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a  b  s  t  r  a  c  t

The  advent  of  social  media  has  provided  an extraordinary,  if  imperfect,  ‘big data’  window  into  the form
and evolution  of  social  networks.  Based  on nearly  40 million  message  pairs  posted  to Twitter  between
September  2008  and  February  2009,  we  construct  and  examine  the  revealed  social  network  structure
and dynamics  over  the  time  scales  of  days,  weeks,  and  months.  At the  level  of  user  behavior,  we  employ
our  recently  developed  hedonometric  analysis  methods  to  investigate  patterns  of  sentiment  expression.
eywords:
ocial networks
entiment tracking
ollective mood
motion

We  find  users’  average  happiness  scores  to be  positively  and  significantly  correlated  with  those  of  users
one,  two,  and three  links  away.  We  strengthen  our  analysis  by  proposing  and  using  a null  model  to  test
the  effect  of  network  topology  on  the  assortativity  of happiness.  We  also  find  evidence  that  more  well
connected  users  write  happier  status  updates,  with  a transition  occurring  around  Dunbar’s  number.  More
generally, our  work  provides  evidence  of a social  sub-network  structure  within  Twitter  and  raises  several

 inter
edonometrics methodological  points  of

. Introduction

Social network analysis has a long history in both theoreti-
al and applied settings [1]. During the last 15 years, and driven
y the increased availability of real-time, in-situ data reflecting
eople’s social interactions and choices, there has been an explo-
ion of research activity around social phenomena, and many
ew techniques for characterizing large-scale social networks have
merged. Numerous studies have examined the structure of online
ocial networks in particular, such as blogs, Facebook, and Twitter
2–19].

In a series of analyses of the Framingham Heart Study data
nd the National Longitudinal Study of Adolescent Health, Chris-
akis, Fowler, and others have examined how qualities such as
appiness, obesity, disease, and habits (e.g., smoking) are corre-

ated within social network neighborhoods [20–25].  The authors’
dditional assertion of contagion, however, has been criticized pri-
arily on the basis of the difficulties to be found in distinguishing

hese phenomena from homophily [26–28].  The observation that

ocial networks exhibit assortativity with respect to these traits
vidently requires further study and leads us to explore potential
echanisms. Advances would naturally provide further insight into
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the nature of how social groups influence individual behavior and
vice versa.

Our focus in the present work is the social network of Twitter
users. With the abundance of available data, Twitter serves as a
living laboratory for studying contagion and homophily [29]. As a
requisite step toward these goals, we first define sub-networks of
Twitter users suitable to such study and, second, examine whether
assortativity is observed in these sub-networks. Before describing
our methods, we provide a brief overview of Twitter, related work,
and the challenges associated with social network analysis in this
arena.

Twitter is an online, interactive social media platform in which
users post tweets, micro-blogs with a 140 character limit. Since its
inception in 2006, Twitter has grown to encompass over 200 million
accounts, with over 100 million of these accounts currently active
as of October 2011, and with some users having garnered over 10
million followers [30]. Tweets are open online by default, and are
also broadcast directly to a user’s followers. Users may  express
interest in a tweet by retweeting the message to their followers.
Alternatively, followers may  reply directly to the author.

Understanding the topology of the Twitter network, the man-
ner in which users interact and the diffusion of information through
this media is challenging, both computationally and theoretically.
One of the central issues in characterizing the topology of any
network representation of Twitter lies in defining the criteria for

establishing a link between two users. The majority of previous
studies have examined the topology of and information cascades
on the Twitter follower network [7,10,15], as well as on networks
derived from mutual following [8].  However, the follower network
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Fig. 1. (a) Follower network: The follower network is generated by declared follow-
ing choices, absent any messages being sent. If user vi broadcasts tweets to followers
vj, vk and v� (represented by the dashed, blue arrow) vi would be connected to each
of  vj, vk and v� by a directed link in a follower network. (b) Reciprocal-reply net-
work: Directed replies are represented by a solid black arrow. When considering
the interaction between users, a reply (i.e., v� replies to vi) provides evidence of a
directional interaction between nodes. We mandate a stronger condition for inter-
action, namely reciprocal replies (i.e., vj replies to vi and vice versa) over a given
time  period. Thus vi and vj are connected in the reciprocal reply network that we
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ture of this network, the extent to which it is assortative with
onstruct. (For interpretation of the references to color in this figure legend, the
eader is referred to the web  version of the article.)

s not the only representation of Twitter’s social network, and its
tructure can be misleading [31]. For example, in a study of over

 million users, Cha et al. [10] found that users with the highest
ollower counts were not the users whose messages were most
requently retweeted. This suggests that such popular users (as

easured by follower count) may  not be the most influential in
erms of spreading information, and this calls into question the
xtent to which users are influenced by those that they follow [32].
f further concern is the finding of low reciprocity within follower
etworks. Kwak et al. found very few individuals who  followed
heir followers [15]. As a result, trying to infer meaningful influence
nd contagion in such a network is difficult.

While popular users and their many followers clearly exhibit
n affiliation, they do not necessarily interact, as there are differ-
nt relationships implicated by broadcasting (tweeting), sending a
essage (@someone), and replying to a message. As an example,
e consider a user represented by node vi which has three follow-

rs, represented by vj, vk, and v� as shown in Fig. 1a. When a user
roadcasts tweets to their many followers, as represented by the
irected arrow in Fig. 1a, this does not imply that followers read or
espond to these tweets. Followers vj, vk, and v� receive all tweets
roadcast by node vi, but this provides no guarantee of interaction.
uppose, though, that we observe that v� replies to vi as shown in
ig. 1b. This provides evidence (but not proof) that the user repre-
ented by v� has indeed received a tweet from vi and is sufficiently
otivated to create a response to vi. Although a directional network

ased on these replies can be created, such a directional interaction,
owever, does not suggest reciprocity between the nodes. In this
xample, we have no evidence that vi has, in any way, considered
r even read such a response from his/her follower.

We  conclude that following and unreciprocated replies are not
ufficient for interaction and present an alternative means by which
o derive a social network from Twitter messages, via reciprocal
eplies. In our reciprocal-reply network, two nodes, vi and vj , are
onnected if vi has replied to vj and vj has replied to vi at least once
ithin a given time period of consideration. In Fig. 1b, the nodes

i and vj meet this criterion. Another challenge in characterizing
he topology of any network representation of Twitter concerns
etermining how long a link between two users in the network
hould persist. Including stale user–user interactions in the net-
ork mistakenly creates an inaccurate portrayal of the current state

f the system; this is typically referred to as the “unfriending prob-

em” [26]. Not only will network statistics such as the number of
odes, average degree, maximum degree and proportion of nodes

n the giant component be artificially inflated due to superfluous,
nal Science 3 (2012) 388–397 389

no-longer-active links [26,33], but the degree distribution will also
be distorted. Kwak et al. [15] found that the degree distribution for
a Twitter follower network deviated from a power law distribution
due to an overabundance of high degree nodes resulting from an
accumulation of “dead-weight” in the network.

Additional problems are encountered if one uses accumulated
network data to measure assortativity with respect to a trait (e.g.,
happiness). As an example, consider a network in which two users
are connected because they interacted during the last week of a
year-long study. Including this user–user pair in the list of pairs to
compute assortativity for the entire network blurs the relationship
between more consistent and repeated interactions that occurred
throughout the timespan of the study. Further complications arise
when averaging a user’s trait over a large time scale (i.e., averag-
ing happiness over a 6 month or 12 month timespan). Detecting
changes in users’ traits over time and how these may (or may
not) be correlated with nearest neighbors’ traits is of fundamen-
tal importance; accumulated network data occludes exactly the
interactions we  are looking to understand. Recognizing that, due
to practical limitations, accumulation of network data must occur
on some scale, we  analyze users in day, week, and month recipro-
cal reply networks. By examining networks constructed at smaller
time scales and calculating users’ happiness scores based on tweets
made only during that time period, we aim to take a more dynamic
view of the network.

In addition to defining reciprocal reply networks and advocating
for their use, we also seek to describe how happiness is distributed
in the reciprocal reply networks of Twitter. Previous hedonometric
work with Twitter data has revealed cyclical fluctuations in aver-
age happiness at the level of days and weeks, as well as spikes and
troughs over a time scale of years corresponding to events such
as U.S. Presidential Elections, the Japanese tsunami and major holi-
days [11,34,35].  Other studies have examined changes in valence of
tweets associated with the death of Michael Jackson [14], changes
in the U.S. Stock Market [9],  the Chilean Earthquake of 2010, and the
Oscars [16]. In the present work, we seek to understand localized
patterns of happiness in the Twitter users’ social network.

Understanding how emotions are distributed through social
networks, as well as how they may  spread, provides insight into
the role of the social environment on individual emotional states
of being, a fundamental characteristic of any sociotechnical sys-
tem. Bollen et al. [8] examine a reciprocal-follower network using
Twitter and suggest that Subjective Well-Being (SWB), a proxy
for happiness, is assortative. Building on their work, we  address
whether happiness is assortative in reciprocal-reply networks. We
also test the hypothesis of Christakis and Fowler [25] who find evi-
dence that the assortativity of happiness may  be detected up to
three links away. In doing so, we raise an additional point which
is not specific to Twitter networks, but rather relates to empir-
ical measures of assortativity in general. Relatively few studies
have employed a null model for calculating the pairwise correla-
tions (e.g., happiness–happiness). We  devise a null model which
maintains the topology of the network and randomly permutes
happiness scores attached to each node. By randomly permuting
users’ happiness scores, we  can detect what effect, if any, network
structure has on the pairwise correlation coefficient.

We organize our paper as follows: In Section 2, we describe our
data set, the algorithm for constructing reciprocal-reply networks,
network statistics used for characterizing the networks, and our
measure for happiness. We  propose an alternative means by which
to detect social structure and argue that our method detects a large
social sub-network on Twitter. In Section 3, we describe the struc-
respect to happiness and the results of testing assortativity against
a null model. In Section 4, we  discuss these findings and propose
further investigations of interest.
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Fig. 3. The effect of missing links in the reciprocal reply network is depicted where
observed links are shown as a solid line and an unobserved link is shown as a dashed
line. The effect of unobserved links is twofold: (1) some connections between nodes
are  missed (e.g., vj and v� are not connected in the observed reciprocal reply network)
ig. 2. Tweet counts are plotted for the weeks between September 2008 and
ebruary 2009. The three curves represent the total, those that we observed and
he number of the observed tweets that constituted replies.

. Methods

.1. Data

From September 2008 to February 2009, we retrieved over 100
illion tweets from the Twitter streaming API service.1 While the

olume of our feed from the Twitter API increased during this study
eriod, the total number of tweets grew at a faster rate (Fig. 2).
uring this time period, we estimate that we collected roughly 38%
f all tweets.2 The number of messages and percent of which were
eplies are reported in Table A4.  For the remainder of this paper, we
estrict our attention to the nearly 40 million message-reply pairs
ithin this data set and the users who authored these tweets.

The data received from the Twitter API service for each tweet
ontained separate fields for the identification number of the mes-
age (message id), the identification number of the user who
uthored the tweet (user id), the 140 character tweet, and several
ther geo-spatial and user-specific metadata. If the tweet was  made
sing Twitter’s built-in reply function,3 the identification number
f the message being replied to (original message id) and the iden-
ification of the user being replied to (original user id) were also
eported.

We acknowledge two sources of missing data. First, the Twitter
PI did not allow us access to all tweets posted during the 6 month
eriod under consideration. Thus, there are replies that we  have not
bserved. As a result, some users may  remain unconnected or con-
ected by a path of longer length due to missing intermediary links

n our reciprocal-reply network (Fig. 3). Secondly, we acknowledge

hat users may  be interacting with each other and not using the
uilt-in reply function. We  discuss this further in the next section.

1 Data was received in XML  format.
2 We  calculated the total number of messages as the difference between the last
essage id and the first message id that we observe for a given week. This provides

 reasonable estimate of the number of tweets made per week, as message ids were
ssigned (by Twitter) sequentially during the time period of this study.
3 Twitter has a built-in reply function with which users reply to specific mes-

ages from other users. Tweets constructed using Twitter’s reply function begin
ith ‘@username’, where ‘username’ is the Twitter handle of the user being replied

o; the user and message ids of the tweet being replied to are included in the reply
essage’s metadata from the Twitter API. Users often informally reply to or direct
essages to other users by including said users’ Twitter handles in their tweets. In

uch cases, however, no identification information about the “mentioned” user is
ncluded in the API parameters for these tweets (only their Twitter handle is) and

e  exclude such exchanges when building the reciprocal reply network.
and (2) some path lengths between nodes are artificially inflated (e.g., the distance
from vi to v� is 3 in the observed reciprocal-reply network, however in reality the
path length is 2).

2.2. Reciprocal-reply network

In keeping with terminology used in the field of complex net-
works, the terms nodes and links will be used henceforth to describe
users and their connections. Define G = (V, E) to be a simple graph
which contains, N = |V| nodes and M = |E| links. We  construct the
reciprocal-reply networks in which users are represented by nodes,
vi ∈ V , and links connecting two nodes, eij ∈ E, indicate that vi and
vj have made replies to each other during the period of time
under analysis (Fig. 1). For each network, we remove self-loops
(i.e., users who responded to themselves). We  characterize the
reciprocal-reply network for each week by the calculation of net-
work statistics such as N (the number of nodes),

〈
k
〉

(average
degree), kmax (maximum degree), the number of connected com-
ponents and S (proportion of nodes in the giant component). We
calculate clustering, CG, according to Newman’s global clustering
coefficient [36]:

CG = 3 × (number of triangles on a graph)
number of connected triples of nodes

.

Assortativity refers to the extent to which similar nodes are
connected in a network. Often, degree assortativity is quantified
by computing the Pearson correlation coefficient of the degrees at
each end of links in the network [37]. Since we  are interested in
quantifying the extent to which the highest degree nodes are con-
nected to other high degree nodes, as defined by the rank of their
degrees, we  instead measure degree assortativity by the Spearman
correlation coefficient.4 Thus for each link that connects nodes vi

and vj , we  examine the ranks of kvi
and kvj

. The Spearman correla-
tion coefficient, which is the Pearson correlation coefficient applied
to the ranks of the degrees at each end of links in the network, is
a non-parametric test that does not rely on normally distributed
data and is much less sensitive to outliers.5

In addition, we  also investigate user pairs which are connected
by a minimal path length of two  (or three) in the reciprocal reply
networks. We define d(vi, vj) to be the path length (i.e., number of
links) between nodes vi and vj such that no shorter path exists. As
a consequence of missing messages, we  recognize that some users

will appear to remain unconnected or connected by a path of longer
length. Fig. 3 depicts the effect of missing links on inferred path
lengths between nodes in the network. Nodes vj and v� are adjacent

4 We present both the Spearman and Pearson correlation coefficient in Fig. A2.
Pearson’s correlation coefficient is more sensitive to extreme values and thus
obscures the trend in the data, namely that the network is assortative with respect
to  the rank (i.e., ordering) of nodes’ degrees.

5 Our degree distribution is not Gaussian, as can be seen from Fig. 7.
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Table 1
Happiness scores are computed as a weighted average of words’ havg scores. Since
“starts” is a stop word, it is not included in the calculation of havg(T) = 7.07. This
example serves is included as a means to illustrate the methodology; in practice,
the average is calculated over a much larger word set.

wi havg(wi) labMT? fi pi

Vacation 7.92 Yes 1 1/2
starts 5.96 Yes n/a n/a
f  words and their rank (1 = most frequent, 9956 = least frequent) are plotted (solid
urve). Not all 10,222 labMT words were observed during the time period from
eptember 2008 to February 2009.

n the network, however, due to the missing link represented by the
ashed line, these nodes are inferred to be two links apart.

.3. Measuring happiness

To quantify happiness for Twitter users, we  apply the real-
ime hedonometer methodology for measuring sentiment in
arge-scale text developed in Dodds et al. [11]. In this study, the
000 most frequently used words from Twitter, Google Books
English), music lyrics (1960–2007) and the New York Times
1987–2007) were compiled and merged into one list of 10,222
nique words.6 This word list was chosen solely on the basis of
requency of usage and is independent of any other presupposed
ignificance of individual words. Human subjects scored these
0,222 words on an integer scale from 1 to 9 (1 representing
ad and 9 representing happy) using Mechanical Turk. We com-
ute the average happiness score (havg) to be the average score
rom 50 independent evaluations. Examples of such words and
heir happiness scores are: havg(love) = 8.42, havg(special) = 7.20,
avg(house) = 6.34, havg(work) = 5.24, havg(sigh) = 4.16,
avg(never) = 3.34, havg(sad) = 2.38, havg(die) = 1.74. Words that
ie within ±�havg = 1 of havg = 5 were defined as “stop words” and
xcluded to sharpen the hedonometer’s resolution.7 The result
s a list of 3,686 words, hereafter referred to as the Language
ssessment by Mechanical Turk (labMT) word list [11]. See
ables A1 and A2 for additional example word happiness scores.

Fig. 4 presents word happiness as a function of usage rank for the
oughly 10,000 words in the labMT data set. This figure reveals a fre-
uency independent bias toward the usage of positive words (see
37] for further discussion of this positivity bias). Proceeding with
he labMT word list, a pattern-matching script evaluated each tweet
or the frequency of words. We  compute the happiness of each user
y applying the hedonometer to the collection of words from all

weets authored by the user during the given time period. Note
hat each users’ collection of words likely reflects messages that
ere not replies. The happiness of this collection of words is taken

6 We provide a brief summary of this methodology here and refer the interested
eader to the original paper for a full discussion. The supplementary information
ontains the full word list, along with happiness averages and standard deviations
or these words [11].

7 For notational convenience, we henceforth use �h  in lieu of �havg.
today 6.22 Yes 1 1/2
yeahhhhh n/a No n/a n/a

to be the frequency weighted average of happiness scores for each
labMT word as havg(T) = ∑N

i=1havg(wi)fi/
∑N

i=1fi = ∑N
i=1havg(wi)pi,

where havg(wi) is the average happiness of the ith word appear-
ing with frequency fi and where pi is the normalized frequency(

pi = fi/
∑N

j=1fj

)
. As a simple example, we consider the phrase:

Vacation starts today, yeahhhhh! in Table 1. In practice, though, the
hedonometer is applied to a much larger word set and is not applied
to single sentences.

Having found happiness scores for each node (user), we then
form happiness–happiness pairs (hvi

, hvj
), where hvi

and hvj
denote

the happiness of nodes vi and vj connected by an edge. The Spear-
man  correlation coefficient of these happiness–happiness pairs
measures how similar individuals’ average happiness is to that of
their nearest neighbors’. Lastly, we investigate the strength of the
correlation between users’ average happiness scores and those of
other users in the two  and three link neighborhoods.

3. Results

3.1. Reciprocal-reply network statistics

Visualizations of day and week networks were created using the
software package Gephi [39]. Figs. 5 and A6 show a sample week
and day network, respectively. All layouts were produced using
the Force Atlas 2 algorithm, which is a spring based algorithm that
plots nodes together if they are highly connected (see [40] for more
details). The sizes of the nodes are proportional to the degrees.

Network statistics, such as the number of nodes (N), the aver-
age degree

〈
k
〉

, the maximum degree (kmax), global clustering CG,
degree assortativity (Assort), and the proportion of nodes in the
giant component (S) are summarized in Fig. 6. Several trends are
apparent.

Throughout the course of the study, the number of users in the
observed reciprocal-reply network shows an increase, whereas the
average degree, degree assortativity, and proportion of nodes in
the giant component remain fairly constant. The fluctuations in
maximum degree are the result of celebrities or companies hav-
ing bursts of high volume reply exchanges with their fans during
a particular week, for example Bob Bryar, Drummer for the band
My Chemical Romance (kmax = 1244, Week 12), Namecheap domain
registration company (kmax = 1245, Week 13), Twitter’s own  Shorty
Awards (kmax = 1456, Week 14), and Stephen Fry, actor and mega-
blogger (kmax = 1718, Week 22). This observation highlights the
importance of examining network data on the appropriate time
scale, otherwise information about these kinds of dynamics would
be lost. The clustering coefficient shows a slight decrease over the
course of this period. This is most likely due to an increasing number
of nodes, which results in a smaller proportion of closed trian-
gles in the network. The degree distribution, Pk, for a sample week
(week beginning January 27, 2009) is presented in Fig. 7. Using the

approach outlined by Clauset, Shalizi, and Newman [41], we find a
lower bound for the scaling region to be kmin ≈ 34 and a very steep
scaling exponent of  ̨ = 3.5. This suggests a constrained variance and
mean. We test whether the empirical distribution is distinguishable
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Fig. 5. A visualization of the 162,445 nodes in the reciprocal reply network for the week beginning December 9, 2008 (Week 14) is depicted. Node colors represent connected
components, a total of 15,342, with the giant component (shown in blue) comprising 76 % of all nodes. The size of each node is proportional to its degree. The visualization
was  made using Gephi [39]. (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of the article.)
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rom a power law using the Kolmogorov–Smirnov test and find no
vidence against the null hypothesis for the week (D = 2.28 × 10−2,

 = 0.095, n = 203,852). We  find the same exponent and statistically
tronger evidence of a power law for a sample month (see Fig. A1).
his suggests that these distributions’ tails may  be fit by a power
aw.

.2. Measuring happiness
The application of the hedonometer gives reasonable results
hen applied to a large body of text, but can be misleading when

pplied to smaller units of language [11]. To provide a sense of how
ensitive this measure is to the number of labMT words posted
by users, we  sampled happiness–happiness pairs, (hvi
, hvj

) whose
respective users, vi and vj , had posted at least  ̨ total labMT words
during a sample week (week beginning January 27, 2009). For these
users, we  compute happiness assortativity and show the varia-
tion with  ̨ in Fig. 8. For �h  = 0, there is less variation due to
the numerous words centered around the mean happiness score
regardless of the threshold, ˛. Tuning both parameters too high
results in few sampled words and corrupts the interpretation of the
results.
Figs. 9 and 10 reveal a weakening happiness–happiness corre-
lation for users in the week networks as the path length between
nodes increases. All correlations, for each week, were significant
(p < 10−10). This suggests that the network is assortative with
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heir nearest neighbors than those who are 2 or 3 links away.

In Fig. 11 we provide a visualization of an ego-network for a
ingle node, including neighbors up to three links away. Nodes
re colored by their havg score, illustrating the assortativity of
appiness. Fig. A5 visualizes the happiness assortativity for an
ntire week network.

In Fig. 12,  we show the average happiness score as a function of
ser degree k for all week networks. The average happiness score

ncreases gradually as a function of degree, with large degree nodes
emonstrating a larger average happiness than small degree nodes.
arge degree nodes use words such as “you,” “thanks,” and “lol”
ore frequently than small degree nodes, while the latter group

ses words such as “damn,” “hate,” and “tired” more frequently. A

ord shift diagram, comparing nodes with k < 100 vs. nodes with

 ≥ 100 is included in Fig. A7.  Fig. 12 also reveals that the number of
arge degree nodes is fairly small. Our results support recent work
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nterpretation of the references to color in this figure legend, the reader is referred
o  the web version of the article.)
 web  version of the article.)

showing that most users of Twitter exhibit an upper limit on the
number of active interactions in which they can be engaged [31].
This may  provide further evidence in support of Dunbar’s hypothe-
sis, which suggests that the number of meaningful interactions one
can have is near 150 [42].

3.3. Testing assortativity against a null model

To further examine these findings, we  create a null model
which maintains the network topology (i.e., adjacency matrices
for one link, two  link, and three link remain intact), but randomly
permutes the happiness scores associated with each node. The
Spearman correlation coefficient shows no statistically significant
relationship for the null model applied to a sample week of the

data set. Fig. 13 shows the results of 100 random permutations
applied to nodes’ associated happiness scores. The Spearman
correlation coefficients for the observed data are shown as blue
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Fig. 8. Nearest neighbor happiness assortativity as a function of the number of
labMT words required per user is displayed for a sample week reciprocal-reply net-
work. Notice that when �h = 0, there is less variation due to the numerous words
centered around the mean happiness score regardless of the threshold, ˛. While
this  stability is desirable, tuning �h  allows us to sharpen the resolution of the hedo-
nometer. This tuning, however, must be balanced with the appropriate choice of
˛.
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because of the uni-modal distribution of havg for the labMT words. Thus a moderate
v

s
a
c
a
t
i

l
w
c

decrease). This may  be due in part to sub-sampling effects or due
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quares (�havg = 0) and green diamonds (�havg = 1). The average
nd standard deviation of the Spearman correlation coefficient
alculated for the 100 randomized happiness scores (null model)
re shown as red circles with error bars (the error bars are smaller
han the symbol). This data supports the hypothesis that happiness
s less assortative as network distance increases.

Lastly, we explore whether these correlations are due to simi-

arity of word usage. For this analysis, we compute the similarity of

ord bags for users connected in the reciprocal reply networks. We
ompare the distribution of observed similarity scores to similarity

r s
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ig. 10. Happiness assortativity as measured by Spearman’s correlation coefficients is sh
y  users set to  ̨ = 1 and (b)  ̨ = 50. The dashed lines indicate weakening happiness–happi
or  each week in the data set.
onal Science 3 (2012) 388–397

scores obtained by randomly reassigning word bags to users.
Fig. A8 shows that both distributions are of a similar form, with the
randomized version exhibiting a slightly lower mean similarity
score (Di,j = .167) as compared to the mean of the observed
similarity scores for users (Di,j = .267). If users were tweeting
similar words with a similar frequency, we  would expect a much
larger mean similarity score for the observed data. Thus, we do not
find evidence suggesting that the happiness correlations are due
to similarity of word bags.

4. Discussion

In this paper, we describe how a social sub-network of Twit-
ter can be derived from reciprocal-replies. Countering claims that
Twitter is not social a network [15], we provide evidence of a very
social Twitter. The large volume of replies (millions every week)
and assortativity of user happiness indicates that Twitter is being
used as a social service. Furthermore, conducted at the level of
weeks, our analysis examines an in the moment social network,
rather than the stale accumulation of social ties over a longer period
of time. A network in which edges are created and never disinte-
grate results in dead links with no contemporary functional activity.
This problem of unfriending has been noted [26] and can greatly
impact conclusions drawn when observational data are used to
infer contagion.

Our characterization of the reciprocal reply network reveals
several trends over the 25 week period from September 2008 to
February 2009. The number of nodes, N, in a given week net-
work increased as time progressed, which is undoubtedly due to
Twitter’s enormous growth in popularity over the study period.
Similarly, with an increasing number of nodes, we observe a
smaller proportion of closed triangles (i.e., clustering shows a slight
to an increasing N, with which the number of closed triangles
(i.e., friends of friends) cannot keep up. The proportion of nodes
in the giant component remains fairly constant, as does degree
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ssortativity as measured by Spearman’s correlation coefficient.
ad we used the Pearson correlation coefficient, degree assortativ-

ty would have been highly variable (Fig. A1) due to the extreme
alues of maximum degree (kmax) during weeks 12–14 and 22.
sing the Spearman rank correlation coefficient, which is less sen-

itive to extreme values, we find that the degree assortativity is
airly constant.

Our work is based on a sub-sample of tweets and is thus sub-
ect to the effects of missing data. The problem of missing data has
een addressed by several researchers investigating the impact of
issing nodes [43–47],  missing links, or both [48]. More specifi-

ally, the work of Stumpf [43] shows that sub-sampled scale-free
etworks are not necessarily themselves scale-free. Further work
hich addresses the problem of missing messages and identifies

he consequences of missing data on inferred network topology is

eeded to more fully address these questions.

We find support for the “happiness is assortative” hypothesis
nd evidence that these correlations can be detected up to three
inks away. Further, this finding does not appear to be based on
tember 9, 2008 (Week 1). Colors represent happiness scores for users posting more
er’s wordbag did not meet our thresholding criteria.

users tweeting similar words (Fig. A8). Our correlation coefficients
for reciprocal-reply networks constructed at the level of weeks are
smaller than those obtained by Bollen et al. [8] for a reciprocal-
follower network constructed by aggregating over a six month
period. This difference is likely a reflection of differences in method-
ologies, such as our more dynamic time scale (one-week periods
vs. six month periods), our exclusion of central value happiness
scores (i.e., stop words), and our use of the Spearman correlation
coefficient.

While this paper does not attempt to separate homophily and
contagion, future work could use reciprocal-reply networks to
investigate these effects. While reciprocal-reply networks are sub-
ject to errors caused by missing data (see above discussion of this
issue) they may  provide a valuable framework for studying con-
tagion effects, given that they are based on a conservative and

dynamic metric of what constitutes an interaction on Twitter. A
network structure in which links are known to be active and valid
provides an arena in which the diffusion of information and emo-
tion may  be properly studied.
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