West of House
You are standing in an open field west of a white house, with a boarded front door.

MATH 124: Matrixology (Linear Algebra)
 Level Zork (1977) [J, 2 of 10 University of Vermont, Spring 2015

There is a small
mailbox here.
>open mailbox
Opening the small mailbox reveals a leaflet
>目

Dispersed: Thursday, January 22, 2015.
Due: By start of lecture, Thursday, January 29, 2015.
Sections covered: 2.3, 2.4.
Some useful reminders:
Instructor: Prof. Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds@uvm.edu
Office hours: 2 to $2: 45 \mathrm{pm}$, Mondays; 3 to $3: 45 \mathrm{pm}$ Tuesdays; and 1 to $2: 30 \mathrm{pm}$ Wednesdays
Course website: http://www.uvm.edu/~pdodds/teaching/courses/2015-01UVM-124
Textbook: "Introduction to Linear Algebra" (3rd or 4th edition) by Gilbert Strang (published by Wellesley-Cambridge Press).

- All questions are worth 3 points unless marked otherwise.
- Please use a cover sheet and write your name on the back and the front of your assignment.
- You must show all your work clearly.
- You may use Matlab to check your answers for non-Matlab questions (usually Qs. 1-8).
- Please list the names of other students with whom you collaborated.

1. (similar to Q 24, Section 2.3) Apply elimination to the 2 by 3 augmented matrix $\left[\begin{array}{ll}A & \vec{b}\end{array}\right]$ for the equation given below. Do this using elimination matrix E_{21}. What is the triangular system $U \vec{x}=\vec{c}$? What is the solution \vec{x} ?

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-2
\end{array}\right]
$$

2. Write down the 3 by 3 matrices that produce the following elimination or permutation steps:
(a) E_{21} subtracts 4 times row 1 from row 2 .
(b) E_{32} subtracts -3 times row 2 from row 3 .
(c) P_{23} swaps rows 2 and 3 .
3. (modified version of $Q 3$, Section 2.3) Which three matrices E_{21}, E_{31}, and E_{32} put A into triangular form U ? What is U here? $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ -2 & 2 & 0 \\ 4 & 6 & 1\end{array}\right]$ and $E_{32} E_{31} E_{21} A=U$.
4. (Q 6, Section 2.4) Show that $(A+B)^{2}$ is different from $A^{2}+2 A B+B^{2}$, when

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right]
$$

Write down the correct rule for $(A+B)(A+B)$.
5. (Q 14, Section 2.4) True or false (briefly explain why):
(a) If A^{2} is defined then A is necessarily square.
(b) if $A B$ and $B A$ are defined then A and B are square.
(c) if $A B$ and $B A$ are defined then $A B$ and $B A$ are square.
(d) if $A B=B$ then $A=I$ (where I is the identity matrix and the matrix B is not filled with zilches (0s)).
6. (Q 26, Section 2.4) Multiply $A B$ using columns times rows:

$$
A B=\left[\begin{array}{ll}
1 & 0 \\
2 & 4 \\
2 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 3 & 0 \\
1 & 2 & 1
\end{array}\right]
$$

(You are calculating 'outer products' instead of inner products as we did for an example in Episode 4.)
7. Find all the powers A^{2}, A^{3}, \ldots and $A B,(A B)^{2}, \ldots$ for

$$
A=\left[\begin{array}{ll}
.5 & .5 \\
.5 & .5
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

8. (Q 36, Section 2.4) Find all matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ that satisfy

$$
A\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] A
$$

9. (2 pts)

Matlab action: Compute the following

$$
\mathbf{A}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \times\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right] \times \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] .
$$

Incredibly, the above product of three matrices will be one very useful way to view A. More later.
10. (4 pts)

Matlab action:
For the A you found in the previous question, compute (a) A^{2}, (b) A^{5}, (c) A^{10}, and (d) A^{100}.

What appears to be happening? We'll fully understand what's going on in about 10 more weeks.
11. (Bonus, 1 point)

List five of the numerous peculiarities of the very curious species ornithorhynchus anatinus.

