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ON THE DISTRIBUTION OF DOMINANCE IN POPULATIONS 

OF SOCIAL ORGANISMS* 


Abstract. Bumble bees may possess a scalar character called dominance, which changes ac- 
cording to certain rules as a result of encounters between pairs of organisms. An equation for the 
distribution of dominance in a population is derived based on a set of plausible axioms. The resulting 
Boltzmann-like integrodifferential equation is analyzed, analytically and/or numerically, for certain 
important special cases. 

Key words. dominance, probability distribution, Boltzmann, Fokker-Planck, integrodifferen- 
tial equation 
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1. Introduction. The idea of dominance is of major importance in studies of an- 
imal behavior. Observations of dominance date at least from the work of Schjelderup- 
Ebbe [16], who established the existence of "peck right" in interactions between hens. 
This "right" is the expression of the dominance of one of a pair of hens over the other. 
A considerable portion of the research on dominance has concerned higher organisms 
wherein individuals recognize one another, leading to the possibility of a great variety 
of sophisticated behavior (see, e.g., [4] and [3]). 

The "animal sociology" induced among N individuals by peck rights has been 
investigated. For example, Rapaport [14] enumerated the possible social structures 
(directed graphs) assuming that a first encounter, with equiprobable win oq loss, per- 
manently determines the pairs peck order (winner pecks loser). Landau [9] introduced 
a hierarchy index, a single number that characterized structure, and calculated its 
mean and variance under various assumptions. (See Landau [lo].) 

This paper is concerned with the dynamics of dominance in simple situations, 
such as may occur in beehives, wherein all organisms are anonymous. We show how 
to derive an equation for the development in time of the distribution of dominance 
through a large population, and we study certain properties of this equation. The 
equation is of nonlinear Boltzmann type, and therefore is representative of a class of 
problems that has considerable mathematical interest (e.g., see [I]and [2]). Thus our 
exposition here is directed more toward mathematical audiences. In another paper, 
we plan to present the equations in a less formal, but more intuitive manner and to 
derive more consequences of them. 

The establishment of a dominance distribution in a population is analogous to 
the establishment of ratings in competitive events such as chess, golf, and bowling. 
Ratings changes must be designed to produce desirable distributions, not an easy task. 
A recent reference is Glickman's Bayesian approach to rating chess players [5]. 

Turning to the specific subject matter of the present paper, we call attention 
to Van Honk and Hogeweg's [21] observations of encounters between individuals in a 
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Bombus terrestris (bumble bee) colony. Frequently, bees would meet and antennate 
each other for a moment, after which one bee would retreat and walk away. Based on 
these observations, Hogeweg and Hesper [6] developed computer simulations of hive 
behavior. Although their model contained considerably more detail, the core of their 
assumptions is captured in the following. 

Consider a population of anonymous organisms, where each individual possesses 
an attribute called dominance that is associated with a single nonnegative real number 
x. Assuming that there is an upper bound to the dominance, with no loss of generality, 
take 0 5 x 5 1. Assume that the following rules govern the development of dominance. 

(i) Individuals continually "encounter" other individuals. Each pairwise en- 
counter results in a winner and a loser. 

(ii) Results of an encounter are chance events wherein the probability of winning 
is greater for the individual with larger dominance. 

(iii) After an encounter, the dominance of the winner is incremented, while that of 
the loser is decremented. The more surprising the result, the bigger are the subsequent 
changes in dominance. (For example, if A has a much larger dominance than B, and 
A wins the encounter, then the resulting changes in dominance should be relatively 
small compared to the case where B wins.) 

We assume a stochastic model based on a random variable X(t) that takes a 
value x, at  any time t ,  from the "dominance space" [O, 11. In this paper, we derive 
and partially analyze the equation for the probability density function f (x, t), where 
f (x, t)dx gives the fraction of the population that at time t has dominance values 
in the interval (x, x + dx). A major point of interest is whether dominance values 
eventually accumulate only near x = 0 and x = 1. Hogeweg and Hesper [6] suggested 
that such a split in the population might be used to organize the hive: low dominants 
perform one task while high dominants perform another. 

2. Formulation of the basic equation. Let ~ ( x ,  y)dt denote the probability 
that a pair of individuals with dominance x and y, respectively, will have an encounter 
in the time interval of duration dt, where dt << 1. More precisely, the probability that 
exactly one encounter occurs in the time interval (t, t +dt) is ~ ( x ,  y)dt, the probability 
that no encounter takes place is 1- y)dt, and the probability that more than ~ ( x ,  
one encounter occurs is o(dt). We denote by $(x,y,u)du the probability that after 
an encounter between two individuals with dominance x and y, respectively, the x 
individual will end up with its dominance in the interval (u,u + du), irrespective 
of the y individual's change in dominance. Of course, $ satisfies the normalization 
condition 

The probability that an individual with dominance x at time t will have its 
dominance in (u, u + du) at  time t + dt is denoted by f (u, t + dt ( x, t)du. To derive 
an equation for f ,  we note that if x = u, then in the time interval (t, t + dt), the x 
individual should not change its dominance, which means that it should not have an 
encounter. For x # u, the only possibility is that an encounter takes place between the 
individual and some partner y such that the x individual will end up with dominance 
in (u, u+du). We assume the "law of mass action," according to which the probability 
of finding a partner for an encounter is directly proportional to the number of available 



partners. Accordingly, 

Here C stands for the size of the population, and thus f(y, t)Cdy is the number 
of individuals with dominance in (y, y + dy) at  time t.  Moreover, 6 is the Dirac 
distribution. Note that (2.2) describes a Markov process. 

We use two fundamental relations from the theory of Markov processes [20]. The 
first of these is the Chapman-Kolmogorov equation 

The second relation links f (x2, t2 ( xl,t1) with the probability distribution function 
that we seek, f (x, t), 

(2.4) f ( x 2 . t ~ )= Jf(x2, t2 1 XI ,  t l ) f(xl ,  tl)dxl. 

Below, we write the Chapman-Kolmogorov equation for our process taking t l  = 0, 
tz = t and t3 = t + dt for dt << 1: 

Using (2.2), we find that (2.5) becomes 

Subtracting f (x, t I u, 0) from both sides and dividing through by dt, we are led to 
the master equation 

af (x' I u7O) = - f (x, t 1 u, 0) 
1 

~ ( x ,y)f (y, t)dy at 

(2.7) 

where, with no loss of generality, we have equated the total population size C to unity. 
To put (2.7) into a more satisfactory form, we use (2.4). Multiplying (2.7) by 

f (u, 0) and integrating over u, we obtain our basic equation 
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The basic equation (2.8) is a gain-loss equation for each state x. The first term on 
the right side is the loss due to transitions into other states. (An x individual having 
an encounter with a y partner will change its dominance as a result and thus will 
leave the x level.) The second term is the gain due to transitions from other states v. 
(Because of the definition of the function, a v individual, after an encounter with 
some y partner will reach the dominance level x.) 

As a consistency check, we note that upon integration over x in (2.8) and using 
(2.1), we obtain 

as is appropriate for a probability distribution function. The initial condition 

must be prescribed, where 

3. Wins and losses: The governing equation. Each pairwise encounter be- 
tween individuals results in a winner and a loser. We therefore introduce the function 
$(p, q), the probability that a p - q encounter is won by p (p and q stand for the 
dominance values of the two partners). Since $ is a probability, we necessarily have 
that 

Because the two events "p wins, q loses" and "p loses, q wins" are complementary, the 
function $ must satisfy 

For p = q, we obtain from (3.2) 

(3.3) $(p,p) = for any O 2 p 5 1. 

(Our individuals are distinguished only by their dominance, so that condition (3.3) is 
natural.) The "dominant is more likely to win" axiom of (ii), $1requires $ to be an 
increasing function of its first variable and a decreasing function of its second variable. 
When $ is differentiable, this is expressed by 

We now consider several special cases of $. It is possible that only the difference 
between the dominances of the two partners is important in determining the outcome 
of an encounter. In such a case, $ satisfies 



In this case, $(p, q) = g(p - q), where g is an increasing function satisfying 

(3.6) 0 Ig(x) < 1 for - 1I x I 1; g(0) = i; g(x) +g(-2) = 1. 

As a simple example of this type, we mention that 

A large class of q5 functions is given by 

where h is a symmetric function such that 

For h(p, q) = 1, we recover (3.7). 
A special case of q5 corresponds to the deterministic rule "dominant always wins," 

i.e., 

This is an example of (3.8). 
The above "dominant always wins" function can be obtained as a limit of functions 

q5a (p, q) for a + oo, where 

Here the function T must satisfy 

d
lim T ( x ) = - i ,  -T(x)>O, T(-x)=T(x) ,  lim T ( x ) = i .  

x+-OC) dt x-+OC) 

For example, 

Even when a is as small as unity, the dominant "almost always" wins (see Fig. 1). 
Hogeweg and Hesper [6] use 

which can be obtained from (3.8), by taking h(p, q) = (p + q)-l. 
We now focus on the effective changes in dominance produced by an encounter. 

Let ~ ( a ,  p,x)dx denote the probability that, if a is the winner or the p, x)dx and ~ ( a ,  
loser, respectively, of an a -,l3 encounter, then a acquires a dominance in the interval 
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FIG.  1. Graph of +(p,  q )  = 3 + ( 1 1 ~ )arctan ( p -  qlpq(1 - p ) ( l  -q ) )  for several fized values of q.  

(x,x + dx). (Major notations are summarized in Table 1.) Using the probability 
$(a, p) just defined, we have that 

where I) is defined in $2. Of course, we assume that 

guaranteeing the normalization condition (2.1) on @. 
Let W(a, p) be the expected increase of a's dominance if a wins a a-encounter, 

while L(a,P) is the expected decrease if a loses. Then an interesting choice for 
~ ( a ,,B, x) would be 

In (3.16) g denotes a "near Gaussian," by which we mean a density function obtained 
by normalizing the restriction to the interval [ O , 1 ]  of a Gaussian with mean value 
a + W(a, p) and standard deviation a (a << 1).The exact expression for g does not 
influence our further discussion. 

Of particular interest is the limiting case wherein a + 0, so that the winner a 
attains a dominance of exactly a + W (a,  p). Thus, in this case, 

(3.17) ~ ( a ,  6(a + W(a, P)  - x), i ( a ,  P,x) = S(a - L(a, P) - x).P,x) = 

Let us now examine the consequences of specializing the basic equation (2.8) to 
the case where (3.14) and (3.17) hold. Let us first perform the y integration in (2.8) 
for the term 



TABLE1 

Major notations. 


Symbol Discrete Definition 
correspondent 

- -

fi (t) Fraction of population that a t  time t has 
dominance values in (2, x +dx); 

"b i jk  Probability that after an encounter between the 
individuals x and y, x ends up in (u, u +du); 

qijdt Probability that individuals x and y will have an 
encounter in (t, t $ dt); 

4ij 	 Probability that a p - q encounter is won by p; 

Probability that a by winning or losing, respectively, 
an a -p encounter acquires dominance in (x, x +dx); 

Wijr Lij 	 Expected increase or decrease, respectively of a 's 
dominance after an encounter with a p partner; 

The nth derivate moment of the stochastic process; 

Flux function representing the amount of probability 
crossing x in the positive direction per unit time; 

First derivate moment, i.e., a ~ ( x ,  t); 

Second derivate moment, i.e., az(x, t) 

We make the substitution 

(3.19a) 	 s = v +  W(v, y) - x, 

where the subscript i indicates the partial derivative with respect to the ith argument; 
i = 1,2. Assume that (3.19a) can be solved for y to give 

Then the integral in (3.18) becomes 

Here x is the characteristic function for [O, 11, shown below: 

The factor x(yw(s; v, x)) must appear in (3.21) to ensure that we are integrating 
well-defined quantities on [O, 11. See (3.38) and (3.39), below. 

Performing the y integration for the term involving ~ ( v ,  y, x), we obtain 
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where now y ~ ( 0 ;  v, x) is the solution of 

With the notations 

for the term involving W, and 

for the term involving L, we find that (2.8) becomes the governing equation 

1 
(p(w' x)' t,+ Jd V(W,P(W, x))Q(w7 P(W, 5))  f (w, t)x(p(w, x))dw 

W2(W, P(W, 

The second term on the right side of (3.26) gives the fraction of the population that 
attains dominance level x by winning an encounter, while the third term is that of the 
losers. 

If we first perform the v integration in (2.8), we obtain our governyng equation 
with integration over the "partners" as follows: 

1 


(3.27) + Jd I)(w@,5)'P ) ~ ( w ( P ,  +Wl(w(p,x)7t, f (p, t)x(w(p, x))dp x), P) (l"(" 

(e(q'x)' t, 
f (q, t)x(C(q, x))dq. 

In (3.27) w(p, x) and C(q, x) denote the solutions of the equations 

Let us now consider particular possible examples for the function W and L. The 
basic restrictions on W(a ,  p) and L(a, p) are their nonnegativity, and also 

to assure that dominance values range between zero and unity. Other conditions stem 
from the rules (iii) enunciated in $1. Thus we expect that a winner w wins more if 



FIG.2. Typical graph of the function W ( w , p ) ,  the dominance increase of the winner w i n  a 
w -p encounter, as a function of w with p fixed ( a )  and as function of p with w fixed (b). 

FIG.3. Typical graph of the function L(1, q ) ,  the dominance decrease of the loser 1 i n  an  1 - q 
encounter as a function of 1 with q fixed ( a )  and as a function of q with 1 fixed (b). , 

partner p is more dominant (so that a win is less expected). By the same token, w 
wins less if w itself is more dominant. In mathematical terms, we take as axioms 

Parallel with (3.30), we expect that a biologically plausible loss function satisfies 

Condition (3.29) on W, in particular, requires W(1,p) I0 for any p. Since W is 
nonnegative, it follows that 

(3.32) W(1,p) = 0 for 0 l p  5 1. 

Indeed, a winner with dominance unity cannot raise his dominance. In like manner, 
from (3.29), taking C = 0, we obtain L(0, q) 5 0, for any q. Using the nonnegativity 
condition on L, it follows that 

(3.33) L(O,q)=O for O I q I l ;  

i.e., no loss is suffered by a loser whose dominance is already zero. See Figs. 2 and 3 
,for typical graphs of W(w, p) and L(C, q). 
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FIG.  4.  Gmphs for determining w* and p* (defined i n  (3.40) and (3.36)), the limits of integm- 
tion in  (3.38) and (3.39) i n  the "winner-tern" for (a )  W ( 0 , l )5 x 5 1; (b)W(0 ,O)5 x < W ( 0 , l ) ;  
and (c )  0 5 x < W(0,O).  

If we assume that the equations of (3.28) have unique solutions in [0, 11,then more 
conditions on functions W and L follow. More precisely, so that a unique solution 
w (p, x) to (3.28a) exists, we impose 

Similarly, to obtain a unique solution e(q, x) of (3.28b), we require that 

Conditions (3.30) are sufficient to assure uniqueness of the solutions of the equations 
(3.28a) and (3.28b) when solved for p and q, respectively. 

To find the values of p for which w(p, x) is between zero and unity, we refer to 
Fig. 4. We see that a unique w(p, x) exists for 

p * ( x ) = l ,  l ~ X > W ( O , l ) ,  
(3.36) 	 0 i p L p*(x) where W(0, p*) = x, W(0,O) 5 x < W(0, l ) ,  

p* = 0, 0 < x < W(0,O). 

Similarly, to find the values of q for which e(q, x) is between 0 and 1,we refer to Fig. 5. 
A unique e(q, x) exists for 

q*(x) = 0, 1> 1- x  2 L(l,O), 
(3.37) 	 q*(x) 5 q < 1 where L(1, q*) = 1- x, L(1,O) > 1- x 2 L(1, I ) ,  

q*(x) = 1, L(1,l)  2 1- x > 0. 



1' Graphs for determining 5.FIG.  and q* (defined in  (3.41) and (3.37)), the limits of integration 
in  (3.38) and (3.39) in  the "losers-term" for (a )  1 2 1 - x 2 L(1,O);(b) L(1,O) > 1 >x 2 L ( 1 , l ) ;  
and ( c )  L ( 1 , l )  > 1 - x 2 0. 

We see that (3.27) can be rewritten without the characteristic functions by chang- 
ing the limits of integration in the three integrals to 

Similarly, the characteristic functions of (3.26) can be eliminated by changing the 
limits of integration to 

(3.39) and dt,l* 

where 

and 
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Again, see Figs. 4 and 5. (Note that if (3.28a) and (3.28b) do not have unique solutions, 
then additional integrals appear in (3.38) and (3.39).) 

Let us now consider particular possible examples for the functions W and L. A 
first example for W might be 

where 0 < €1 5 1. The nonnegativity condition is automatically satisfied, and con- 
dition (3.29a) is also, since ~ l p ( 1  - w) < 1- w. Similarly, a possible choice for L 
is 

where 0 < €2 < 1. 
A reasonable symmetry constraint to place on the function W(w,p) and L(e, q) 

is that the reward of winning bears the same relation to the minimal dominance value 
(zero) as does the penalty of losing to the maximal dominance value (unity). That is, 

or, equivalently, 

The example of (3.42) and (3.43) satisfies this symmetry constraint if €1 = €2. A 
general pair of win-increment and loss-decrement functions that satisfy the symmetry 
constraint is 

for a function h such that 

These conditions follow from (3.30), (3.31), and (3.46). 
We remark that W(w, 0) = L(e, 1) = 0 for (3.42) and (3.43). This is not the case 

for 

(where $(w,p) is the probability that w wins a w - p encounter, as defined in $3). 
According to (3.48a), for example, if p is virtually certain to win [$(p, w) = 11,yet w 
actually does win, then w7s new dominance value, w + W(w,p) becomes the highest 
possible (virtually unity). By contrast, if e is virtually certain to lose an e-q encounter 
[$(e, q) = 01, and e indeed loses, then 1's dominance is virtually unchanged. 

Similar rules to (3.48a) and (3.48b) are 



Here, if the positive parameter ,LL is made large, only for very unlikely victories does 
w's dominance become nearly unity; otherwise, w's rewards are small. 

Hogeweg and Hesper [6] consider the win-loss functions 

where 4 is defined in (3.13) and A is a positive constant. If w + W(w,p) > 1 or 
-L(e, q) < 0, "legal" alternatives to (3.50) are 

In chess, similar rules are used to establish the changes in rating. The win-loss 
functions are given by (3.50) for some specific A, and 4 is given by 

Formula (3.53) is essentially the same as that given by Kazic, Keene, and Lim [7], 
except that we have normalized the ratings so that they fall in [0, 11. 

4. A discrete model. For the process under consideration, a discrete model 
can be constructed on its own, but we prefer one that approximates the continuous 
model. Such a discrete model proves itself to  be useful in our later numerical analysis. 
Our exposition therefore closely follows the continuous model's construction. 

At this point, we shift to  a dominance space that comprises the whole real line 
(-m, m )  instead of the closed interval [0, 11. With this, the general theory of stochastic 
processes is much easier to apply. Moreover, we need not be concerned about limits 
of integrations in our equations (as in (3.38) and (3.39)). We still want to preserve 
our previous rule that active individuals are only those with dominance in [ O , 1 ]  that 
remain in [ O , 1 ]  even after encounters (i.e., our win-loss function W and L remain as 
we defined them). Therefore we make the following assumptions. 

Assumption 1. q(x, y) = 0 if x or y is outside [O,1] (i.e., individuals with domi- 
nance outside [O,1]  are inactive). 

Assumption 2. f (x, to) = fo(x), the initial distribution, is zero outside [0, 11. 
Assumption 3. $(a, P,x) = S(a -x) for a or p outside [O,1] (inactive individuals 

do not change their dominance). 
With these assumptions, the governing equation (2.8) gives 

-- 10for x $ [ ~ , l j .  af(x,t) 
a t  

It follows that f (x, t) = 0 for any t, if we start with f (x, to) = 0, x # [O, 11. In this 
way, f (x, t) is well defined on the whole real line. Therefore we henceforth consider 
the dominance space to be (-m, m).  We must note, however, the possible existence 
of discontinuities at  x = 0 and x = 1. 

In formulating a discrete model, let us consider the dominance space to be the 
set of all the real numbers, and, for any integer i, let fi(t) denote the fraction of 
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<< .2-organisms" whose dominance x is the range (i - l ) A  5 x < iA, where A is a 
positive real number. Let vijdt denote the probability that a pair of individuals with 
dominance in the ith and j t h  interval respectively, will have an encounter in the time 
interval (t, t + dt) where dt << 1. 

To characterize encounters, we introduce the probability $pqi. Here $pqi is the 
probability that, after an encounter between two individuals with dominance in the 
pth and qth interval, respectively, the p individual will end up with its dominance in 
the ith interval regardless of the final dominance of the partner. Necessarily, 

Here and below, unless otherwise indicated, summations are to be performed over all 
integers. 

Let fij(t + dt I t )  denote the probability that an individual that was in state j at 
time t will be in state i at time t + dt. (By "state i," we mean having dominance in 
the ith interval.) As for the continuous case, we assume the law of mass action and 
therefore write 

where 6ij is the Kronecker symbol and the population size has been taken to be unity. 
As in the continuous case, there follows the discrete master equation 

To link with our continuous model, we define 

We consider the limits A -+ 0, i,j ,p, q t oo such that iA = x, j A  = y, pA = a, 
qA = ,B are fixed, and 

It can be seen that @(iA, t) and $(pa ,  qA, iA) play roles of probability distributions 
whose probability densities are f (x, t)  and $(a,P,x), respectively. Consequently, for 
small A, (4.4) is an approximation of the continuous basic equation (2.8). For sim- 
plicity, we take A = 1/N, N being some positive integer. 

In line with our previous assumption (i.e., all the encounters take place only 
between individuals with dominance in [0, I]), we assume that 

From (4.4), it follows that 



Therefore fi(t) = fi(0) = 0, for any time t. That is, if we start with a population 
distributed over [0, 11, this property will be preserved if we ensure that encounters 
between individuals with dominance in [ O , 1 ]  will result in changes that do not take 
dominance values outside this interval. 

We now define discrete counterparts of the probability functions $ and $ and of 
the win-loss functions W and L. For the probability $ij, we can take any particular 
$ from our continuous model and define 

Thus we preserve the monotonicity properties of $. 
The discrete win-loss function Wij and Lij for the case of exact win and loss are 

integer-valued functions such that 

The functions Wij and Lij are taken to satisfy the requirements 

According to (3.30) and (3.31), the win and loss functions in the discrete case rnust 
also satisfy monotonicity requirements. Therefore Wij (Lij) is a decreasing (increasing) 
function of the first variable, and an increasing (decreasing) function of the second 
variable. An illuminating example is the discrete counterpart of (3.42) and (3.43) 

The brackets denote the integer part of the expressions and a,  b are positive integers, 
1Ia, b IN-1. (a = b = 1corresponds to el = €2 = 1and a,  b > 1for 0 < €1, €2 < 1.) 

From (3.2) and (4.7), $ij + $ji = 1. If (4.8) holds, then (4.2) is satisfied, for there 
are unique integers kl, k2 such that i + Wij = kl and i - Lij = k2 for i and j fixed, 
which implies that 

In the discrete case, it follows that we must deal with the following system of 
ordinary differential equations, for 1,2, . . . ,N: 

Using (4.2), we can check that (4.12), the discrete counterpart of our basic equation 
(2.8), implies that 

(4.13) 	 C
N 

fi(t) = constant. 
i=l 
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FIG.6. Typical phase portrait of system (5.2) restricted t o  the domain D = {(x1,x2,x3)1 
x 1 + x 2 + 2 3 =  1, xi 20,2=1,2,3). 

The constant is, of course, taken equal to unity. 

5. Discrete models when N=2 and N=3. We examine discrete models for 
N = 2 and N = 3, for they provide the simplest examples of the phenomena in which 
we are interested. When N = 2 (two dominance values), the fraction fl of individuals 
with low dominance satisfies 

where a - $111, b = $121 + $211, c = $221. There is a unique globally stable steady 
state :Arbitrary ratios of high to low dominants can be obtained by suitable parameter 
choices. 

When N = 3, there is an intermediate dominance value: We can see if and when 
there are situations when the population nonetheless tends to a situation where only 
high and low dominants are present. It  is sufficient to illustrate matters with specific 
examples. 

For the first example, we take the following discrete counterpart of (3.48): 

4. ..,-- 1  i - j  
Wv = [(3- i)&], L, = - l)4,].+ 7, [(i 

Using f2  = 1- (fl + f3), we obtain from (4.12) with qij -- 1 

The unique nonnegative steady state of system (5.2) is fl = f3 = 0. Linear analysis 
shows that this steady state is stable. Simulations, such as that illustrated in Fig. 6, 
indicate that all the individuals will reach dominance level 2 (i.e., f2  = 1). This is a 
case where dominance cannot be used to organize the society. It is a useless property, 
since it soon attains a single value for all members of the population. 



FIG.  7. Similar to  Fig. 6 for system (5.3). 

The second example concerns the "dominant always wins" case (3.10). Given the 
definition of the function 4, we must consider only the values Wij for i 2 j and Lij 
for i < j .  From these values, W3j = 0 and Ll j  = 0 for any j .  Let us first consider 
the situation where Wl1 = W2l = W22 = L22 = L23 = L33 = 1. System (4.12) in this 
case becomes 

df2 = - f 2 +  -f:+ 2 ( ~f i  - f ~ ) ~ .
d t  2 2 2

(5.3) -dfl = --1f: +-1f; + f2(l- fl - f2)7 1 1 

System (5.3) has a nonnegative steady state fl = -1 +fiand f2 = 3-2 f i  (necessar- 
ily f3 = -1 + fi), which proves to be stable. A typical phase portrait is depicted in 
Fig. 7. Here, there is a differentiation of the population into high and low dominants, 
but there is no gap in the distribution (f2 # 0). 

If we slightly modify the win-loss functions by taking Wl1 = L33 = 2, we obtain 

The unique and globally attracting steady state is fi = i,f2 = 0, and hence f3 = i .  
Again, this state is stable. Now there are only high dominants and low dominants. 
(See Fig. 8.) 

6. Weak interactions. To make further analytic progress, we consider situa- 
tions where an individual encounter has only a small effect on dominance. To study 
this case, we recall that for the Markovian transition density function f (defined under 
(2.1)) we can write the so-called Kramers-Moyal expansion [20], [19] 

where 
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FIG.  8. Similar t o  Fig. 6 for system (5.4). 

The derivate moments of the stochastic process X(t)  are defined by 

(6.3) a,(x, t)  = lim (l/At)E{(X(t + At) -X(t)ln I X(t)  = x), n = 1,2 , .. . . 
At-iO 

The symbol E is used in (6.3) to indicate an expected-value operation. Multiplying 
by f (xo, to) and integrating over x in (6.1), we can see that the probabilify density 
function f (x, t) also satisfies (6.1). Equation (6.1) describes the convection of proba- 
bility. The flux function X(x, t) represents the amount of probability crossing x in the 
positive direction per unit time. 

To approximate (6.1), let us now analyze our master equation (2.7) in the case of 
LL~malljumps," i.e., for exact and small wins and losses, as follows: 

We assume that the larger of the maxima of W(w,p) and Z(e, q) for 0 5 w, e,p, q 5 1 
is unity, so that E gives the scale of the wins and losses. We accomplish this here with 
the following assumption, in the important special case of symmetric maximum wins 
and losses: 

To write the Kramers-Moyal expansion, we must first determine the incremental 
moments a, (x, t). With the aid of a suitable version of (2.2), the expression of a, (x, t )  
can be written as 

an(., t)  = lim -] (y - x)nf (y, t + At I x, t)dy 
At-0 At  -, 

(6.6) 00 



Hence 

where 

For E << 1, it is of interest to examine the first two terms in the Kramers-Moyal 
expansion 

where M and D denote the first two incremental moments, i.e., 

M(x, t) _= a l (x ,  t),  
D(x, t) _= az(x, t). 

Alternatively, 

Equation (6.11) exhibits a convection with velocity EM, together with a small O(e2) 
correction, and also a weak diffusion ;c2D. 

The convection-diffusion equation (6.11) requires an initial condition 

at some initial time to. To determine the boundary conditions, we reconsider (6.4). 
Integrating over x from 0 to 1,we obtain 

since J; f (x, t)dx = 1. It follows that 

(6.14) X(0,t) = X(1,t) for any time t. 


Because we do not allow jumps from [O,1]  to outside [0, 11,we necessarily have that 


(6.15) X(0, t )  2 0, A(1, t) I0. 

Relations (6.14) and (6.15) imply that 

(6.16) X(0,t) = X(1, t)  = 0 for any time t. 
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(As expected, conservation of material is associated with zero-flux conditions at  the 
boundaries.) For (6.9), (6.16) is equivalent to 

As is discussed further below, solutions to (6.9) exhibit a variety of defects as 
approximations to (3.26) for small E .  In the present paper, we view (6.9) as a heuristic 
that can lead to conjectures concerning qualitative behavior that can be tested by 
numerical analysis. 

With its interpretation as the governing equation of a convective-diffusive flow, 
(6.9) sometimes permits immediate characterization of the development with time of 
the dominance distribution. Consider, for example, hypothesis (3.48) for the win and 
loss functions, preceded by a parameter, E :  

When 0 < E << 1,by (6.8) and (6.10) with rl= 1the convection speed is given by 

Since + and f are positive, 

Consequently (to first approximation) according to (6.9) all dominance is "swept" to 
x = i. (The diffusion will "soften" the delta function at x = $ to a peaked function.) 
That is, most organisms will eventually attain a common dominance value near to i. 
In this case, dominance cannot produce a social hierarchy. 

If we wish to construct a model that will divide the organisms into two groups 
(one group with dominance near zero and one group with dominance near unity), then 
the convection speed M(x,  t )  should satisfy 

(6.21) M(x,  t )  < 0 for 0 < x < x*, M(x,  t) > 0 for x* < x < 1, 

where x* is some constant between zero and unity. By (3.32) and (3.33), 

so that (6.8) yields 

Comparing (6.21) and (6.23), we see that if we wish to achieve (6.21) with a function 
M that is continuous in x, it is necessary that 



FIG.  9.  T h e  shape of a "convection funct ion"  M (def ined in (6.10a)) t ha t  divides t he  populat ion 
i n t o  h igh  and  low dominan t s .  

See Fig. 9. 
To achieve (6.24a) and (6.24b), we see from the definition of M that we must 

require that 

For the expression of Ml (x, t), we obtain 

Using (6.22) and (6.25), we find that 

From (3.4), (3.30), and (3.31), recall the assumptions 

To guarantee (6.24~) and (6.24d), we further assume that 

As an example, the functions 4, given by (3.11) can be shown to satisfy (6.25) and 
(6.29). 

A model that yields a division of the organisms into two groups proves to be 
the "dominant always wins" case for which, as mentioned in the paragraph following 
(3.10), the function 4 is the limit of 4, as a +m. Here 
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By (6.22), (6.24a) and (6.24b) are satisfied. Also, 

L1 (x, u) f (u, t)du. + Jdxwl(x, u)f (u, t)du -11-
Let us assume that 

Then, since W1 < 0, > 0, all the necessary conditions of (6.24) are satisfied in this 
case as  well. An example of where our conditions appear sufficient is provided in the 
next sect ion. 

7. Numerical analysis. To supplement our analytical results, we present nu- 
merical results for two examples. Our basic tool is the discrete model presented in $4 
and, more precisely, system (4.12) of ordinary differential equations. As we mentioned 
in $4, system (4.12) can be considered as an approximation of the basic equation (2.8). 
How good is the above approximation? In trying to answer this question, we must 
look carefully at the discrete win-loss functions. 

Parallel with (3.29), the functions Wij and Lij must satisfy the following restric- 
tions: 

From (7.1) for i = N ,  it follows that WNj 5 0, which requires that W N ~  0 for any 
j. This means that the most dominant individual cannot jump to a higher dominance 
level. Similarly, the less dominant individual cannot jump to a lower dominance 
level. Therefore Llj = 0. It follows that states 1 and N in the discrete model play 
similar roles to dominance 0 and 1,respectively, for the continuous case. There is one 
essential difference, however. In the continuous case, the dominance values 0 and 1 
can be reached only after an infinite number of encounters. This follows from the fact 
that the equations 

have unique solutions w(p, 1)and C(q, 0) for some appropriate partners p, q if conditions 
(3.34) and (3.35) are fulfilled; these solutions are 1and 0, respectively. In the discrete 
case, states 1and N either can be reached directly from some state i or they cannot 
be reached at all. 

We treat the case of exact wins and losses for which the functions $ijk are given 
by (4.8). Because of the conservation law (4.13) for the fi, we should solve the system 
of ordinary differential equations obtained from (4.4) by eliminating the koth equation 
and taking 

fko = 1- C fi. 

Initial conditions fi(0) = fi are given. In our simulations, N = 101. 



FIG.  10. Evolution i n  time of the solution for system (4.12), using discrete versions of (3.7) and 
(3.48). Initial condition obtained by normalizing the quadratic polynomial (i- 1 ) ( N  - i ) ;  N = 101, 
E M 0.09. 

We concern ourselves with the special case of "weak interactions" for which the 
maximum E dominance change is given (in the discrete case) by 

The win-loss functions Wij and Lij are integer-valued. Therefore E should be greater 
than 0.01. (We must allow jumps at least to the neighboring levels.) Moreover, we 
must note that choosing E too small causes Wij and Lij, for a given i, to  be the same 
for many partners "j." 

Figure 10 shows the evolution in time of the solution for system (4.12) in our first 
example. Below, we use the discrete counterparts of the win-loss functions of (3.48) 
and $ of (3.7): 

N - i  i - 1  1 i - jw..- -$..(7.5) 2 3 - [ ) I ]>  L i j =  [IOkj]l z 3 - 2 + - 2N ' 

Computations of the +ijk show that 

According to (7.6), no organism is pushed to the ends. Therefore, if we start with fi = 
f~ = 0, these values will be preserved. More generally, we can see the accumulation 
around the dominance value i,verifying the assertions following (6.23). 

Our second example is a case where the dominant always wins. In particular, we 
use discrete counterparts of (3.42), (3.43), and (3.10), as follows: 
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FIG.11. Similar to  Fig. 10 for the DAW case. Uniform initial condition fi = 1/N,E w 0.24. 

We showed at the end of 96 that, according to (6.9), this case embodies various nec- 
essary conditions for the population to be convected to the two ends of the interval. 
Figure 11 shows that, indeed, such convection occurs. Perhaps the individuals are 
pushed to the ends somewhat quickly (i.e., after a finite number of jumps), but the 
general picture should be correct both qualitatively and semiquantitatively. Indeed, 
the overall conclusion from these numerical examples is the usefulness of the' "weak- 
interaction" convection-diffusion approximation. This approximate often permits con- 
siderable insight into the general form of the solution, even when interactions are not 
especially weak. 

8. Summary and discussion. Computer simulations show that the existence 
of a single variable that affects the experience of each individual is sufficient to generate 
a social hierarchy in a population of interacting organisms [6]. In the present work, 
we focused on simple interactions between individuals that affect the hypothetical 
attribute called dominance attached to each individual. This attribute was treated as 
a real-valued one-dimensional stochastic variable. 

Taking advantage of the fact that the process under consideration is Markovian, 
its master equation was derived. Several biologically reasonable examples of win-loss 
functions W and L and probability functions q5 that govern the interactions were 
provided. The governing equation (3.26) for the dominance probability distribution 
function f (x,t ) was derived in terms of q5, W, L, and the probability per unit time 7 
that a pair of individuals interact. 

Equation (3.26) is a highly nonlinear integrodifferential equation of the Boltzmann 
type. Two approaches were used to obtain information concerning the solutions of 
this equation. In one approach, it was hypothesized that each interaction can, at 
most, slightly change the dominance distribution. The resulting approximate Fokker- 
Planck equation is still nonlinear, with effective convection and diffusion coefficients 
that depend on the overall probability distribution. Nevertheless, certain qualitative 
conclusions concerning the behavior of the solutions could be drawn. 



A second approach was numerical. A naive approach to the numerical analysis 
would not conserve the size of the total population. To accomplish this conservation, 
we performed our space discretization by constructing a discrete model whose struc- 
ture paralleled the continuous model. The resulting system of ordinary differential 
equations was integrated numerically in two cases. One case paralleled our analytic 
results in providing an example where the initial distribution of dominance collapsed 
to essentially a single value. This shows that, for a class of interaction rules, dominance 
cannot be used as an automatic organizing variable for the population. 

By contrast, the second numerical example, which also supplemented some of 
our analytic work, exhibited rules that did split the population into two groups. The 
"dominance always wins" rule that was used in the second example was different from 
the rule used by Hogeweg and Hesper [6], whose simulations also provided an example 
of a population splitting into two groups, one with high dominance and one with low. 

The splitting property of "dominance always wins" is not obvious. In this case, 
the result of any given encounter is determinate, but stochasticity enters in the ran- 
dom encounters of individuals with various dominances. Biologists have expressed 
uneasiness with a probabilistic model that occasionally permits a less dominant in- 
dividual to win an encounter-although such a rule seems necessary if uncontrolled 
factors other than dominance also have an influence. This example, however, shows 
that the splitting property can be achieved even if dominance is the sole factor that 
influences the result of an encounter. 

Certain related investigations must still be performed to obtain a reasonably 
satisfactory analysis of our model. To explain what is involved, we first note that 
in the language of asymptotics, (see e.g., [13, Chap. 9]), the Fokker-Planck equation 
(6.14) that was derived above is an "outer" equation. It can be shown tha t  the velocity 
and diffusivity take different forms in inner "boundary layers" near x = 0 and x = 1. 
When the "outer" convection velocity M is not zero, as  in the examples treated above, 
we do not expect that interactions in the thin boundary layers will have a major effect 
on the results. In two important cases, however, the rules used by Hogeweg and Hesper 
[6] and the rules used in chess, in fact, used M = 0. Thus it is important to derive 
the boundary layer equations and to examine their effects. 

The case where M = 0 gives rise to another complication-for in this case, total 
dominance is preserved in the population. We wish to know whether we can construct a 
discrete version of the governing equation (3.26) that is suitable for numerical analysis 
and that will exactly conserve both total population and total dominance. Another 
approach to the numerical analysis is the construction of a collocation scheme by 
writing f (x, t)  = Ena n ( t ) & ( ~ ) ,  where the +n are suitably chosen polynomials [I]. 
Comparison of the various schemes will be of considerable interest. 

It is planned, in a future publication, to report on the matters raised in the previ- 
ous two paragraphs. It is hoped that the formal theory of the steady-state dominance 
distribution will thereby be brought to an initially satisfactory state. 

There are other more profound questions that can be asked. For example, when 
the population is essentially composed of high and low dominants, e.g., as  in the 
situation of Fig. 11, we might wish to know the frequency at  which an individual 
bee is likely to switch from the high group to the low group or vice versa. Estimates 
of such frequencies are possible in the weak interaction limit. However, this theory 
has recently been shown to be one of considerable subtlety, where, for example, the 
truncated Kramers-Moyal expansion can lead to large errors. (See a series of papers, 
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the latest of which is Knessl et al. 181.) Full elucidation of the properties of the 
dominance equations thus poses a rather stern challenge. Enthusiasm to take up the 
gauntlet might only be tempered by the realization that evidence is as yet inconclusive 
that the underlying model is based on correct biological hypotheses. 

As a final remark, we note that the present investigation can be regarded as a 
contribution to the question of structure in aspect space, particularly within biological 
contexts. (Aspect is an independent variable that characterizes some population, 
see the review by Levin and Segel 1121.) In other examples such as predator-prey 
interactions [ll]or shape-space models of the immune system [18], aspect space is 
high-dimensional; one-dimensional models are a gross simplification. As is the case 
for certain other aspect variables, however, such as maturity 1151, dominance may well 
vary in a one-dimensional space. From this point of view at least, analysis of structure 
in dominance space can be regarded as of likely relevance to ethology. It remains to be 
seen if nature takes advantage of the "opportunity" to use dominance as an automatic 
social-organizing principle. 
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