row space contains \(\begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix} \) and \(\begin{bmatrix} 5 \\ 3 \\ 5 \end{bmatrix} \), and nullspace contains \(\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \).

 (b) \(Ax = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \) has a solution and \(A^T \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \).

7. Find \(\vec{p} \), the projection of \(\vec{b} \) onto the vector \(\vec{a} \) given

\[
\vec{b} = \begin{bmatrix} 3 \\ 4 \\ -1 \end{bmatrix} \quad \text{and} \quad \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.
\]

Also write down the error vector \(\vec{e} \) and check for orthogonality: \(\vec{p}^T\vec{e} = 0 \) (calculus notation: \(\vec{p} \cdot \vec{e} = 0 \)).

8. (Q 3ish, Section 4.2)

For the preceding problem, find the projection 3×3 matrix \(P = \vec{a}\vec{a}^T/((\vec{a}^T\vec{a}) \). Verify that \(P\vec{b} = \vec{p} \) and show that \(P^2 = P \).

(The value in having \(P \) is that we can reuse it to project any \(\vec{b} \). I know this is exciting for you.)
9. Matlab question:

Taking the same matrix from the previous assignment:

\[A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix} \]

use Matlab’s rref command to find the following matrices along with a basis for the row space of each:

(a) \(R_A \),

(b) \(R_{AA^T} \),

(c) \(R_{A^TA} \).

Optional: Note any connections between these bases. Can you explain them?

10. Matlab question:

Taking the transpose of the matrix in the preceding question

\[A^T = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{bmatrix} \]

use Matlab’s rref command to find a basis for the row space of \(A^T \) by first finding the reduced row echelon form \(R_{A^T} \).

In terms of \(A \)’s four fundamental subspaces, note which one this basis is for, and show its dimensions make sense with your knowledge of \(m, n, \) and \(r \).

Optional: do you see any connection to the reduced row echelon forms in the preceding question?

11. (Bonus, 1 point)

What’s the main ingredient in vegemite?