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Direct, physically motivated derivation of triggering probabilities for spreading
processes on generalized random networks

Peter Sheridan Dodds,1, 2, ∗ Kameron Decker Harris,1, 2, † and Joshua L. Payne3, ‡

1Department of Mathematics & Statistics, The University of Vermont, Burlington, VT 05401.
2Complex Systems Center & the Vermont Advanced Computing Center,

The University of Vermont, Burlington, VT 05401.
3Computational Genetics Laboratory, Dartmouth College, Hanover, NH 03755

(Dated: August 30, 2011)

We derive a general expression for the probability of global spreading starting from a single infected
seed for contagion processes acting on generalized, correlated random networks. We employ a simple
probabilistic argument that encodes the spreading mechanism in an intuitive, physical fashion.
We use our approach to directly and systematically obtain triggering probabilities for contagion
processes acting on a series of interrelated random network families.
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I. INTRODUCTION

Spreading is a pervasive dynamic phenomenon, rang-
ing in form from simple physical diffusion to the com-
plexities of socio-cultural dispersion and interaction of
ideas and beliefs [1–11]. Successful spreading in sys-
tems may manifest as an expanding front, such as in
the spread of disease through medieval Europe [12], or
through inherent or revealed networks, such as in pan-
demics in the modern era of global travel [13]. Here,
we focus on spreading processes operating on generalized
random networks, which have proven over the last decade
to be illustrative of spreading on real networks and at the
same time to be analytically tractable [3, 14–24].
In contributing to the wealth of already known results

for random network contagion model, we make two main
advances here. First, we obtain, in the most general
terms possible, an expression for the probability of global
spreading from a single seed for a broad range of conta-
gion processes acting on generalized, correlated random
networks. By global spreading we mean a non-zero frac-
tion of nodes in an infinite network are eventually infect-
ed. Second, we use an argument that is physically moti-
vated and direct. Existing approaches rely on a range
of mathematical techniques, such as probability gener-
ating functions [18, 25, 26], which, while being entirely
successful in determining spreading probabilities as well
as many other quantities, involve an obfuscation of the
underlying physical mechanisms.
The present paper is a companion to our earlier work

where we derived a general condition for the possibility
(rather than probability) of global spreading for single-
seed contagion processes acting on random networks [27].
We structure our paper as follows. In Sec. II, we define

the broadest class of correlated random networks allow-
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ing for directed and undirected edges and arbitrary node
and edge properties. In Sec. III, we define the gener-
al class of contagion processes that our treatment can
encompass. In Sec. IV, we compute the probability that
seeding a node of a given type generates a global spread-
ing event. We use our formalism for six interrelated ran-
dom network families with general contagion processes
acting on them in Sec. V, and we offer some concluding
remarks in Sec. VI.

II. GENERALIZED RANDOM NETWORKS

Our theoretical treatment builds on a formalism we
introduce here for representing generalized random net-
works, an expansion of what we used in our connected,
earlier work [27]. We depict the essential features of a
random network with the possibility of directed edges
in Fig. 1. The most basic elements of networks are
nodes and edges, and here we allow the following fea-
tures encoded in two parameters:

• ν represents a set of arbitrary node characteristics
such as node degree, node age, susceptibility to a
given disease or message, etc.; and

• λ represents a set of arbitrary edge characteristics
such as direction, age, strength, conductance, etc.
Since edges may have directional aspects, we must
always be clear that edges are defined within the
context of the nodes they connect. The variable
λ is defined with respect to a given direction of
travel along a specific edge. We hence also use the
notation λ̄ to indicate the edge’s measured charac-
teristics when travelled in the opposite direction.
In other words, if in moving in one direction along
an edge between two nodes labelled, say, i1 and i2
respectively, we observe the edge is of type λ, then
in travelling in the reverse direction from node i2 to
i1, the edge will be of type λ̄. A simple example is
unweighted, directed networks where we can travel
with or against the direction of each edge.
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FIG. 1: Schematic showing the configuration of the potential
triggering node subnetwork using the present work’s formal-
ism for generalized random networks described in Sec. II, and
the basic form of a random network with directed edges and
a giant component. The ellipses labelled a–d show four pos-
sible locations of the subnetwork in the overall network Ω.
Global spreading events can be successfully generated only if
the subnetwork is part of the giant in-component Ωin, either
within or outside of the giant strongly connected component
Ωscc (ellipses a and b). No spreading is possible if the sub-
network is instead part of the giant out-component outside
of the strongly connected component (Ωout/Ωscc, ellipse c) or
outside of all three giant components (ellipse d).

We take all variables to be discrete, a choice that does
not limit us when considering applications for real world
networks. We denote the sets of all node and edge types
by N and L, the entire network by Ω, and the set of
edges incident to a node of type ν by Λν .

To define a random network with arbitrary node-edge-
node correlations, we need to specify a number of interre-
lated probabilities, and these must further satisfy certain
restrictions and detailed balance equations [14]. First
and overall, we have the node and edge distributions
Pr(ν) and Pr(λ), where in randomly selecting an edge
we must also randomly choose which direction to tra-
verse it. Note that we immediately must have the evi-
dent restriction Pr(λ) = Pr(λ̄), and of course the basic
normalizations

∑

ν∈N Pr(ν) = 1 and
∑

λ∈L Pr(λ) = 1.

Next, we need Pr(νλ) which we define as the proba-
bility that in randomly choosing an edge and traversing
it in a randomly chosen direction, we find it is of type λ
and that we are travelling away from a node of type ν.

Finally, we encode correlations via the transition prob-
ability Pr(ν′|νλ) which is the probability that we reach
a type ν′ node, given that we are following a type λ edge
away from a type ν node.
We are now forced to connect and constrain the prob-

abilities Pr(νλ) and Pr(ν′|νλ) as follows. Consider
Pr(νλν′) which we define as the probability a random-
ly selected edge is of type λ and runs between a type ν
node and type ν′ node (corresponding to the subnetwork
in Fig. 1). This quantity depends on our two probabilities
as Pr(νλν′) = Pr(ν′|νλ)Pr(νλ). Now, because we may
traverse edges in either direction with equal likelihood,
we must also have Pr(νλν′) = Pr(ν′λ̄ν). We therefore
arrive at the detailed balance condition:

Pr(ν′|νλ)Pr(νλ)
︸ ︷︷ ︸

Pr(νλν′)

= Pr(ν|ν′λ̄)Pr(ν′λ̄)
︸ ︷︷ ︸

Pr(ν′λ̄ν)

. (1)

Before considering contagion processes, we recall the
well-known typical macroscopic ‘bow-tie’ form of random
networks with directed edges [14, 18, 28], given that a
giant component is present. As shown in Fig. 1, there are
three giant components of functional importance: (1) the
giant strongly connected component, Ωscc, within which
any pair of nodes can be connected via a path of directed
and/or undirected edges, traversing the directed ones;
(2) the giant in-component Ωin, the set of all nodes from
which paths lead to Ωscc (n.b., Ωscc ⊂ Ωin); and (3) the
giant out-component Ωout, the set of all nodes which can
be reached along directed paths starting from a node in
Ωin (n.b., Ωscc ⊂ Ωout). By definition, we have that
Ωscc = Ωin ∩ Ωout. Any global spreading event must
begin from a seed in the giant in-component, and can at
most spread to the giant out-component Ωout.

III. GENERALIZED CONTAGION PROCESS

We consider contagion processes where the probabil-
ity of a node’s infection may depend in any fashion on
the current states of its neighbors, potentially resembling
phenomena ranging from the spread of infectious diseases
to socially-transmitted behaviors [19, 29–31]. Since we
are interested in the probability of spreading, we can cap-
italize on the fact that random networks are locally pure
branching structures. We therefore need to know only
what the probability of infection is for a type ν′ node giv-
en a single neighbor of type ν is infected, whose influence
is felt along a type λ edge. We write this probability as
Bνλν′ . Time is removed from this quantity, as we need to
know only the probability of eventual infection. Disease
spreading models with recovery [27, 31] are included, as
are threshold models inspired by social contagion [19, 30].

IV. TRIGGERING PROBABILITIES

We define Qνλ to be the probability that seeding a
type ν node generates a global spreading event along an
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Network: Edge Triggering Probability: Node Triggering Probability, Q:

I. Undirected,
Uncorrelated

Q∗∗ =
∑

k′
u

P (u)(k′
u | ∗)B∗∗k′

u

[

1− (1−Q∗∗)
k′

u
−1

]

∑

k′
u

Pr(k′
u)

[

1− (1−Q∗∗)
k′

u

]

II. Directed,
Uncorrelated

Q∗∗ =
∑

k′

i
,k′

o

P (u)(k′
i , k

′
o| ∗)B∗∗k′

i

[

1− (1−Q∗∗)
k′

o

]

∑

k′

i
,k′

o

Pr(k′
i , k

′
o)

[

1− (1−Q∗∗)
k′

o

]

III. Mixed
Directed and
Undirected,
Uncorrelated

Q∗u =
∑

!k′

P (u)(!k′| ∗)B∗∗!k′

[

1− (1−Q∗u)
k′

u
−1(1−Q∗o)

k′

o

]

Q∗o =
∑

!k′

P (i)(!k′| ∗)B∗∗!k′

[

1− (1−Q∗u)
k′

u(1−Q∗o)
k′

o

]

∑

!k′

Pr(!k′)
[

1− (1−Q∗u)
k′

u(1−Q∗o)
k′

o

]

IV. Undirected,
Correlated

Qku∗ =
∑

k′
u

P (u)(k′
u | ku)B∗∗k′

u

[

1− (1−Qk′
u
∗)

k′

u
−1

]

∑

k′
u

Pr(k′
u)

[

1− (1−Qk′
u
∗)

k′

u

]

V. Directed,
Correlated

Qkiko,∗ =
∑

k′

i
,k′

o

P (u)(k′
i , k

′
o| ki, ko)B∗∗k′

i

[

1− (1−Qk′

i
k′
o
,∗)

k′

o

]

∑

k′

i
,k′

o

Pr(k′
i , k

′
o)

[

1− (1−Qk′

i
k′
o
,∗)

k′

o

]

VI. Mixed
Directed and
Undirected,
Correlated

Q!ku =
∑

!k

P (u)(!k′|!k)B∗∗!k′

[

1− (1−Q!k′u)
k′

u
−1(1−Q!k′o)

k′

o

]

Q!ko =
∑

!k′

P (i)(!k′|!k)B∗∗!k′

[

1− (1−Q!k′u)
k′

u(1−Q!k′o)
k′

o

]

∑

!k′

Pr(!k′)
[

1− (1−Q!k′u)
k′

u(1−Q!k′o)
k′

o

]

TABLE I: For the six classes of random networks described in Sec. V, the probability of triggering a global spreading events
due to (1) an infected edge, and (2) an infected, randomly chosen single seed (see Eqs. 2 and 4). We indicate by the symbol ∗
when no node or edge type is relevant.

edge of type λ. Due to the Markovian nature of ran-
dom networks, this probability must satisfy a (nonlinear)
recursion relation:

Qνλ =
∑

ν′∈N

Pr(νλν′)Bνλν′



1−
∏

λ′∈Λ
ν
′\λ̄

(1−Qν′λ′)



 ,

(2)
an expression which involves three elements. First, we
have Pr(νλν′) which is the probability that the edge λ
leads to a node of type ν′. The second term is the Bνλν′

which as we have just defined is the probability of suc-
cessful infection. The last term contains the recursive
structure. At least one of the edges leading away from the
type ν′ node must generate a global spreading event (note
that the incident edge of type λ̄ is excluded in the prod-
uct). The probability this happens is the complement of
the probability that none succeed,

∏

λ′∈Λ
ν
′\λ̄ (1−Qν′λ′) .

Eq. (2) will rarely be analytically tractable (but see [32]
for an exactly solved simple model), and will usually be
solved numerically by straightforward iteration.
The probability that an infected type ν node seeds a

global spreading event follows as

Qν = 1−
∏

λ∈Λν

(1−Qνλ), (3)

where again success is defined in terms of not failing.

Finally, the probability that the sole infection of a ran-
domly chosen node leads to a global spreading event is

Q =
∑

ν∈N

Pr(ν)Qν =
∑

ν∈N

Pr(ν)

[

1−
∏

λ∈Λν

(1 −Qνλ)

]

.

(4)
The effects of weighted triggering schemes can be exam-
ined by replacing Pr(ν) with the appropriate distribu-
tion.

V. APPLICATION TO A SET OF RANDOM
NETWORK FAMILIES

In Tab. I, we list the forms of Qνλ and Q for six specif-
ic families of random networks which we describe below.
The last of these network families is the most general and
contains the other five as special cases. Nodes poten-
tially have three kinds of unweighted edges incident to
them: undirected, in-directed, and out-directed, and we
use the vector representation #k = [ku, ki, ko]T to define
node classes [14, 27]. The specific transition probabilities,
P (i)(#k|#k′), P (o)(#k|#k′), and P (u)(#k|#k′), give the probabili-
ties of an edge leading from a degree #k′ node to a degree #k
node being oriented as undirected, incoming, or outgoing
(see Refs. [27] and [32] for more details). For uncorrelat-
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ed networks, we use the notation P (i)(#k| ∗), etc. Similarly
for the triggering probabilities, where the node or edge
type is irrelevant we also use ∗ (e.g., Q∗∗ instead of Qνλ

for undirected, uncorrelated, unweighted networks). For
simplicity, we assume infection is due only to properties
of the node potentially being infected, which for these
networks means the node’s degree.

VI. CONCLUDING REMARKS

We have shown that the probability of a single infected
node generating a global spreading event can be derived
in a straightforward way for spreading processes on a
very general class of correlated random networks. Our

approach brings a physical intuition to the problem, and
while more sophisticated mathematical analyses arrive
at the same results, and are certainly useful for more
detailed investigations, they are burdened with some
degree of inscrutability.
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