
which would be consistent with increased 
TH17-mediated inflammation in vivo. They 
also find that, on induction of EAE in AHR-
deficient mice, the absolute number of TH17 
cells is reduced, whereas the number of Treg 
cells remains unchanged. 

The hallmark of Treg cells is expression of the 
transcription factor Foxp3, which is required 
for the suppressive activity of these cells. Quin-
tana et al.1 show that the AHR directly regulates 
Foxp3 expression. Moreover, they demonstrate 
that whether the AHR shifts the balance in 
favour of Treg cells or TH17 cells depends on 
the ligand that activates it. Dioxin increases 
Treg activity and proliferation, decreases the 
number and function of TH17 cells, and sup-
presses EAE. Another potent activator of the 
AHR, 6-formyl indolo[3,2-b]carbazole (FICZ), 
has the opposite effect1,2: it increases TH17-cell 
activity and exacerbates EAE. 

The AHR is a member of the PAS family of 
transcription factors, which are known as envi-
ronmental sensors7. Being a transcription fac-
tor, the AHR is poised to fine-tune signalling 
at the level of gene expression. It can therefore 
probably sense and integrate environmental 
cues, such as cytokines, hormones and chemi-
cals, as well as modulate the immune response 
by affecting TH17/Treg cell differentiation. 

The TGF-β-mediated signalling pathway 
is also involved in both TH17 and Treg cell dif-
ferentiation1,2, and interactions between the 
AHR and TGF-β signalling pathways have 
been characterized in many contexts8. Fur-
thermore, Quintana and colleagues’ results1 

Figure 1 | One cell’s poison is another cell’s antidote. Regulatory T cells (Treg) suppress the immune 
system, whereas TH17 cells promote inflammation. Veldhoen et al.2 demonstrate that activation of 
the transcription factor AHR in TH17 cells increases expression of pro-inflammatory cytokines and 
worsens experimental autoimmune encephalitis (EAE). Quintana et al.1 show that AHR signalling 
in Treg cells increases their activity and dampens EAE. TGF-β is involved in both Treg and TH17 cell 
differentiation. Through its role as an environmental sensor, AHR might ensure an equilibrium 
between these two T-cell subpopulations during an immune response via its interactions with the 
TGF-β-mediated signalling pathway. 
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indicate that dioxin influences Treg differ-
entiation through TGF-β. They show that 
TGF-β mimics dioxin’s effects on Treg cells and 
that inhibiting TGF-β signalling suppresses 
dioxin-induced Treg activity. FICZ also seems 
to modulate TGF-β activity1. So it is by modu-
lating TGF-β signalling within the nucleus that 
the AHR is likely to shift the balance between 

the two T-cell populations with opposing 
effects (Fig. 1). 

Although a physiological role for the AHR 
in regulating the levels of Treg/TH17 cells would 
be intriguing, the pharmacology of this system 
is far from clear. A reason for the conflicting 
effects of dioxin and FICZ on EAE could be the 
pharmacology or pharmacokinetics of these 
chemicals. The AHR solely mediates the effects 
of dioxin, whereas FICZ might affect additional 
signalling pathways. Also, whereas FICZ is rap-
idly metabolized, dioxin is not. Nonetheless, 
the degree or timing of AHR stimulation with 
these chemicals could mimic various micro-
environmental cues that a developing T cell 
might receive from its natural environment. 
Understanding how specific AHR ligands 
lead to different outcomes in vivo will not only 
provide information about AHR biology, but 
will also shed light on how the levels of Treg 
and TH17 cells regulate the immune response. 
This knowledge is crucial for any potential 
therapeutic approach directed at the AHR. ! 
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NETWORKS

Teasing out the missing links
Sid Redner

Focusing on the hierarchical structure inherent in social and biological 
networks might provide a smart way to find missing connections that are 
not revealed in the raw data — which could be useful in a range of contexts.

As human beings, we are all participants in 
complex, interlocking social networks1. As 
the information revolution gathers pace, the 
scope and reach of those networks is rapidly 
expanding. The World Wide Web provides 
easy connections to informational, commer-
cial and recreational websites. Many people, 
especially the young, are hooked up to social-
networking websites. Social bookmarking, in 
which participants share links to their favoured 
websites, is the latest craze.

In this increasingly tangled web, is it possible 
to make sense of the patterns of connections 

between people, and so perhaps learn some-
thing useful? In this issue, Clauset, Moore and 
Newman2 (page 98) introduce an appealing, 
simple and flexible model to do just that: the 
‘hierarchical random graph’.

Their starting point is the well-known hier-
archical structure of a family tree, or dendro-
gram. We are genetically connected to our 
siblings (our ‘zeroth cousins’) through our 
parents, to our first cousins by our grandpar-
ents, to our second cousins through our great-
grandparents, and so on, onwards and upwards.  
What is the probability that we actually know 
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our cousins of the nth degree? In most cases, it 
is obvious that this probability decreases as the 
degree of separation in the hierarchy increases: 
we are more likely to know close family 
members than distant relatives.

This basic family tree describes a highly 
unrealistic, insular population: only children 
and parents know each other directly (are 
directly connected in the tree), and no other 
social connections exist. Clauset et al.2 incor-
porate a more social and random aspect into 
their model by adding lateral connections 
between nodes in the tree that share a common 
ancestor. The probabilities of these connec-
tions depend in a general way on the closeness 
of the nodes in the tree, and can be adjusted 
to describe a diverse range of networks in the 
social and biological worlds. The flexibility 
afforded by their model provides a simple 
way to interpolate between the signature 
network behaviours of assortativity and 
disassortativity3,4 (Fig. 1).

The model can thus account for the myriad 
ways in which social participants can mix. 
One can, in fact, identify reversed patterns of 
sociability in which connection increases with 
degree of separation: that is, where distant rela-
tives are more likely to know each other than be 
acquainted with members of their own nuclear 
family. This apparently bizarre situation seems 
to arise in food webs5, in which two predator 
species may prey on the same species without 
preying on (being acquainted with) each other, 
and species that are many feeding levels apart, 
and thus only distantly related, routinely eat or 
are eaten by each other.

Perhaps the most intriguing application of 
the hierarchical random graph construction is 
the possibility of efficiently predicting missing 
links in networks in which the available infor-
mation is incomplete. Naively, one should query 
every pair of ostensibly unconnected nodes 

to uncover all the missing links. But such an 
exhaustive search is grossly inefficient, because 
the computational effort grows as the square of 
the number of nodes. By first taking all known 
network connections and statistically fitting 
them to a hierarchical random graph, one can 
infer the dependence of the lateral-connection 
probabilities on the depth of the nodes in the 
hierarchy. One then restricts queries to node 
pairs for which the probability exceeds a speci-
fied threshold, a computationally much more 
efficient process.

The authors tested the effectiveness of their 

Figure 1 | Assortative, disassortative. a, In assortative networks, well-connected nodes tend to join 
to other well-connected nodes, as in many social networks — here illustrated by friendship links in a 
school in the United States6. b, In disassortative networks, by contrast, well-connected nodes join to 
a much larger number of less-well-connected nodes. This is typical of biological networks; depicted 
here is the web of interactions between proteins in brewer’s yeast, Saccharomyces cerevisiae7. Clauset 
and colleagues’ hierarchical random graphs2 provide an easy way to categorize such networks. (Part a 
reproduced with permission from ref. 6.) 
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ASTROPHYSICS

Rays from the dark
Rainer Plaga

The origin of the cosmic rays that bombard Earth has troubled physicists 
for nigh on a century. Supernova remnants are a favoured source — but we 
should keep our minds open to alternatives.

Cosmic rays fall in a steady, imperceptible 
rain onto Earth. Despite their stealth, they 
are thought to influence both the climate of 
our planet and the evolution of its inhabit-
ants. They are mainly protons and heavier 
nuclei, from helium upwards, and come in a 
wide range of energies. The most energetic are 
now thought to come from the active nuclei of 
remote galaxies1. But the origin of by far the 
larger component of the cosmic rain — ‘galac-
tic’ cosmic rays of lower energies, from around 
a gigaelectronvolt to more than a million times 
that, 3 petaelectronvolts (PeV) — is an entirely 
different conundrum. 

One thing we do know is that galactic cosmic 

rays follow an unbroken power law, decreasing 
steadily in their frequency of occurrence up to 
the ‘knee energy’ of 3 PeV. Beyond that point, 
the downward slope abruptly steepens. This 
striking unity in the data invites the conclusion 
that galactic rays come from one type of source. 
But what is that source? Last year, Uchiyama et 
al.2 reported unexpected X-ray observations 
that seemed to pinpoint it: galactic cosmic rays 
are produced when a star explodes, creating a 
supernova that violently expels a proportion 
of its matter into interstellar space to form a 
‘supernova remnant’. The propagation of this 
stellar debris drives a shockwave that, aided 
by preexisting compressed magnetic fields, 

method by removing connections at random 
from three sets of network data: a bacterial 
metabolic network; a food-web among grass-
land species; and, most piquantly, the network 
of associations among terrorist cells. Next, they 
determine the lateral-connection probabilities 
of the underlying hierarchical random graph 
that best represents the incomplete network.  
Finally, they test for missing links by looking for 
unconnected node pairs with a high lateral-con-
nection probability. In a related vein, the method 
can also ferret out false-positive links: links that 
appear in the data, but exist between nodes with 
a low lateral-connection probability.  

In many cases, the new method was more 
reliable in reconstructing the true network 
structure than were other commonly used 
algorithms. In our ever-more-interconnected 
world, there is an increasing need for such 
theoretical tools that provide a more intimate 
understanding of the connectivity of complex 
networks. !
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