

MATH 124: Matrixology (Linear Algebra) Level Space Invaders (1978) [J, 3 of 10

University of Vermont, Spring 2015

Dispersed: Thursday, January 29, 2015.
Due: By start of lecture, Thursday, February 5, 2015.
Sections covered: 2.5, 2.6, 2.7.
Some useful reminders:
Instructor: Prof. Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds@uvm.edu
Office hours: 2 to 2:45 pm, Mondays; 3 to $3: 45 \mathrm{pm}$ Tuesdays; and 1 to $2: 30 \mathrm{pm}$ Wednesdays Course website: http://www.uvm.edu/~pdodds/teaching/courses/2015-01UVM-124
Textbook: "Introduction to Linear Algebra" (3rd or 4th edition) by Gilbert Strang (published by Wellesley-Cambridge Press).

- All questions are worth 3 points unless marked otherwise.
- Please use a cover sheet and write your name on the back and the front of your assignment.
- You must show all your work clearly.
- You may use Matlab to check your answers for non-Matlab questions (usually Qs. 1-8).
- Please list the names of other students with whom you collaborated.

1. Given a 3×3 matrix A has multipliers $l_{21}=-7 / 2, l_{31}=-3$, and $l_{32}=4$, write down $E_{21}, E_{31}, E_{32}, E_{21}^{-1}, E_{31}^{-1}, E_{32}^{-1}$, and the lower triangular matrix L.
2. Using the Gauss-Jordan method, show that the inverse of the general 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { is } \quad A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Assume $a \neq 0$ and $a d-b c \neq 0$.
Some plans: (a) Find the elimination matrices E_{21} and E_{12} and the pivot matrix D required to turn A into the identity matrix I (as we did in class; you remember; it was fun...).
(b) you can set up the augmented matrix as follows and reduce it until the left hand side is the identity matrix:

$$
A=\left[\begin{array}{ll|ll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right]
$$

3. Find the inverse of the following matrix using the Gauss-Jordan method:

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

4. Factorize the following matrix into the product $L U$:

$$
A=\left[\begin{array}{ll}
2 & 3 \\
6 & 8
\end{array}\right] .
$$

Write down E_{21} and its inverse.
5. Find the $L D U$ factorization of

$$
A=\left[\begin{array}{ccc}
4 & 3 & 7 \\
0 & 2 & -3 \\
0 & 0 & 7
\end{array}\right]
$$

6. Solve $L \vec{c}=\vec{b}$ to find \vec{c}. Then solve $U \vec{x}=\vec{c}$ to find \vec{x}. What is A ?

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \vec{b}=\left[\begin{array}{l}
3 \\
3 \\
5
\end{array}\right] .
$$

7. For which three values of c is this matrix not invertible and why?

$$
A=\left[\begin{array}{lll}
2 & c & c \\
c & c & c \\
8 & 7 & c
\end{array}\right] .
$$

(Hint: for A to be invertible, all its pivots must be $\neq 0$.)
8. (a) Find an example pair of 2×2 invertible matrices A and B such that $A+B$ is not invertible.
(b) Find an example pair of 2×2 singular (i.e., non-invertible) matrices A and B such that $A+B$ is invertible.
9. Find $A^{\mathrm{T}}, A^{-1},\left(A^{-1}\right)^{\mathrm{T}}$, and $\left(A^{\mathrm{T}}\right)^{-1}$ for
(a) $\left[\begin{array}{ll}1 & 0 \\ 9 & 3\end{array}\right]$

Please use the formula for the inverse of a 2×2 matrix.
10. If $A=A^{\mathrm{T}}$ and $B=B^{\mathrm{T}}$ (i.e., A and B are symmetric) which of these matrices are symmetric?:
(a) $A B A B A$.
(b) $A^{3}-B^{3}$,
(c) $(A+B)(A-B)$ (hint: expand this one first),
11. Open up Matlab, and compute the inverses for the following three matrices.

Use Matlab's inv function:
>> inv(A)
Note: No need to show this, but you can check by multiplication that you have indeed found the inverse. Also check that $A=L U$ for the matrices shown.

Adjacent question (unscored): anything interesting about the kinds of matrices you find for L^{-1} and U^{-1} ?

One last check (unscored): Multiply L^{-1} and U^{-1} in the right order to obtain A^{-1}.
(a) $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 / 2 & 3 & 1\end{array}\right]$,
(b) $U=\left[\begin{array}{ccc}6 & 4 & 2 \\ 0 & -3 & 3 \\ 0 & 0 & 7\end{array}\right]$,
(c) $A=L U=\left[\begin{array}{ccc}6 & 4 & 2 \\ -12 & -11 & -1 \\ 3 & -7 & 17\end{array}\right]$.
12. Find the LU factorization of the following matrices using your BFF Matlab. Use Matlab's lu command:
>> $[\mathrm{L}, \mathrm{U}, \mathrm{P}]=\operatorname{lu}(\mathrm{A})$
(a) $\left[\begin{array}{lll}3 & 1 & 2 \\ 6 & 3 & 4 \\ 3 & 1 & 5\end{array}\right]$
(b) $\left[\begin{array}{lll}4 & 2 & 0 \\ 4 & 4 & 2 \\ 2 & 2 & 3\end{array}\right]$
(c) $\left[\begin{array}{rrrr}1 & -1 & 1 & 2 \\ 0 & 2 & 1 & 0 \\ 1 & 3 & 4 & 4 \\ 0 & 2 & 1 & -1\end{array}\right]$
13. The bonus one pointer:

Apart from the platypus, one other kind of mammal lays eggs. What's the name of this crazy beast and what are its young (possibly) called?

