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SUMMARY

The field of biological allometry was energized by the publication in 1997 of a theoretical model purporting to explain 3/4-power
scaling of metabolic rate with body mass in mammals. This 3/4-power scaling exponent, which was first reported by Max Kleiber
in 1932, has been derived repeatedly in empirical research by independent investigators and has come to be known as ‘Kleiber’s
Law’. The exponent was estimated in virtually every instance, however, by fitting a straight line to logarithmic transformations of
data and by then re-expressing the resulting equation in the arithmetic scale. Because this traditional method may vyield
inaccurate and misleading estimates for parameters in the allometric equation, we re-examined the comprehensive data set that
led Savage and colleagues to reaffirm the view that the metabolic rate of mammals scales to the 3/4-power of body mass. We
found that a straight line fitted to logged data for the basal metabolic rate (BMR) of mammals ranging in size from a 2.4g shrew
to a 3672kg elephant does not satisfy assumptions underlying the analysis and that the allometric equation obtained by back-
transformation underestimates BMR for the largest species in the sample. Thus, the concept of 3/4-power scaling of metabolic
rate to body mass is not well supported because the underlying statistical model does not apply to mammalian species spanning
the full range in body size. Our findings have important implications with respect to methods and results of other studies that
used the traditional approach to allometric analysis.
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INTRODUCTION

The field of biological allometry was energized by the publication
in 1997 of a theoretical model purporting to explain 3/4-power
scaling of metabolic rate with body mass in mammals (West et al.,
1997). The model generated a wave of new interest in the discipline
(Agutter and Wheatley, 2004; Glazier, 2005; da Silva et al., 2006),
and it also re-opened the long-simmering debate about the ‘true’
value for the scaling factor in the allometric equation (Hoppeler and
Weibel, 2005). However, this debate about the value for the scaling
exponent may be premature, because investigators on all sides of
the issue have for years unknowingly used an unreliable procedure
to estimate parameters in the equation (see below). This problem
has gone largely unrecognized because allometric equations typically
have not been validated in the scale of measurement.

The relationship between metabolic rate and body mass is usually
assumed to follow a simple, two-parameter power function:

Y=aX?, (1)

where Y is metabolic rate, X is body mass, and the parameters a
and b are the scaling (allometric) coefficient and the scaling
exponent, respectively (Agutter and Wheatley, 2004; Glazier, 2005;
da Silva et al., 2006). It is unclear whether this expression emerged
from strictly theoretical considerations; or whether it was adopted
in the era prior to digital computers because of the relative ease in
manipulating logarithmic transformations of empirical data
conforming with such an equation; or whether the answer lies in
some combination of these and other factors (Kleiber, 1961; Gould,
1966; Heusner, 1987). Regardless of the origin of the function,
however, values for the predictor and response variables are seldom

examined in the original arithmetic scale (Smith, 1984) but, instead,
are immediately transformed to their logarithms, at which point the
expression assumes the form:

logY =loga + blogX 2)

(Smith, 1984; Agutter and Wheatley, 2004; Glazier, 2005; da Silva
et al., 2006). A straight line commonly is fitted to the data by the
method of ordinary least squares (Glazier, 2005), after which
parameters in the allometric equation are estimated by back-
transformation to the arithmetic scale (Smith, 1984).

The aforementioned (‘traditional’) approach to allometric analysis
has not changed appreciably since the time of Kleiber, Benedict
and Brody (Kleiber, 1932; Benedict, 1938; Brody, 1945). The
approach nonetheless is beset by a variety of problems, most of
which result from the use of logarithmic transformations. First,
transformation profoundly alters the relationship between predictor
and response variables (Emerson and Stoto, 1983; Jansson, 1985;
Osborne, 2002), so influential outliers may go undetected, remain
in the data set, and bias parameter estimates in the fitted statistical
model (Packard and Boardman, 2008a). Second, the two-parameter
power function (Eqn 1) underlying the traditional allometric analysis
may not provide a good fit to the data (Zar, 1968; Albrecht and
Gelvin, 1987; Albrecht, 1988; Packard and Boardman, 2008a;
Packard and Boardman, 2008c), in which case parameter estimates
again may be inaccurate and misleading. Third, the statistical model
obtained by back-transformation from logarithms is one that predicts
geometric means for Y instead of arithmetic means (Miller, 1984;
Smith, 1993; Hayes and Shonkwiler, 2006). And fourth, a straight
line fitted to logged values may undergo distortional rotation owing
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to the fact that squared residuals are not equivalent for large and
small values of the original response variable (Zar, 1968; Jansson,
1985; McCuen et al., 1990; Pandy and Nguyen, 1999; Packard and
Boardman, 2008b).

We re-examined data for the basal metabolic rate (BMR) of 626
species of mammals (Savage et al., 2004) to illustrate how applying
the traditional method for allometric analysis can result in biased
and misleading estimates for parameters in a two-parameter
allometric equation. Species represented in this comprehensive
sample varied in size from a 2.4 g shrew to a 3672kg elephant. We
focused on a modified data set created by binning logged values
for body mass [Appendix 2 in the study by Savage and colleagues
(Savage et al., 2004)], because the resulting estimate of 0.737 for
the allometric exponent is regarded by many workers as providing
strong support for the concept of 3/4-power scaling (Brown et al.,
2004; Farrell-Gray and Gotelli, 2005; West and Brown, 2005). The
dimension for each of the bins was 0.1 in logged units for body
mass, and each bin yielded one representative (‘average’) value
irrespective of the number of species assigned to it. Binning was
undertaken by Savage and colleagues (Savage et al., 2004) to prevent
the preponderance of small species in the full sample from exerting
undue influence on estimates for parameters in the allometric
equation; but the use of binned values also facilitates graphical
analysis by avoiding the visual clutter that would accompany the
display of more than 600 values in a single plot. Preliminary
examination of values for the full 626 species, coupled with the
results of an independent study of the same data set (Hui and
Jackson, 2007), indicates that none of our conclusions was affected
by using binned values.

We do not address in our study subsidiary issues like phylogenetic
independence of measurements for different species (Garland et al.,
2005) or assumptions of least-squares regression (Warton et al.,
2006). Instead, our treatment follows the same general approach
that was used by Savage and colleagues (Savage et al., 2004), thereby
enabling us to make detailed comparisons of their findings with our
own. We carried all calculations to six decimal places before
rounding to three.

METHODS AND RESULTS
Preliminary analyses
Data for 52 samples expressed in both logarithmic and arithmetic
scales first were displayed in bivariate scatterplots and examined
for patterns and trends (Anscombe, 1973). This step was followed
by preliminary statistical analyses (Packard and Boardman, 2008a)
wherein a straight line was fitted to logarithmic transformations by
ordinary least squares and a two-parameter power function was fitted
to values in the arithmetic scale by non-linear regression (Motulsky
and Christopoulos, 2004). Computations were performed in
SigmaPlot (version 10.0 from Systat Software, Inc., San Jose, CA,
USA), which uses the Marquardt-Levenberg algorithm to fit non-
linear functions by an iterative process that minimizes the sum of
squares for residuals (Marquardt, 1963). Allometric exponents
estimated by the two procedures were quite different: 0.737 from
the slope of the straight line fitted to logarithms (R?=0.986) and
0.909 from the two-parameter power function fitted to values in the
arithmetic scale (R?=0.997). However, logarithmic transformation
failed to linearize the data (e.g. a plot of residuals for logBMR against
predictions yielded a pattern in the form of an inverted parabola)
(see also Kozlowski and Konarzewski, 2005), and the equation
resulting from back-transformation seriously underestimated
metabolic rate for the elephant, the largest species in the sample.
In addition, neither of the analyses passed the test for constancy of

variances (Spearman rank correlation between absolute values for
residuals and observed values for the predictor variable) (Kutner et
al., 2004).

The unbalanced distribution of arithmetic values for body mass
was also of concern. The elephant (which was the only species
represented in that bin) was nearly an order of magnitude heavier
than the next species in the sample. This observation, coupled with
the decidedly different estimates for allometric exponents, raised
the possibility that the elephant was an unduly influential outlier in
the non-linear regression (Anscombe, 1973; Stevens, 1984; Osborne
and Overbay, 2004). We subsequently discovered that Cook’s
Distance, which is a sensitive measure of the influence of a data
point on parameters in the fitted model (Kutner et al., 2004), was
an extraordinary 4600 for the elephant. Any data point for which
Cook’s Distance exceeds 4 is likely to exert undue influence, so we
treated the elephant as a statistical outlier and removed it from the
data set.

Fitting the allometric equation

A straight line fitted to the remaining 51 logged values yielded a
statistically significant equation (Fig.1A), even though a plot of
residuals against predicted values indicated once again that a
straight line was not an appropriate model (Fig. 1B). Nonetheless,
R? was extraordinarily high (Fig. 1A), and the estimate of 0.728 for
the allometric exponent is similar to the estimate from examination
of the full data set (i.e. exclusion of the elephant had little effect on
the outcome). The analysis passed the test for normality (P=0.288
by Kolmogorov—Smirnov test) (Kutner et al., 2004) but it failed the
one for constancy of variances (P=0.002). Consequently, confidence
limits for the slope and intercept are unlikely to be reliable (Myers,
1986; Finney, 1989).

A plot of data in the original scale shows an unbalanced
distribution for body mass, but the imbalance is not as extreme as
it was when the elephant was included in the sample (Fig. 1C). A
two-parameter power function fitted to the data by non-linear
regression yielded an estimate of 0.686 for the allometric exponent
(Fig. 1C). Although the model fitted by non-linear regression was
statistically significant and R? was high (Fig. 1C), the analysis failed
tests for both normality of residuals and homogeneity of variances
(P<0.001). A plot of residuals shows that variances were related to
body mass in a manner that commonly is associated with
multiplicative error (Fig.1D). Thus, reliable confidence limits
cannot be computed for the parameter estimates ¢ and b (Myers,
1986; Finney, 1989). However, the parameter estimates themselves
may be better than those obtained by back-transformation (Myers,
1986), and the predictive equation is efficient in terms of minimizing
residual variance (Asselman, 2000).

Validating the allometric equation

Next, we back-transformed the equation for the line fitted to
logarithms and displayed the resulting function on bivariate graphs
together with the function obtained by non-linear regression
(Fig.2A,B). The line from back-transformation is a good descriptor
for values in the logarithmic scale (Fig.2A), but it fails to predict
values for large animals in the arithmetic scale (Fig. 2B). In contrast,
the non-linear regression predicts consistently higher values for the
response variable in the logarithmic domain (Fig.2A) while
performing much better than the alternative model for large animals
in the arithmetic scale (Fig.2B).

Because of the unbalanced distribution for the predictor variable
in the arithmetic scale (Fig. 2B), we displayed arithmetic values for
BMR against body mass on a log scale in order to better visualize
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Fig. 1. Values for 51 samples exclusive of the elephant were taken from Appendix 2 in the study by Savage and colleagues (Savage et al., 2004). (A) A
straight line was fitted to log-transformed data by ordinary least squares. (B) Residuals from the analysis in A are plotted against predicted values for
logBMR. The parabolic pattern to the display indicates that a straight line is not an adequate function for describing values in the bivariate plot and calls into
question the utility of the transformation. Departures from linearity were noted by Dodds and colleagues (Dodds et al., 2001) and Kozlowski and
Konarzewski (Kozlowski and Konarzewski, 2005) in similar analyses, but both groups of investigators nonetheless continued to work with values in the
logarithmic domain. (C) A two-parameter power function was fitted to arithmetic data by non-linear regression. (D) Residuals from the non-linear regression
are plotted against body mass on a log scale to illustrate how variance increases with body size.

goodness of fits to data for smaller species (Fig.2C). This display
facilitated examination of BMR by expanding the apparent
distribution for body mass at the low end of the scale without
introducing transformation bias (Finney, 1989). The equation from
back-transformation is the better predictor of BMR for animals
between 10% and 10*g in body mass (Fig. 2C, inset), but clearly is
the inferior function for predicting BMR of larger mammals
(Fig.2C). Thus, the equation from back-transformation is useful for
predicting metabolic rates of animals weighing less than 10*g but
the function is not valid over the full range in body size. The function
fitted by non-linear regression is a better descriptor over the entire
range in body size, even though it is more biased than the function
from back-transformation in the mid-range for body size. (Part of
the bias in the function fitted by non-linear regression is the result
of forcing the line to pass through the origin and could be eliminated
by fitting a three-parameter function instead. However, the scaling
exponent in the three-parameter function differs only slightly from
that for the two-parameter function, i.e. 0.667 vs 0.686, respectively.)

Curvilinearity in the allometric relationship
The scaling exponent for small species is predicted to be smaller
than that for large species (Savage et al., 2004) — a prediction that

seems to be confirmed by the observed curvilinearity (concave
upward) in the relationship between logBMR and log body mass
(Fig. 1A,B). Such a curvilinear pattern of variation in log-transformed
data should be cause for concern, because it calls into question the
underlying allometric model (Eqn 1). Nevertheless, we examined
data for large and small mammals separately to see whether the
aforementioned prediction was realized. Binned data for mammals
weighing less than 260g were taken to represent small species
whereas those for mammals weighing more than 260g were taken
to represent large ones (Savage et al., 2004). The elephant was omitted
from the analyses because of the likelihood that it is an outlier.

Straight lines fitted to transformed values for both small and large
species yielded statistically significant equations with high values
for R? (Fig.3A,B). The analysis of values for small species passed
tests for normality (P=0.065) and homogeneity of variances
(P=0.059). The analysis for large species, however, passed the test
for normality (P=0.298) but not that for homoscedasticity (P=0.016).
Scaling exponents for small and large species were 0.678 and 0.797,
respectively, which seemingly confirmed expectation (Savage et al.,
2004).

Non-linear regression on the two sets of values in the original
scale also yielded statistically significant fits and high values for
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Fig. 2. Validation of alternative regression models derived from analyses
summarized in Fig. 1. (A) Equations fitted to data by non-linear regression
(solid black line) and by back-transformation from logarithms (dashed red
line) are displayed together in a double logarithmic plot. (B) Equations fitted
to data by non-linear regression (solid black line) and by back-
transformation from logarithms (dashed red line) are displayed together in
an arithmetic plot. (C) Arithmetic values for BMR are displayed against
values for mass on a log scale. The upward trajectory for the lines is a
consequence of the semi-log plot. The inset expands that part of the scale
for animals weighing between 100 and 10,000g.

R? (Fig.3C,D). The analysis on the subset of values for small species
met assumptions for both normality (P=0.922) and homogeneity of
variances (P=0.381), whereas the treatment of large animals failed
the test for normality (P=0.008) as well as that for homoscedasticity
(P<0.001). Scaling exponents were estimated to be 0.656 and 0.686,
respectively, for small and large species.

The alternative methods for fitting the allometric equation to data
for small mammals yielded functions that are reasonably good visual
fits to values in the original scale (Fig.3E). The non-linear function
fitted to values for large mammals is also a good fit graphically
(Fig. 3F) but the equation obtained by back-transformation seriously
underestimates BMR for species with masses between 75 and 150kg
(Fig.3F).

Scaling exponents estimated for large and small species by the
traditional method are quite different (Fig. 3A,B) whereas exponents
estimated by non-linear regression are quite similar (Fig.3C,D).
Indeed, the 95% confidence interval for the exponent estimated by
non-linear regression for small mammals (i.e. the group for which
such limits can be reliably computed) is 0.615-0.697, which
includes the exponent estimated for large mammals (Fig.3D) as well
as the one for all species exclusive of the elephant (Fig. 1C). Thus,
analyses of different subsets of the data by non-linear regression
lead to a common estimate for a scaling exponent (in the range
0.656-0.686) — not to the different exponents predicted by the
aforementioned theoretical model (Savage et al., 2004).

DISCUSSION
Cause for the log bias

Why do the two-parameter functions estimated by back-
transformation differ so much from those estimated by non-linear
regression? We suggest that the disparity in this instance is largely
the result of fitting straight lines to logarithmic transformations,
which are inherently non-linear and which consequently change the
relationship between predictor and response variables (Emerson and
Stoto, 1983; Jansson, 1985; Osborne, 2002). Logarithmic
transformation results in an overall compression of distributions for
the variables, but the compression is greater at the high ends of the
scales than at the low ends (Emerson and Stoto, 1983; Jansson, 1985;
Osborne, 2002). This disproportionate compression causes small
values for the variables to have a large effect on parameters in the
fitted equation and large values to have a small effect (Glass, 1969;
Jansson, 1985; Packard and Boardman, 2008b).

By way of example (Jansson, 1985), consider a straight line fitted
to logarithms of 0.9 and 1.1 at one level for X and to 1.9 and 2.1
at a higher level for X. Predictions for logs of the response variable
Y are 1.0 and 2.0, respectively, with all residuals having absolute
values of 0.1. Such a balanced distribution of residuals indicates
that logged values for ¥ were weighted equally in fitting the line
by ordinary least squares.

Back-transformation of the predicted values yields a geometric
(not arithmetic) mean of 10 at the first level for X and 100 at the
second level for X. Observed values corresponding to the prediction
of 10 are 7.9 and 12.6 whereas those corresponding to the prediction
of 100 are 79.4 and 125.9. Thus, absolute values for residuals
expressed on the scale of measurement are 2.1, 2.6, 20.6 and 25.9,
despite the fact that all residuals were +0.1 in the log domain. This
difference between the scales is important because the fitted line
minimizes the sum of the squared residuals regardless of the scale
in which the data are expressed (Zar, 1968). Whereas the squares
for the residuals in the log domain are identical (i.e. 0.01), the square
for the largest of the values in the arithmetic domain (i.e. 670.8) is
more than two orders of magnitude larger than that for the smallest
value (i.e. 4.4).

At cach level for X, the smaller of the two measurements lies
below the fitted line and the larger one lies above it. Consequently,
the smaller values in the arithmetic scale have a disproportionate
influence on the elevation of the line fitted to logarithms because
residuals for large and small values are identical in the logarithmic
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Fig. 3. (A) A straight line was fitted by ordinary least squares to log-transformed data for mammals weighing less than 260g. (B) A straight line was fitted by
ordinary least squares to log-transformed data for mammals weighing more than 260g. (C) A two-parameter power function was fitted by non-linear
regression to values for metabolic rate and body mass for mammals weighing less than 260g. (D) A two-parameter power function was fitted by non-linear
regression to values for metabolic rate and body mass for mammals weighing more than 260 g. (E) Equations fitted to data for small mammals by non-linear
regression (solid black line) and back-transformation (dashed red line) are displayed against the backdrop of values in the original scale. (F) Equations fitted
to data for large mammals by non-linear regression (solid black line) and back-transformation (dashed red line) are displayed against the backdrop of values

in the original scale.

domain. Additionally, the smaller of the two measurements lying
above (or below) the fitted line is associated with the lower level
for X and the larger with the higher level. Thus, the smaller value
in the arithmetic scale has a disproportionate influence on the slope
of the line fitted to logarithms (again, because residuals are identical
in the log domain).

Depending on the distributions of the variables, both the slope
and intercept of the straight line may be affected in unexpected ways
(Glass, 1969; Jansson, 1985; McCuen et al., 1990; Pandy and
Nguyen, 1999; Packard and Boardman, 2008b), and these effects
later are transmitted by back-transformation to the two-parameter
allometric equation. This disparate influence of small and large
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values is apparent in the current study in graphs of the alternative
equations in both logarithmic and arithmetic scales (Fig.2). The
linear regression on transformed values was rotated in a counter-
clockwise direction (Fig.2A), and the result was a poor fit of the
back-transformation to data for large animals (Fig. 2B). The general
problem outlined here probably occurs commonly in data sets that
include animals spanning large ranges in size (Glass, 1969; Packard
and Boardman, 2008b): the traditional procedure provides good
predictions for small animals but poor predictions for large ones.
Savage and colleagues used the binning procedure in an attempt
to reduce the disproportionate influence of the many small species
in the sample and thereby obtain a more reliable estimate for the
scaling exponent (Savage et al., 2004). On the other hand, Glazier
argued that binning actually caused values for large species to have
too great an influence on parameters in the allometric equation owing
to an increase in proportional representation for large species
(Glazier, 2008). Both these suggestions, however, are based on a
misunderstanding of the logarithmic transformation. First, binning
by logs for body mass had the effect of expanding the scale at the
lower end of the distribution and compressing it at the upper end,
thereby maintaining a skew in the distribution of masses expressed
in grams and causing small species to be over-represented in the
51 bins exclusive of the elephant. For example, the arithmetic mean
for 51 back-transformed values for body mass is 31,364 g. A total
of'42 bins (of which one was empty) were available to accommodate
species with masses below the average, and 12 (of which two were
empty) were available to accommodate species with masses above
the average. Small species consequently continued to be ‘over-
represented’ in the data set. Second, the line fitted to logarithms
was ‘transformation biased’ by the undue influence of the small
species (Jansson, 1985; Packard and Boardman, 2008b), leading to
rotation of the line, to underestimation of the allometric coefficient
from back-transformation, and to overestimation of the allometric
exponent (Fig.2B). The minor influence of large species is why
deletion of the elephant from the data set had little effect on the
allometric exponent estimated by the traditional method.

Logarithmic transformations
Logarithmic transformations have a long history of use in allometric
analyses, so it is useful here to consider briefly the reasons for
performing such transformations and to ask whether the
transformations continue to have application.

(1) Logarithmic transformations were used for many years to
linearize data and thereby promote graphical display and statistical
analysis (Smith, 1984; Smith, 1993). This application of log
transformations was based on the implicit assumption that the data
conformed with a two-parameter power function (Smith, 1984). The
assumption was seldom addressed, and inappropriate equations were
sometimes fitted (Albrecht and Gelvin, 1987; Albrecht, 1988;
Packard and Boardman, 2008a; Packard and Boardman, 2008c).
However, the form of the underlying equation now is moot because
the advent of sophisticated PCs and software for both graphical and
statistical analysis has rendered linearization unnecessary (Motulsky
and Christopoulos, 2004).

(2) Logarithmic transformations commonly produce symmetrical
distributions for data that have unbalanced distributions in the
original scale (Emerson and Stoto, 1983). The main problem with
unbalanced distributions is that the largest animals in the sample
may exert undue influence on parameters that are estimated by
methods based on least squares. Indeed, the problem of imbalance
was apparent in data examined here (Fig.1C). Whereas
transformation may produce a better distribution of values (Fig. 1A),

it also introduces a bias that may be more serious than the problem
that the transformation was intended to correct (Jansson, 1985). The
bias results from the change in error structure of the statistical model
on back-transformation to the arithmetic scale (Glass, 1969;
Manaster and Manaster, 1975; Miller, 1984; Jansson, 1985; Smith,
1993; Hayes and Shonkwiler, 2006) coupled with the distortion that
is introduced by the non-linear relationship between logs and values
in the original scale (Jansson, 1985; McCuen et al., 1990; Pandey
and Nguyen, 1999; Hui and Jackson, 2007; Packard and Boardman,
2008b). A better way than transformation for addressing the problem
of unbalanced distributions might be to make greater use of
regression diagnostics and model validation (Anscombe, 1973; Snee,
1977; Kutner et al., 2004).

(3) Allometric data often are heteroscedastic, and transformation
may create a new distribution that meets the assumption of
homogeneity of variances (Emerson and Stoto, 1983; Smith, 1984).
Unfortunately, few authors examine the transformed variables for
heteroscedasticity, so the resulting analysis may fail to correct the
problem that led to transformation in the first place; the logged data
examined here provide but one example of the failure of
transformation to achieve its intended goal (Fig.1B). Even when
the original data are heteroscedastic and transformation results in a
homoscedastic distribution, the potential exists for introducing a
transformation bias that is evident only on back-transformation to
the arithmetic scale. However, the problem of heteroscedasticity
probably will become moot as more investigators discover statistical
procedures that accommodate different assumptions concerning
distributions of data in the original scale (Lane, 2002; Cox et al.,
2008).

Validating the model

Regardless of the means by which an allometric equation is fitted
to data, it is essential that the model be validated (Snee, 1977;
Emerson and Stoto, 1983; Myers, 1986; Finney, 1989; Kutner et
al., 2004). A graphical display is the most effective way to verify
that the fitted model actually describes the data on which it is based
(Anscombe, 1973). Unfortunately, validation in the traditional
allometric analysis typically is limited to a display of values in the
logarithmic scale, which often has little bearing on the relationship
between metabolic rate and body mass (Fig.2A,B). A good fit of a
linear function to logarithms does not imply a good fit of the re-
expressed equation to data in the arithmetic scale (McCuen et al.,
1990; Pattyn and Van Huele, 1998). Thus, proper validation requires
that the allometric equation be shown against the backdrop of data
in the scale of measurement (Emerson and Stoto, 1983; Myers, 1986;
Finney, 1989).

Implications for theoretical models
The data set compiled by Savage and colleagues is widely regarded
to be one of the very best (Savage et al., 2004). It comes as no
surprise, therefore, that the statistical analysis performed on those
data by Savage and colleagues (Savage et al., 2004) is viewed by
many in the scientific community as offering strong evidence in
support of the concept of 3/4-power scaling for metabolic rate on
body mass in mammals (Brown et al., 2004; Farrell-Gray and
Gotelli, 2005; West and Brown, 2005). However, Savage and
colleagues (Savage et al., 2004) seem to have omitted three critical
steps from their investigation: they apparently did not (1) examine
their data for potential outliers, (2) test assumptions underlying their
statistical analysis, or (3) validate the allometric model in the original
scale. Our re-analysis of data exclusive of the elephant, which was
an apparent outlier, revealed that a linear equation fitted to log—log
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transformations failed tests for both linearity and constancy of
variances, and that the two-parameter power function estimated by
back-transformation did not predict metabolic rates of large animals
in the sample. Consequently, the earlier estimate of 3/4-power
scaling is not well supported, thereby calling into question the
validity of theoretical models that purport to explain such a scaling
factor in mammals (e.g. West et al., 1997; Banavar et al., 1999;
Darveau et al., 2002).

The traditional approach to allometric research is to fit a straight
line to logarithmic transformations and then back-transform the
resulting equation to the arithmetic scale (Smith, 1984; Agutter and
Wheatley, 2004; Glazier, 2005; da Silva et al., 2006). Consequently,
biases of the kinds shown in the current study and elsewhere (Glass,
1969; Hui and Jackson, 2007; Packard and Boardman, 2008a;
Packard and Boardman, 2008b; Packard and Boardman, 2008c¢) are
likely to occur commonly in published research on allometry. For
this reason, scaling coefficients and exponents reported in the
literature should be interpreted with a healthy dose of skepticism.

We thank four anonymous referees for constructive criticism that helped us to
improve this report.
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