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The daily unravelling of the human mind:
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Happiness:

Socrates et al.:
eudaimonia [11]

Bentham:
hedonistic
calculus

Jefferson:
. . . the pursuit of
happiness
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Happiness:

Even the odd modern economist
is happy:

“Happiness” by Richard Layard [15]

[amazon] (�)
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What makes us happy?

Layard’s summary:

Dominant factors:

I Family
relationships

I Financial situation
I Work
I Community and

Friends

I Health
I Personal Values
I Personal Freedom

Unimportant factors:

I Age
I Gender
I Education

I Inherent
intelligence

I Looks
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Desiring happiness—not just for boffins:
I Average people routinely report being happy is what

they want most in life [15, 16, 6]

I And it matters: “Happy people live longer:. . . ”
Survey by Diener and Chan. [6]

National indices of
well-being:
I Bhutan
I France
I Australia
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An easy knock:

Science = Orwell Policy = Brave New World
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Emotional content

So how does one measure
1. happiness?
2. levels of other emotional states?

Just ask people how happy they are.
I Experience sampling [3, 5, 4] (Csikszentmihalyi et al.)
I Day reconstruction [12] (Kahneman et al.)

But self-reporting has some drawbacks:
I relies on memory and self-perception
I induces misreporting [17]

I costly
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Happiness, attention, and doing:

A Wandering Mind Is an
Unhappy Mind
Matthew A. Killingsworth* and Daniel T. Gilbert

Unlike other animals, human beings spend
a lot of time thinking about what is not
going on around them, contemplating

events that happened in the past, might happen
in the future, or will never happen at all. Indeed,
“stimulus-independent thought” or “mind wan-
dering” appears to be the brain’s default mode
of operation (1–3). Although this ability is a re-
markable evolutionary achievement that allows
people to learn, reason, and plan, it may have an
emotional cost. Many philosophical and religious
traditions teach that happiness is to be found by
living in the moment, and practitioners are trained
to resist mind wandering and “to be here now.”
These traditions suggest that a wandering mind is
an unhappy mind. Are they right?

Laboratory experiments have revealed a great
deal about the cognitive and neural bases of mind
wandering (3–7), but little about its emotional
consequences in everyday life. The most reliable
method for investigating real-world emotion is ex-
perience sampling, which involves contacting peo-
ple as they engage in their everyday activities and
asking them to report their thoughts, feelings, and
actions at that moment. Unfortunately, collecting
real-time reports from large numbers of people as
they go about their daily lives is so cumbersome
and expensive that experience sampling has rarely
been used to investigate the relationship between
mind wandering and happiness and has always
been limited to very small samples (8, 9).

We solved this problem by developing aWeb
application for the iPhone (Apple Incorporated,
Cupertino, California), which we used to create
an unusually large database of real-time reports
of thoughts, feelings, and actions of a broad range
of people as they went about their daily activ-
ities. The application contacts participants through
their iPhones at random moments during their
waking hours, presents them with questions,
and records their answers to a database at www.
trackyourhappiness.org. The database currently
contains nearly a quarter of a million samples
from about 5000 people from 83 different coun-
tries who range in age from 18 to 88 and who
collectively represent every one of 86 major oc-
cupational categories.

To find out how often people’s minds wander,
what topics they wander to, and how those wan-
derings affect their happiness, we analyzed samples
from 2250 adults (58.8% male, 73.9% residing in
the United States, mean age of 34 years) who were
randomly assigned to answer a happiness question
(“How are you feeling right now?”) answered on a
continuous sliding scale from very bad (0) to very
good (100), an activity question (“What are you
doing right now?”) answered by endorsing one or

more of 22 activities adapted from the day recon-
struction method (10, 11), and a mind-wandering
question (“Are you thinking about something
other than what you’re currently doing?”) answered
with one of four options: no; yes, something pleas-
ant; yes, something neutral; or yes, something un-
pleasant. Our analyses revealed three facts.

First, people’s minds wandered frequently, re-
gardless of what they were doing. Mind wandering
occurred in 46.9% of the samples and in at least
30% of the samples taken during every activity
except making love. The frequency of mind wan-
dering in our real-world sample was considerably
higher than is typically seen in laboratory experi-
ments. Surprisingly, the nature of people’s activ-
ities had only a modest impact on whether their
minds wandered and had almost no impact on the
pleasantness of the topics to which their minds
wandered (12).

Second, multilevel regression revealed that peo-
ple were less happy when their minds were wan-
dering than when they were not [slope (b) = –8.79,
P < 0.001], and this was true during all activities,

including the least enjoyable. Although people’s
minds were more likely to wander to pleasant topics
(42.5% of samples) than to unpleasant topics
(26.5% of samples) or neutral topics (31% of sam-
ples), people were no happier when thinking about
pleasant topics than about their current activity (b =
–0.52, not significant) and were considerably un-
happier when thinking about neutral topics (b =
–7.2, P < 0.001) or unpleasant topics (b = –23.9,
P < 0.001) than about their current activity (Fig. 1,
bottom). Although negative moods are known
to cause mind wandering (13), time-lag analyses
strongly suggested that mind wandering in our
sample was generally the cause, and not merely
the consequence, of unhappiness (12).

Third, what people were thinking was a better
predictor of their happiness than was what they
were doing. The nature of people’s activities ex-
plained 4.6% of the within-person variance in hap-
piness and 3.2% of the between-person variance in
happiness, but mind wandering explained 10.8%
of within-person variance in happiness and 17.7%
of between-person variance in happiness. The var-
iance explained by mind wandering was largely
independent of the variance explained by the na-
ture of activities, suggesting that the two were in-
dependent influences on happiness.

In conclusion, a human mind is a wandering
mind, and a wandering mind is an unhappy mind.
The ability to think about what is not happening
is a cognitive achievement that comes at an emo-
tional cost.
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Fig. 1. Mean happiness reported during each ac-
tivity (top) and while mind wandering to unpleas-
ant topics, neutral topics, pleasant topics or not
mind wandering (bottom). Dashed line indicates
mean of happiness across all samples. Bubble area
indicates the frequency of occurrence. The largest
bubble (“not mind wandering”) corresponds to
53.1% of the samples, and the smallest bubble
(“praying/worshipping/meditating”) corresponds to
0.1% of the samples.
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Killingsworth and Gilbert,
Science, 2010 [13]
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We’d like to build an ‘hedonometer’:

I An instrument to ‘remotely-sense’
emotional states and levels, in real
time or post hoc.

Ideally:

I Transparent
I Fast
I Based on written

expression
I Uses human evaluation

I Non-reactive
I Complementary to

self-reported measures
I Improvable
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Measuring Emotional Content

I Idea: Build on measures of the emotional content of
individual words.

I Osgood et al. (1957) [20] identified
a basis of three psychological variables as semantic
differentials:
I Valence: bad↔ good
I Dominance: weak↔ strong
I Arousal: passive↔ active
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ANEW study

I ANEW = “Affective Norms for English Words”

I Study: participants shown lists of isolated words
I Asked to grade each word’s valence, arousal, and

dominance level
I Integer scale of 1–9

I N =1034 words—previously identified as bearing
emotional weight

I Participants = College students (*cough*)
I Results published by Bradley and Lang (1999) [2]
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1999 ANEW study—three 1–9 scales: [2]

valence:

arousal:

dominance:
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ANEW study:

Valence = Happiness:
I Valence scale presented to participants as a

‘happy-unhappy scale.’
I Participants were further told:

“At one extreme of this scale, you are happy,
pleased, satisfied, contented, hopeful. . . .

The other end of the scale is when you feel
completely unhappy, annoyed, unsatisfied,
melancholic, despaired, or bored.”
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Top and Bottom 5 words by valence

1 triumphant (8.82) rape (1.25)
2 paradise (8.72) suicide (1.25)
3 love (8.72) funeral (1.39)
4 loved (8.64) cancer (1.50)
5 miracle (8.60) rejected (1.50)
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ANEW study words—examples
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ANEW = “Affective Norms for English Words” [2]
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Measuring the happiness of a text:

ANEW
words

11. perfume

14. lie

k=1. love
2. mother
3. baby
4. beauty
5. truth
6. people
7. strong
8. young
9. girl
10. movie

12. queen
13. name

8.72
8.39
8.22
7.82
7.80
7.33
7.11
6.89
6.87
6.86
6.76
6.44
5.55
2.79

1
1
3
1
1

1
2
4
1
1
1
1
1

from a movie scene.

’cause the lie becomes the truth.
And be careful of what you do

She’s just a girl who claims
Billie Jean is not my lover,

that I am the one.

Michael Jackson’s Billie Jean

vMichael
Jackson

vThriller

= 7.1

= 6.4

= 6.3

=vtext ∑

k
fk

vBillie Jean

∑

k
vkfk

fk

“She was more like a beauty queen

2
And mother always told me,
be careful who you love.

vkLyrics for
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Song Lyrics—average happiness
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Song Lyrics—measurement robustness
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Song Lyrics—average happiness of genres:
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Gospel/Soul (6.91)
Pop (6.69)
Reggae (6.40)
Rock (6.27)
Rap/Hip−Hop (6.01)
Punk (5.61)
Metal/Industrial (5.10)
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Valence shift details:

Given two texts a and b:
I Measure difference in average valence: v (b)

avg − v (a)
avg

I Break difference down by contributions from
individual words:

∆i = 100× [pi,b − pi,a]
[vi − v (a)

avg ]

[v (b)
avg − v (a)

avg ]

∑

i

∆i = v (b)
avg − v (a)

avg

I Rank words by |∆i |
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Happiness Word Shift Graph:
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7
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3
2
1 love ↓

lonely ↓
hate ↑
pain ↑
baby ↓
death ↑
dead ↑
home ↓
sick ↑
fear ↑
hit ↑
hell ↑
fall ↑
sin ↑
lost ↑

sad ↓
burn ↑
lie ↑
scared ↑
afraid ↑
music ↓

life ↑
god ↑

trouble ↓
loneliness ↓

Per word valence shift ∆
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W
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Per word drop in valence of lyrics from 1980−2007 relative to valence of lyrics from 1960−1979:

lonely ↓
sad ↓

trouble ↓
loneliness ↓

devil ↓
Decreases in relatively
low valence words
contribute to increase
in average valence

life ↑
god ↑

truth ↑
party ↑

sex ↑
Increases in relatively
high valence words
contribute to increase
in average valence

hate ↑
pain ↑
death ↑
dead ↑
sick ↑

Increases in relatively
low valence words
contribute to drop
in average valence

love ↓
baby ↓
home ↓
music ↓
good ↓

Decreases in relatively
high valence words
contribute to drop
in average valence

Key:
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Top 16 of ' 20,000 artists:
Rank Artist Valence
1 All-4-One 7.15
2 Luther Vandross 7.12
3 S Club 7 7.05
4 K Ci & JoJo 7.04
5 Perry Como 7.04
6 Diana Ross & The Supremes 7.03
7 Buddy Holly 7.02
8 Faith Evans 7.01
9 The Beach Boys 7.01
10 Jon B 6.98
11 Dru Hill 6.96
12 Earth Wind & Fire 6.95
13 Ashanti 6.95
14 Otis Redding 6.93
15 Faith Hill 6.93
16 NSync 6.93

(criteria: ≥ 50 songs and ≥ 1000 ANEW words)
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Bottom 16 of ' 20,000 artists:
Rank Artist Valence
1 Slayer 4.80
2 Misfits 4.88
3 Staind 4.93
4 Slipknot 4.98
5 Darkthrone 4.98
6 Death 5.02
7 Black Label Society 5.05
8 Pig 5.08
9 Voivod 5.14
10 Fear Factory 5.15
11 Iced Earth 5.16
12 Simple Plan 5.16
13 Machine Head 5.17
14 Metallica 5.19
15 Dimmu Borgir 5.20
16 Mudvayne 5.21

(criteria: ≥ 50 songs and ≥ 1000 ANEW words)
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Data sets:

Texts:
I Song lyrics and titles (1960–2008)
I State of the Union (SOTU) Addresses (1790–2008)
I Twitter, 2008—
I Blogs (wefeelfine.org)
I New York Times (20 years)
I Gutenberg.org
I Google Books: http://ngrams.googlelabs.com/ (�)
I BBC transcripts

...
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Data sets:
II Blog phrases containing “I feel...”, “I am feeling”, etc.,

taken from wefeelfine.org (�) (API, 2005–2010)

Thanks to ...
Isabel KloumannKameron Harris

Jonathan Harris & Sep Kamvar
wefeelfine.org

Catherine Bliss

I Created by
Jonathan Harris
& Sep Kamvar
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Jonathan Harris, wefeelfine.org

(Loading Movie)


wefeelfine-harris-2.mov
Media File (video/quicktime)
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wefeelfine.org:
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wefeelfine.org:
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wefeelfine.org:
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More data sets:

5.

6. New York Times (20 years)
7. Gutenberg.org
8. Google Books: http://ngrams.googlelabs.com/ (�)
9. . . .

Finding Happiness

Measuring
Happiness

Data sets
Blogs

Twitter

Geography

Health

Demographics

Movement

Networks

Phrases

The End

References

35 of 95

Data sets:

Counts Song lyrics Song titles
All words 58,610,849 60,867,223

Individuals ∼ 20,000 ∼ 632,000

Counts blogs SOTU
All words 155,667,394 1,796,763

Individuals ∼ 2,335,000 43

Counts Twitter
All words ∼ 100 billion
Tweets ∼ 10 billion

Individuals ∼ 100 million
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Most frequent ANEW words:

Rank Song lyrics Song titles
1 love (7.37%) love (7.39%)
2 time (4.18%) time (4.19%)
3 baby (2.75%) baby (2.75%)
4 life (2.59%) life (2.60%)
5 heart (2.14%) heart (2.15%)

Rank blogs SOTU twitter
1 good (4.89%) people (5.49%) good (4.50%)
2 time (4.72%) time (4.09%) love (4.45%)
3 people (3.94%) present (3.45%) time (3.30%)
4 love (3.31%) world (3.10%) people (2.06%)
5 life (3.13%) war (2.98%) home (1.71%)
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Blogs—Overall trend
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Blogs—Age:
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I Average happiness as a function of the age bloggers
report they will turn in the year of their posting.
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labMT 1.0:
language assessment by Mechanical Turk
I Twitter, Google Books, Music Lyrics, and the New

York Times.
I 5000 most frequency used words for each corpus.
I 10,222 words, 50 evaluations each.
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valence word valence std dev twitter g-books nyt lyrics
rank rank rank rank rank

1 laughter 8.50 0.93 3600 – – 1728
2 happiness 8.44 0.97 1853 2458 – 1230
3 love 8.42 1.11 25 317 328 23
4 happy 8.30 0.99 65 1372 1313 375
5 laughed 8.26 1.16 3334 3542 – 2332
6 laugh 8.22 1.37 1002 3998 4488 647
7 laughing 8.20 1.11 1579 – – 1122
8 excellent 8.18 1.10 1496 1756 3155 –
9 laughs 8.18 1.16 3554 – – 2856
10 joy 8.16 1.06 988 2336 2723 809
11 successful 8.16 1.08 2176 1198 1565 –
12 win 8.12 1.08 154 3031 776 694
13 rainbow 8.10 0.99 2726 – – 1723
14 smile 8.10 1.02 925 2666 2898 349
15 won 8.10 1.22 810 1167 439 1493
16 pleasure 8.08 0.97 1497 1526 4253 1398
17 smiled 8.08 1.07 – 3537 – 2248
18 rainbows 8.06 1.36 – – – 4216
19 winning 8.04 1.05 1876 – 1426 3646
20 celebration 8.02 1.53 3306 – 2762 4070
21 enjoyed 8.02 1.53 1530 2908 3502 –
22 healthy 8.02 1.06 1393 3200 3292 4619
23 music 8.02 1.12 132 875 167 374
24 celebrating 8.00 1.14 2550 – – –
25 congratulations 8.00 1.63 2246 – – –
26 weekend 8.00 1.29 317 – 833 2256
27 celebrate 7.98 1.15 1606 – 3574 2108
28 comedy 7.98 1.15 1444 – 2566 –
29 jokes 7.98 0.98 2812 – – 3808
30 rich 7.98 1.32 1625 1221 1469 890
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valence word valence std dev twitter g-books nyt lyrics
rank rank rank rank rank
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10193 violence 1.86 1.05 4299 1724 1238 2016
10194 cruel 1.84 1.15 2963 – – 1447
10195 cry 1.84 1.28 1028 3075 – 226
10196 failed 1.84 1.00 2645 1618 1276 2920
10197 sickness 1.84 1.18 4735 – – 3782
10198 abused 1.83 1.31 – – – 4589
10199 tortured 1.82 1.42 – – – 4693
10200 fatal 1.80 1.53 – 4089 – 3724
10201 killings 1.80 1.54 – – 4914 –
10202 murdered 1.80 1.63 – – – 4796
10203 war 1.80 1.41 468 175 291 462
10204 kills 1.78 1.23 2459 – – 2857
10205 jail 1.76 1.02 1642 – 2573 1619
10206 terror 1.76 1.00 4625 4117 4048 2370
10207 die 1.74 1.19 418 730 2605 143
10208 killing 1.70 1.36 1507 4428 1672 998
10209 arrested 1.64 1.01 2435 4474 1435 –
10210 deaths 1.64 1.14 – – 2974 –
10211 raped 1.64 1.43 – – – 4528
10212 torture 1.58 1.05 3175 – – 3126
10213 died 1.56 1.20 1223 866 208 826
10214 kill 1.56 1.05 798 2727 2572 430
10215 killed 1.56 1.23 1137 1603 814 1273
10216 cancer 1.54 1.07 946 1884 796 3802
10217 death 1.54 1.28 509 307 373 433
10218 murder 1.48 1.01 2762 3110 1541 1059
10219 terrorism 1.48 0.91 – – 3192 –
10220 rape 1.44 0.79 3133 – 4115 2977
10221 suicide 1.30 0.84 2124 4707 3319 2107
10222 terrorist 1.30 0.91 3576 – 3026 –
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std dev word valence std dev twitter g-books nyt lyrics
rank rank rank rank rank

1 fE@king 4.64 2.93 448 – – 620
2 fKKkin 3.86 2.74 1077 – – 688
3 fKKked 3.56 2.71 1840 – – 904
4 pussy 4.80 2.66 2019 – – 949
5 whiskey 5.72 2.64 – – – 2208
6 slut 3.57 2.63 – – – 4071
7 cigarettes 3.31 2.60 – – – 3279
8 fKKk 4.14 2.58 322 – – 185
9 mortality 4.38 2.55 – 3960 – –
10 cigarette 3.09 2.52 – – – 2678
11 motherfKKkers 2.51 2.47 – – – 1466
12 churches 5.70 2.46 – 2281 – –
13 motherfKKking 2.64 2.46 – – – 2910
14 capitalism 5.16 2.45 – 4648 – –
15 porn 4.18 2.43 1801 – – –
16 summer 6.40 2.39 896 1226 721 590
17 beer 5.92 2.39 839 4924 3960 1413
18 execution 3.10 2.39 – 2975 – –
19 wines 6.28 2.37 – – 3316 –
20 zombies 4.00 2.37 4708 – – –
21 aids 4.28 2.35 2983 3996 1197 –
22 capitalist 4.84 2.34 – 4694 – –
23 revenge 3.71 2.34 – – – 2766
24 mcdonalds 5.98 2.33 3831 – – –
25 beatles 6.44 2.33 3797 – – –
26 islam 4.68 2.33 – 4514 – –
27 pay 5.30 2.32 627 769 460 499
28 alcohol 5.20 2.32 2787 2617 3752 3600
29 muthafKKkin 3.00 2.31 – – – 4107
30 christ 6.16 2.31 2509 909 4238 1526
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English’s scale-invariant, positive bias: [14]
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The very surprising tunable hedonometer:
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Twitter happiness: September 09, 2008 to January 31, 2013
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I Global happiness spikes due to predictable rituals.
I Global sadness spikes due to unpredictable,

exogeneous shocks.
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Twitter happiness: January 01, 2011 to December 31, 2011
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−↑pakistan

−↑buried
no −↓

−↑hussein
+↓hahaha

−↑ terror
+↓ like

+↓wedding
−↑ terrorism

−↑enemy
+↓ lol

−↑shot
celebrating +↑
ill −↓

−↑hell
celebrate +↑

+↓mom
−↑ loss

−↑mourn
america +↑

+↓you
−↑deaths

1st +↑
sea +↑
usa +↑

+↓beautiful
peace +↑

+↓ fun
−↑evil

+↓good
−↑attack

we +↑
−↑breaking

−↑burial

Per word average happiness shift δhavg,r (%)

W
or
d
ra
nk

r

Tref: 7 days before and after (havg=5.98)
Tcomp: Monday, 2011/05/02 (havg=5.89)

Death of Osama Bin Laden:

 C 

Text size:
Tref Tcomp

+↓ +↑

−↑ −↓

Balance:

−143 : +43

−100 0

10
0

10
1

10
2
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4

∑r
i=1 δhavg,i

hedonometer.org (�) (launching Tuesday,
April 30, 2013)
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Twitter—weekly time series:

What people
say:

T W T F S S M T W T F S S M
6.3

6.35

6.4

6.45

day of week

h av
g

2009−05−21 to 2010−12−31:

What people
think:

T W T F S S M T W T F S S M

4

5

6

7

8

day of week

h
a
v
g

I Inflation: NYT piece (�) on the blueness of Tuesdays.
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19

Word h
(amb)
avg Total Tweets h

(norm)
avg

1. happy +0.430 1.65e+07 (13) +1.104 (1)
2. Christmas +0.404 4.89e+06 (35) +0.953 (3)
3. vegan +0.315 1.84e+05 (90) -0.015 (46)
4. :) +0.274 1.04e+07 (20) +0.630 (12)
5. family +0.251 5.01e+06 (32) +0.716 (7)
6. :-) +0.228 1.67e+06 (60) +0.560 (16)
7. our +0.207 1.41e+07 (16) +0.159 (33)
8. win +0.204 7.98e+06 (26) +0.924 (4)
9. vacation +0.200 9.35e+05 (67) +0.817 (5)
10. party +0.170 6.44e+06 (29) +0.679 (9)
11. love +0.164 4.67e+07 (6) +0.977 (2)
12. friends +0.155 7.67e+06 (27) +0.685 (8)
13. hope +0.149 1.18e+07 (18) +0.515 (19)
14. co↵ee +0.147 2.80e+06 (46) +0.518 (18)
15. cash +0.146 1.28e+06 (63) +0.601 (14)
16. sun +0.144 2.39e+06 (52) +0.737 (6)
17. income +0.137 5.10e+05 (76) +0.621 (13)
18. summer +0.135 3.00e+06 (43) +0.221 (29)
19. church +0.131 1.81e+06 (58) -0.016 (47)
20. Valentine +0.127 2.47e+05 (84) +0.593 (15)
21. Stephen Colbert +0.126 2.38e+04 (99) +0.001 (45)
22. USA +0.113 2.16e+06 (54) +0.325 (26)
23. ! +0.106 3.44e+06 (40) +0.195 (31)
24. winter +0.101 1.26e+06 (64) +0.050 (43)
25. God +0.099 8.58e+06 (25) +0.468 (20)
26. hot +0.095 7.12e+06 (28) -0.172 (54)
27. ;) +0.094 2.61e+06 (48) +0.326 (25)
28. Jesus +0.094 2.03e+06 (56) +0.247 (28)
29. today +0.092 2.56e+07 (9) +0.126 (36)
30. kiss +0.072 1.70e+06 (59) +0.632 (11)
31. yes +0.056 1.16e+07 (19) +0.321 (27)
32. tomorrow +0.054 1.04e+07 (21) +0.086 (38)
33. you +0.052 1.73e+08 (3) +0.111 (37)
34. heaven +0.041 7.42e+05 (71) +0.674 (10)
35. ;-) +0.041 9.39e+05 (66) +0.395 (23)
36. we +0.035 3.91e+07 (7) +0.146 (34)
37. yesterday +0.033 3.08e+06 (42) -0.168 (53)
38. dark +0.031 1.58e+06 (61) -0.766 (81)
39. ? +0.030 2.32e+06 (53) -0.503 (68)
40. RT +0.028 3.39e+08 (1) -0.443 (66)
41. Michael Jackson +0.018 8.26e+05 (70) -0.213 (59)
42. night +0.014 1.71e+07 (12) +0.074 (40)
43. life +0.012 1.40e+07 (17) +0.422 (22)
44. health -0.000 2.58e+06 (50) +0.447 (21)
45. sex -0.008 3.55e+06 (39) +0.542 (17)
46. work -0.010 1.84e+07 (11) -0.174 (56)
47. girl -0.010 1.01e+07 (22) +0.331 (24)
48. boy -0.026 4.93e+06 (33) +0.062 (41)
49. I -0.048 3.08e+08 (2) -0.062 (49)
50. commute -0.048 9.01e+04 (94) -0.206 (57)

Word h
(amb)
avg Total Tweets h

(norm)
avg

51. snow -0.051 2.60e+06 (49) +0.083 (39)
52. Jon Stewart -0.052 5.21e+04 (97) -0.024 (48)
53. school -0.056 9.26e+06 (24) +0.050 (42)
54. Lehman Brothers -0.078 8.50e+03 (100) -0.721 (79)
55. them -0.090 1.54e+07 (15) -0.280 (60)
56. right -0.090 1.92e+07 (10) +0.126 (35)
57. woman -0.115 2.54e+06 (51) +0.202 (30)
58. left -0.118 4.89e+06 (34) -0.383 (63)
59. me -0.119 1.44e+08 (4) +0.160 (32)
60. election -0.127 5.60e+05 (75) -0.306 (61)
61. Sarah Palin -0.128 2.26e+05 (87) -0.681 (76)
62. no -0.132 9.51e+07 (5) -1.415 (90)
63. rain -0.134 3.23e+06 (41) +0.050 (44)
64. climate -0.135 3.64e+05 (80) -0.160 (51)
65. gay -0.152 2.73e+06 (47) -0.552 (72)
66. lose -0.157 2.06e+06 (55) -1.181 (86)
67. they -0.159 2.74e+07 (8) -0.208 (58)
68. oil -0.162 1.38e+06 (62) -0.411 (65)
69. cold -0.162 3.67e+06 (36) -0.546 (71)
70. I feel -0.173 5.17e+06 (31) -0.129 (50)
71. man -0.175 1.59e+07 (14) -0.163 (52)
72. Republican -0.181 2.30e+05 (86) -0.539 (70)
73. sad -0.187 3.56e+06 (38) -1.366 (89)
74. gas -0.193 1.02e+06 (65) -0.471 (67)
75. economy -0.203 6.09e+05 (73) -0.525 (69)
76. Obama -0.205 2.98e+06 (44) -0.173 (55)
77. Democrat -0.226 9.32e+04 (93) -0.384 (64)
78. Congress -0.231 3.92e+05 (79) -0.580 (74)
79. hell -0.250 6.27e+06 (30) -1.551 (96)
80. sick -0.262 3.58e+06 (37) -1.630 (97)
81. Muslim -0.262 2.15e+05 (88) -0.569 (73)
82. war -0.270 1.96e+06 (57) -2.040 (100)
83. Pope -0.277 1.52e+05 (91) -0.316 (62)
84. hate -0.282 9.65e+06 (23) -1.520 (94)
85. Glenn Beck -0.282 1.14e+05 (92) -0.776 (82)
86. Islam -0.299 1.87e+05 (89) -0.710 (78)
87. George Bush -0.333 3.23e+04 (98) -0.747 (80)
88. Goldman Sachs -0.337 5.27e+04 (96) -0.984 (84)
89. depressed -0.339 2.81e+05 (82) -1.541 (95)
90. Senate -0.340 4.48e+05 (78) -0.601 (75)
91. BP -0.355 5.82e+05 (74) -0.902 (83)
92. gun -0.367 6.81e+05 (72) -1.476 (93)
93. drugs -0.382 5.10e+05 (77) -1.452 (91)
94. headache -0.437 8.57e+05 (69) -1.881 (98)
95. :-( -0.455 3.40e+05 (81) -1.174 (85)
96. :( -0.472 2.89e+06 (45) -1.288 (88)
97. Afghanistan -0.703 2.74e+05 (83) -1.458 (92)
98. mosque -0.709 6.98e+04 (95) -0.694 (77)
99. flu -0.735 9.01e+05 (68) -1.912 (99)
100. Iraq -0.773 2.39e+05 (85) -1.282 (87)

TABLE 2: Selection of 100 text elements ordered by average ambient happiness h
(amb)
avg . The number of tweets and the

value of normalized happiness h
(norm)
avg (where the happiness value of the text element itself is included) are listed in the third

and fourth columns, with the ranking of the text element according to these quantities shown in brackets. For this list of
text elements, we obtained additional happiness scores for phrases, punctuation, emoticons, etc., using Mechanical Turk. All
pattern matches with tweets were case-insensitive. Tab. S1 in the Supplementary Information shows the same table sorted by

normalized happiness h
(norm)
avg .
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The Geography of Happiness:

I From “The Geography of Happiness: Connecting
Twitter sentiment and expression, demographics,
and objective characteristics of place”, Mitchell et al.,
2013, to appear in PLoS ONE [19].

I See blog posts here (�), here (�), and here (�).

http://www.hedonometer.org
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.nytimes.com/2012/10/14/opinion/sunday/blue-mondays-arent-really-blue-so-why-do-we-think-they-are.html
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://onehappybird.com/2013/02/18/where-is-the-happiest-city-in-the-usa/
http://onehappybird.com/2013/02/25/what-makes-a-city-happy/
http://onehappybird.com/2013/03/04/the-twitter-diet/
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Happiness in Manhattan:

See Blog post on onehappybird (�)
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Happiest Cities:

6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.2

Asheville, NC

Amarillo, TX

Porterville, CA

Boulder, CO

Nashua, NH−−MA

Lafayette, CO

Logan, UT

Gilroy, CA

Davis, CA

Santa Rosa, CA

San Clemente, CA

Simi Valley, CA

Longmont, CO

Idaho Falls, ID

Napa, CA

havg
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Saddest Cities (geoprofanity):

5.88 5.89 5.9 5.91 5.92 5.93

Port Arthur, TX

Waterbury, CT

Montgomery, AL

Dalton, GA

Houma, LA

Alexandria, LA

Texarkana, TX

Lima, OH

Texas City, TX

Rapid City, SD

Flint, MI

Albany, GA

Shreveport, LA

Monroe, LA

Beaumont, TX

havg
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Validity test #30,231(b):
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Note: Peace axis
is reversed

Gun violence: No. shootings per 100,000 people (2011)

Peace Index: Composite index of Homicides per 100,000
people, no. violent crimes per 100,000 people, Jailed population
per 100,000 people, Police officers per 100,000 people,ease of
access to small arms (2011)

AHR score: America’s Health Ranking, composite index of
Behavior, Community & Environment, Policy and Clinical Care
metrics (2011)

BRFSS score: Average score from the Behavioral Risk Factor
Surveillance System survey (2005−2008)
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Good news for Valentine’s Day:
Happiness and Marriage:

20 30 40 50 60
5.85

5.9
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% of populat ion married
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p
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s

 

 

ρ = 0.370
p-value = 1.45 × 10−13

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://onehappybird.com/2012/03/22/question-where-is-the-happiest-place-in-new-york-city/
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Obesity and tweets—“McDonalds”:
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ρ = 0.298
p-value = 2.90 × 10−5
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Obesity and tweets—“Brunch”:
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ρ = −0.372

p-value = 1.24 × 10−7
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Obesity rates and
usage of
food-related
words:

Negative
correlations

Word ⇢ p-value havg(wi)
me -0.393 3.26 ⇥ 10�15 6.58
love -0.389 6.51 ⇥ 10�15 8.42
my -0.354 1.97 ⇥ 10�12 6.16
like -0.346 6.04 ⇥ 10�12 7.22
hate -0.344 8.76 ⇥ 10�12 2.34
tired -0.343 1 ⇥ 10�11 3.34
sleep -0.341 1.27 ⇥ 10�11 7.16
stupid -0.328 8.55 ⇥ 10�11 2.68
bored -0.315 5.11 ⇥ 10�10 3.04
you -0.315 5.23 ⇥ 10�10 6.24
goodnight -0.305 1.77 ⇥ 10�9 6.58
bitch -0.295 6.51 ⇥ 10�9 3.14
all -0.289 1.33 ⇥ 10�8 6.22
lie -0.285 2.24 ⇥ 10�8 2.60
mom -0.284 2.42 ⇥ 10�8 7.64
wish -0.271 1.05 ⇥ 10�7 6.92
talk -0.267 1.74 ⇥ 10�7 6.06
she -0.265 2.01 ⇥ 10�7 6.18
know -0.262 2.78 ⇥ 10�7 6.10
ill -0.259 4.11 ⇥ 10�7 2.42
dont -0.258 4.54 ⇥ 10�7 3.70
well -0.256 5.3 ⇥ 10�7 6.68
don’t -0.255 5.8 ⇥ 10�7 3.70
give -0.255 5.84 ⇥ 10�7 6.54
friend -0.255 6.27 ⇥ 10�7 7.66

Table 2: Top 25 words with strongest negative Spear-
man correlation ⇢ to percentage of population with a
Bachelors degree or higher in 2011 (with stop words
removed).

we note remains contentious in the medical literature
(for example, supported in [21, 19], refuted in [5]).

Conversely, only 6 food-related words significantly
positively correlate with obesity with p-values less
than 0.05 (note again the asymmetry in the number of
words which positively and negatively correlate with
obesity). The fast food chain ‘mcdonalds’ correlates
most strongly, and the foods ‘wings’ and ‘ham’ both
appear. Unlike in the low-obesity word table, words
describing a desire for food - ‘eat’ and ‘hungry’ - as
well as the negative reaction of ‘heartburn’ to overeat-
ing, both appear on the list. In Appendix A we show
tables listing the food-related words which show the
least correlation with obesity, as well as the top 25
words (food-related or not) from the LabMT list that
correlate and anti-correlate with obesity.

The above analysis demonstrates that di↵erent
cities have unique characteristics. We now ask

Word ⇢ p-value havg(wi)
cafe -0.509 6.07 ⇥ 10�14 6.78
sushi -0.487 9.93 ⇥ 10�13 5.40
brewery -0.469 8.67 ⇥ 10�12 N/A
restaurant -0.448 8.93 ⇥ 10�11 7.06
bar -0.435 3.59 ⇥ 10�10 5.82
banana -0.434 3.77 ⇥ 10�10 6.86
apple -0.408 5.22 ⇥ 10�9 7.44
fondue -0.403 8.34 ⇥ 10�9 N/A
wine -0.400 1.08 ⇥ 10�8 6.42
delicious -0.392 2.17 ⇥ 10�8 7.92
dinner -0.386 3.85 ⇥ 10�8 7.40
co↵ee -0.384 4.51 ⇥ 10�8 7.18
bakery -0.383 5.12 ⇥ 10�8 N/A
bean -0.378 7.88 ⇥ 10�8 5.80
espresso -0.377 8.47 ⇥ 10�8 N/A
cuisine -0.376 8.82 ⇥ 10�8 N/A
foods -0.374 1.07 ⇥ 10�7 7.26
tofu -0.372 1.27 ⇥ 10�7 N/A
brunch -0.368 1.79 ⇥ 10�7 6.32
veggie -0.364 2.46 ⇥ 10�7 N/A
organic -0.361 3.13 ⇥ 10�7 6.32
booze -0.360 3.34 ⇥ 10�7 N/A
grill -0.354 5.4 ⇥ 10�7 6.24
chocolate -0.351 6.77 ⇥ 10�7 7.86
#vegan -0.350 7.47 ⇥ 10�7 N/A

mcdonalds 0.246 6.18 ⇥ 10�4 5.98
eat 0.241 8.22 ⇥ 10�4 7.04
wings 0.222 2.13 ⇥ 10�3 6.52
hungry 0.210 3.65 ⇥ 10�3 3.38
heartburn 0.194 7.37 ⇥ 10�3 N/A
ham 0.177 1.45 ⇥ 10�2 5.66

Table 3: The top 25 food-related words only with
strongest negative correlation to obesity level (top),
and the 6 food-related words with positive correlation
to obesity level and p-value less than 0.05 (bottom).
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Obesity rates and
usage of
food-related
words:

Positive
correlations

Word ⇢ p-value havg(wi)
me -0.393 3.26 ⇥ 10�15 6.58
love -0.389 6.51 ⇥ 10�15 8.42
my -0.354 1.97 ⇥ 10�12 6.16
like -0.346 6.04 ⇥ 10�12 7.22
hate -0.344 8.76 ⇥ 10�12 2.34
tired -0.343 1 ⇥ 10�11 3.34
sleep -0.341 1.27 ⇥ 10�11 7.16
stupid -0.328 8.55 ⇥ 10�11 2.68
bored -0.315 5.11 ⇥ 10�10 3.04
you -0.315 5.23 ⇥ 10�10 6.24
goodnight -0.305 1.77 ⇥ 10�9 6.58
bitch -0.295 6.51 ⇥ 10�9 3.14
all -0.289 1.33 ⇥ 10�8 6.22
lie -0.285 2.24 ⇥ 10�8 2.60
mom -0.284 2.42 ⇥ 10�8 7.64
wish -0.271 1.05 ⇥ 10�7 6.92
talk -0.267 1.74 ⇥ 10�7 6.06
she -0.265 2.01 ⇥ 10�7 6.18
know -0.262 2.78 ⇥ 10�7 6.10
ill -0.259 4.11 ⇥ 10�7 2.42
dont -0.258 4.54 ⇥ 10�7 3.70
well -0.256 5.3 ⇥ 10�7 6.68
don’t -0.255 5.8 ⇥ 10�7 3.70
give -0.255 5.84 ⇥ 10�7 6.54
friend -0.255 6.27 ⇥ 10�7 7.66

Table 2: Top 25 words with strongest negative Spear-
man correlation ⇢ to percentage of population with a
Bachelors degree or higher in 2011 (with stop words
removed).

we note remains contentious in the medical literature
(for example, supported in [21, 19], refuted in [5]).

Conversely, only 6 food-related words significantly
positively correlate with obesity with p-values less
than 0.05 (note again the asymmetry in the number of
words which positively and negatively correlate with
obesity). The fast food chain ‘mcdonalds’ correlates
most strongly, and the foods ‘wings’ and ‘ham’ both
appear. Unlike in the low-obesity word table, words
describing a desire for food - ‘eat’ and ‘hungry’ - as
well as the negative reaction of ‘heartburn’ to overeat-
ing, both appear on the list. In Appendix A we show
tables listing the food-related words which show the
least correlation with obesity, as well as the top 25
words (food-related or not) from the LabMT list that
correlate and anti-correlate with obesity.

The above analysis demonstrates that di↵erent
cities have unique characteristics. We now ask

Word ⇢ p-value havg(wi)
cafe -0.509 6.07 ⇥ 10�14 6.78
sushi -0.487 9.93 ⇥ 10�13 5.40
brewery -0.469 8.67 ⇥ 10�12 N/A
restaurant -0.448 8.93 ⇥ 10�11 7.06
bar -0.435 3.59 ⇥ 10�10 5.82
banana -0.434 3.77 ⇥ 10�10 6.86
apple -0.408 5.22 ⇥ 10�9 7.44
fondue -0.403 8.34 ⇥ 10�9 N/A
wine -0.400 1.08 ⇥ 10�8 6.42
delicious -0.392 2.17 ⇥ 10�8 7.92
dinner -0.386 3.85 ⇥ 10�8 7.40
co↵ee -0.384 4.51 ⇥ 10�8 7.18
bakery -0.383 5.12 ⇥ 10�8 N/A
bean -0.378 7.88 ⇥ 10�8 5.80
espresso -0.377 8.47 ⇥ 10�8 N/A
cuisine -0.376 8.82 ⇥ 10�8 N/A
foods -0.374 1.07 ⇥ 10�7 7.26
tofu -0.372 1.27 ⇥ 10�7 N/A
brunch -0.368 1.79 ⇥ 10�7 6.32
veggie -0.364 2.46 ⇥ 10�7 N/A
organic -0.361 3.13 ⇥ 10�7 6.32
booze -0.360 3.34 ⇥ 10�7 N/A
grill -0.354 5.4 ⇥ 10�7 6.24
chocolate -0.351 6.77 ⇥ 10�7 7.86
#vegan -0.350 7.47 ⇥ 10�7 N/A

mcdonalds 0.246 6.18 ⇥ 10�4 5.98
eat 0.241 8.22 ⇥ 10�4 7.04
wings 0.222 2.13 ⇥ 10�3 6.52
hungry 0.210 3.65 ⇥ 10�3 3.38
heartburn 0.194 7.37 ⇥ 10�3 N/A
ham 0.177 1.45 ⇥ 10�2 5.66

Table 3: The top 25 food-related words only with
strongest negative correlation to obesity level (top),
and the 6 food-related words with positive correlation
to obesity level and p-value less than 0.05 (bottom).
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Figure 11: Scatter plot showing the correlation be-
tween rate of occurrence of the word ‘cafe’ and per-
centage of population with a bachelor’s degree or
higher in US cities during the calendar year 2011.
The red line shows linear correlation while the re-
ported ⇢ and p-values show the Spearman correlation.

the traditional types of data collected through the
census. As an example of a di↵erent use of use of
the data set, we correlate word use to obesity at the
metropolitan level. For this study we take obesity
levels from the Gallup and Healthways 2011 survey
[31], and metropolitan areas as defined by the U.S.
O�ce of Management and Budget’s definitions for
Metropolitan Statistical Areas (MSAs) [29]. We re-
mark that the MSAs are generally two to three times
larger in area than the TIGER urban area census
boundaries, and the Gallup obesity survey was only
for the 190 largest-population areas. The obesity
data set contains fewer small cities than the TIGER
census set, particularly in the midwest. We collected
more than 10 million tweets from these 190 MSAs,
corresponding to just over 80 million words during
2011.

Performing the same analysis as for the attributes
in figure 10, in figure 12 we show the relationship
between happiness and obesity for the 190 MSAs in-
cluded in the Gallup survey. We find that happi-
ness generally decreases as obesity increases, with
the third happiest city in this set (Boulder, CO)
corresponding with the lowest obesity rate (12.1%)
and the saddest city (Beaumont, TX, as found pre-
viously) corresponding with the fifth highest obesity
rate (33.8%). We calculate a Spearman correlation
coe�cient of ⇢ = �0.426 with p-value 1.26⇥ 10�9 for

Word ⇢ p-value havg(wi)
cafe 0.481 4.9 ⇥ 10�23 6.78
pub 0.463 3.14 ⇥ 10�21 6.02
software 0.458 9.07 ⇥ 10�21 6.30
yoga 0.455 1.85 ⇥ 10�20 7.04
grill 0.433 1.78 ⇥ 10�18 6.24
development 0.424 1.14 ⇥ 10�17 6.38
emails 0.419 2.87 ⇥ 10�17 6.54
wine 0.417 3.83 ⇥ 10�17 6.42
library 0.414 6.47 ⇥ 10�17 6.48
art 0.414 6.8 ⇥ 10�17 6.60
sciences 0.410 1.54 ⇥ 10�16 6.30
pasta 0.410 1.57 ⇥ 10�16 6.86
lounge 0.409 1.68 ⇥ 10�16 6.50
market 0.408 2.2 ⇥ 10�16 6.28
india 0.407 2.5 ⇥ 10�16 6.42
drinking 0.405 3.74 ⇥ 10�16 6.14
technology 0.405 3.76 ⇥ 10�16 6.74
forest 0.405 3.83 ⇥ 10�16 6.68
brunch 0.405 3.89 ⇥ 10�16 6.32
dining 0.403 4.92 ⇥ 10�16 6.48
supporting 0.399 1.1 ⇥ 10�15 6.48
professor 0.398 1.23 ⇥ 10�15 6.04
university 0.392 3.62 ⇥ 10�15 6.74
film 0.391 4.27 ⇥ 10�15 6.56
global 0.391 4.72 ⇥ 10�15 6.00

Table 1: Top 25 words with strongest positive Spear-
man correlation ⇢ to percentage of population with a
Bachelors degree or higher (census table DP02-HC03-
VC94) in 2011. Stop words with 4 < havg < 6 have
been removed from the list. Note the low p-values for
all words, indicating strong statistical significance.

the data, indicating statistically significant negative
correlation.

As previously for the census data, we also correlate
the abundance of each individual word in the LabMT
list to obesity levels in the 190 cities surveyed. From
this list we extract words that are clearly food-
related, and present those which most most strongly
negatively and positively correlate with obesity in ta-
ble 3. Note that we are including stop words for which
4 < havg(wi) < 6 in these lists. Co↵ee-related words
such as ‘cafe’, ‘co↵ee’, ‘espresso’ and ‘bean’ feature
prominently in the list, and many of the words refer to
eating at restaurants - ‘sushi’, ‘restaurant’, ‘cuisine’
and ‘brunch’, for example. As we might expect such
words to correlate with wealth, this suggests a cor-
relation between obesity and poverty, a claim which
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Figure 11: Scatter plot showing the correlation be-
tween rate of occurrence of the word ‘cafe’ and per-
centage of population with a bachelor’s degree or
higher in US cities during the calendar year 2011.
The red line shows linear correlation while the re-
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the traditional types of data collected through the
census. As an example of a di↵erent use of use of
the data set, we correlate word use to obesity at the
metropolitan level. For this study we take obesity
levels from the Gallup and Healthways 2011 survey
[31], and metropolitan areas as defined by the U.S.
O�ce of Management and Budget’s definitions for
Metropolitan Statistical Areas (MSAs) [29]. We re-
mark that the MSAs are generally two to three times
larger in area than the TIGER urban area census
boundaries, and the Gallup obesity survey was only
for the 190 largest-population areas. The obesity
data set contains fewer small cities than the TIGER
census set, particularly in the midwest. We collected
more than 10 million tweets from these 190 MSAs,
corresponding to just over 80 million words during
2011.

Performing the same analysis as for the attributes
in figure 10, in figure 12 we show the relationship
between happiness and obesity for the 190 MSAs in-
cluded in the Gallup survey. We find that happi-
ness generally decreases as obesity increases, with
the third happiest city in this set (Boulder, CO)
corresponding with the lowest obesity rate (12.1%)
and the saddest city (Beaumont, TX, as found pre-
viously) corresponding with the fifth highest obesity
rate (33.8%). We calculate a Spearman correlation
coe�cient of ⇢ = �0.426 with p-value 1.26⇥ 10�9 for

Word ⇢ p-value havg(wi)
cafe 0.481 4.9 ⇥ 10�23 6.78
pub 0.463 3.14 ⇥ 10�21 6.02
software 0.458 9.07 ⇥ 10�21 6.30
yoga 0.455 1.85 ⇥ 10�20 7.04
grill 0.433 1.78 ⇥ 10�18 6.24
development 0.424 1.14 ⇥ 10�17 6.38
emails 0.419 2.87 ⇥ 10�17 6.54
wine 0.417 3.83 ⇥ 10�17 6.42
library 0.414 6.47 ⇥ 10�17 6.48
art 0.414 6.8 ⇥ 10�17 6.60
sciences 0.410 1.54 ⇥ 10�16 6.30
pasta 0.410 1.57 ⇥ 10�16 6.86
lounge 0.409 1.68 ⇥ 10�16 6.50
market 0.408 2.2 ⇥ 10�16 6.28
india 0.407 2.5 ⇥ 10�16 6.42
drinking 0.405 3.74 ⇥ 10�16 6.14
technology 0.405 3.76 ⇥ 10�16 6.74
forest 0.405 3.83 ⇥ 10�16 6.68
brunch 0.405 3.89 ⇥ 10�16 6.32
dining 0.403 4.92 ⇥ 10�16 6.48
supporting 0.399 1.1 ⇥ 10�15 6.48
professor 0.398 1.23 ⇥ 10�15 6.04
university 0.392 3.62 ⇥ 10�15 6.74
film 0.391 4.27 ⇥ 10�15 6.56
global 0.391 4.72 ⇥ 10�15 6.00

Table 1: Top 25 words with strongest positive Spear-
man correlation ⇢ to percentage of population with a
Bachelors degree or higher (census table DP02-HC03-
VC94) in 2011. Stop words with 4 < havg < 6 have
been removed from the list. Note the low p-values for
all words, indicating strong statistical significance.

the data, indicating statistically significant negative
correlation.

As previously for the census data, we also correlate
the abundance of each individual word in the LabMT
list to obesity levels in the 190 cities surveyed. From
this list we extract words that are clearly food-
related, and present those which most most strongly
negatively and positively correlate with obesity in ta-
ble 3. Note that we are including stop words for which
4 < havg(wi) < 6 in these lists. Co↵ee-related words
such as ‘cafe’, ‘co↵ee’, ‘espresso’ and ‘bean’ feature
prominently in the list, and many of the words refer to
eating at restaurants - ‘sushi’, ‘restaurant’, ‘cuisine’
and ‘brunch’, for example. As we might expect such
words to correlate with wealth, this suggests a cor-
relation between obesity and poverty, a claim which
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Word ⇢ p-value havg(wi)
me -0.393 3.26 ⇥ 10�15 6.58
love -0.389 6.51 ⇥ 10�15 8.42
my -0.354 1.97 ⇥ 10�12 6.16
like -0.346 6.04 ⇥ 10�12 7.22
hate -0.344 8.76 ⇥ 10�12 2.34
tired -0.343 1 ⇥ 10�11 3.34
sleep -0.341 1.27 ⇥ 10�11 7.16
stupid -0.328 8.55 ⇥ 10�11 2.68
bored -0.315 5.11 ⇥ 10�10 3.04
you -0.315 5.23 ⇥ 10�10 6.24
goodnight -0.305 1.77 ⇥ 10�9 6.58
bitch -0.295 6.51 ⇥ 10�9 3.14
all -0.289 1.33 ⇥ 10�8 6.22
lie -0.285 2.24 ⇥ 10�8 2.60
mom -0.284 2.42 ⇥ 10�8 7.64
wish -0.271 1.05 ⇥ 10�7 6.92
talk -0.267 1.74 ⇥ 10�7 6.06
she -0.265 2.01 ⇥ 10�7 6.18
know -0.262 2.78 ⇥ 10�7 6.10
ill -0.259 4.11 ⇥ 10�7 2.42
dont -0.258 4.54 ⇥ 10�7 3.70
well -0.256 5.3 ⇥ 10�7 6.68
don’t -0.255 5.8 ⇥ 10�7 3.70
give -0.255 5.84 ⇥ 10�7 6.54
friend -0.255 6.27 ⇥ 10�7 7.66

Table 2: Top 25 words with strongest negative Spear-
man correlation ⇢ to percentage of population with a
Bachelors degree or higher in 2011 (with stop words
removed).

we note remains contentious in the medical literature
(for example, supported in [21, 19], refuted in [5]).

Conversely, only 6 food-related words significantly
positively correlate with obesity with p-values less
than 0.05 (note again the asymmetry in the number of
words which positively and negatively correlate with
obesity). The fast food chain ‘mcdonalds’ correlates
most strongly, and the foods ‘wings’ and ‘ham’ both
appear. Unlike in the low-obesity word table, words
describing a desire for food - ‘eat’ and ‘hungry’ - as
well as the negative reaction of ‘heartburn’ to overeat-
ing, both appear on the list. In Appendix A we show
tables listing the food-related words which show the
least correlation with obesity, as well as the top 25
words (food-related or not) from the LabMT list that
correlate and anti-correlate with obesity.

The above analysis demonstrates that di↵erent
cities have unique characteristics. We now ask

Word ⇢ p-value havg(wi)
cafe -0.509 6.07 ⇥ 10�14 6.78
sushi -0.487 9.93 ⇥ 10�13 5.40
brewery -0.469 8.67 ⇥ 10�12 N/A
restaurant -0.448 8.93 ⇥ 10�11 7.06
bar -0.435 3.59 ⇥ 10�10 5.82
banana -0.434 3.77 ⇥ 10�10 6.86
apple -0.408 5.22 ⇥ 10�9 7.44
fondue -0.403 8.34 ⇥ 10�9 N/A
wine -0.400 1.08 ⇥ 10�8 6.42
delicious -0.392 2.17 ⇥ 10�8 7.92
dinner -0.386 3.85 ⇥ 10�8 7.40
co↵ee -0.384 4.51 ⇥ 10�8 7.18
bakery -0.383 5.12 ⇥ 10�8 N/A
bean -0.378 7.88 ⇥ 10�8 5.80
espresso -0.377 8.47 ⇥ 10�8 N/A
cuisine -0.376 8.82 ⇥ 10�8 N/A
foods -0.374 1.07 ⇥ 10�7 7.26
tofu -0.372 1.27 ⇥ 10�7 N/A
brunch -0.368 1.79 ⇥ 10�7 6.32
veggie -0.364 2.46 ⇥ 10�7 N/A
organic -0.361 3.13 ⇥ 10�7 6.32
booze -0.360 3.34 ⇥ 10�7 N/A
grill -0.354 5.4 ⇥ 10�7 6.24
chocolate -0.351 6.77 ⇥ 10�7 7.86
#vegan -0.350 7.47 ⇥ 10�7 N/A

mcdonalds 0.246 6.18 ⇥ 10�4 5.98
eat 0.241 8.22 ⇥ 10�4 7.04
wings 0.222 2.13 ⇥ 10�3 6.52
hungry 0.210 3.65 ⇥ 10�3 3.38
heartburn 0.194 7.37 ⇥ 10�3 N/A
ham 0.177 1.45 ⇥ 10�2 5.66

Table 3: The top 25 food-related words only with
strongest negative correlation to obesity level (top),
and the 6 food-related words with positive correlation
to obesity level and p-value less than 0.05 (bottom).
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Figure 1. Each point corresponds to a geo-located tweet posted between 1/1/11 and 8/10/11. Twitter activity seems to correlate
with urban areas. Note that the image contains no cartographic borders, simply a small dot for each message. Insets: A (U.S.), B

(Washington, D.C.), C (Los Angeles, C.A.), and D (Earth).

Figure 1 is representative of the geospatial resolu-
tion of the data. The location of a tweet is reported as
a latitude/longitude pair representing a three meter radius
circle from which the tweet was sent. Among many pieces
of metadata, we receive the message that was tweeted and,
given a large enough collection of tweets, this allows us
to measure the happiness of the users. The tweets that we
focus on for the remainder of our study come from users
who have at least 30 geo-located tweets in the data set.

Along with a location for each geo-located tweet, we
receive the text of the message. This data allows us to per-
form sentiment analyses given a collection of words. The
hedonometer in [2] can perform a context-free assessment
of the happiness of a collection of words based solely
on the vocabulary, which means this tool can be imple-
mented on computers without human input. This strategy
is in line with a data science approach to sentiment anal-
ysis that is omitted from prior studies with cellphone data
where call content remained, appropriately, unavailable to
researchers.

It is important to recognize the presence of robot ac-
counts when attempting to analyze data collected from
Twitter. These bots are programs designed to automat-
ically send tweets, which typically do not reflect infor-
mation about human activity. Preliminary analyses re-
vealed a noticeable presence of weather, earthquake, traf-
fic, and coupon reporting bots. We identified and ig-

nored tweets collected from these bots by isolating user
accounts for whom at least half of their tweets contained
any of the words “pressure”, “humid”, or “humidity”, or
the words “earthquake”, “traffic” or “coupon”. In addi-
tion, for any of our results involving happiness, we ig-
nored tweets that were posted through Foursquare, since
they have the same message form (e.g. “I’m at starbucks
http://4sq.com/qrel9g”) and therefore do not reflect senti-
ment. However, these Foursquare messages were retained
for the purpose of characterizing a user’s mobility profile.

We have chosen to focus on the happiness of Twit-
ter users rather than attempting to study all possible sen-
timents an individual may have. For this purpose, we
use the language assessment by Mechanical Turk (labMT)
word list, as described in [2]. LabMT comprises a list of
roughly 10,000 of the most frequently used words in the
English language, each of which is scored for happiness
on a scale of 1 (sad) to 9 (happy) by humans using Ama-
zon’s Mechanical Turk service [29,30] resulting in an av-
erage happiness score for each word. Using these scores,
we determine the average happiness (havg) of a given text
T containing N unique words by

havg(T ) =

N

Â
i=1

havg(wi) · fi

N

Â
i=1

fi

=
N

Â
i=1

havg(wi) · pi (1)

2

I From “Happiness and the Patterns of Life: A Study of
Geolocated Tweets”, Frank et al., 2013, in review [9].

I See blog post here (�).
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to the different spatiotemporal precision of locations.
González et al. determined a cellphone user’s location
by identifying the nearest cellphone tower they were in
range of. Also, González et al. were able to continuously
monitor change in cellphone tower reception because re-
ception is available even when cellphones are not actively

being used. On the other hand, we only received location
information when users performed the act of tweeting,
thus González et al. received a more continuous reflection
of a user’s trajectory, while we received higher precision
locations.
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Figure 2. Users are grouped into equally sized bins by their radius of gyration. We then plot the average word valence versus the
average radius of gyration of each bin. The observed trend persists through variation in binning and different measures of mobility.
We provide two example user trajectories as insets; panel B shows a user (1,882 tweets) with radius of gyration r = 54.28 km, and
panel C shows a user (768 tweets) with r = 463.61 km.

4

Frank et al., in preparation.
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Figure 3: (Color online) The probability density function of observing an individual in their normalized reference frame, where
the origin corresponds to each individual’s expected location, and sy = 0 corresponds to their principle axis. This map shows
the positions of over 37,000 individuals, each with more than 50 locations, in their intrinsic reference frame.

5

Raw movement patterns agree with cell phone data
findings [10]
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Twitter—popularity based on follower count:
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Twitter—interactions:

I Decay in happiness correlation in social network.
I ρ = Spearman’s correlation coefficient.

I “Twitter reciprocal reply networks exhibit assortativity with
respect to happiness”
Bliss et al., Journal of Computational Science, 2012 [1]
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Phrases—Music Lyrics:

rank order=1 order=2 order=3 order=4

1 i and i i know you if you want to
2 the in the you know i let me tell you
3 and if you and i know tell me what you
4 you on the this is then don’t want to be
5 a to the la la la all i need is
6 to i know don’t want to and i know that
7 my you know if i could what can i do
8 i’m but i can’t you see want you to know
9 it when i don’t know what all i want is

10 that when you all the time give it to me
11 so all the why don’t you when it comes to
12 your like a as long as how does it feel
13 me this is don’t you know you know that i
14 in come on there is no don’t you know that
15 no to be i know that don’t give a fuck

25 love don’t know but i can’t all the things that

100 m just like in this world woke up this morning

I J. Williams et al., in preparation.

http://www.uvm.edu
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Next for Happiness:
I hedonometer.org (�) (early 2013).
I Over 10 additional languages being scored through a

new service.
I Four other emotions: surprise, fear, disgust, and

anger.
I Other input streams (e.g., BBC)
I Expansion to phrase-based analysis.
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“Temporal patterns of happiness and
information in a global social network:
Hedonometrics and Twitter”
Dodds et al., PLoS ONE, 2011 [8]

Much better version here:
http://arxiv.org/abs/1101.5120 (�)

I “Twitter reciprocal reply networks exhibit assortativity with
respect to happiness”
Bliss et al., Journal of Computational Science, 2012 [1]

I “Positivity of the English Language”
Kloumann et al., PLoS ONE, 2012 [14]

I “Measuring the Happiness of Large-Scale Written
Expression: Songs, Blogs, and Presidents”
Dodds and Danforth, Journal of Happiness Studies,
2009 [7]

I language assessment by Mechanical Turk
(labMT 1.0)

I http://www.onehappybird.com (�)
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Some press...

I “Social Scientists wade into the Tweet
stream” by Greg Miller,
Science, 333, 1814–1815, 2011 [18]

I “Does a Nation’s Mood Lurk in Its Songs and
Blogs?” by Benedict Carey
New York Times, August 2009. (�)

I More here: http://www.uvm.edu/∼pdodds/research/ (�)
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