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A stream of fluid flowing down a partially wetting inclined plane usually meanders, unless
the volume flow rate is maintained at a highly constant value. However, fluctuations in the
flow rate are inevitable in naturally occurring flows. Previous studies have conjectured
that for some surfaces the meandering of a stream is an inherent instability. In this
paper we show that on an acrylic plate we can eliminate the meandering by reducing
perturbations entering the flow. By re-introducing controlled fluctuations, we show that
they are indeed responsible for the onset of the meandering. We derive a theoretical
model for the stream shape from first principles, which includes stream dynamics and
forcing by external noise. While the deviation h(x) from a straight linear stream h(x) = 0
shows considerable variability as a function of downstream distance x, when an ensemble
average is computed, averaging power spectrum S(k) as a function of wavenumber k for
several different times t we obtain the power-law scaling S(k) ∼ k5/2. In addition, the
growth of the area A(x) swept by the stream at the distance x grows as A(x) ∼ x1.75.

1. Introduction
The scientific interest towards stream meandering in laboratory is in part driven by

its apparent visual similarity to the river meanderings. River meanderings are influenced
by many highly complex phenomena, which are difficult to control: turbulence in the
water, soil erosion on the riverbed, variability of the soil properties, seasonal variations
of the flow rate, etc. It is not clear at present which specific phenomenon contributes
most to the river meandering, since all of them are highly intertwined. Two approaches
to modeling of river meandering exist. First, there are derivations of dynamical equations
based on first principles (Leopold & Wolman 1960; Ikeda et al. 1981); refer to Seminara
(2006) for a recent and thorough review. Second, there is a stochastic approach with
noise simulating the effects of turbulence and landscape variations. The works of Birnir
(2007) and Birnir et al. (2007) offer some recent examples of this approach.

With the rivers as motivation, rivulets meandering on a partially wetting surface (glass
or specially fabricated plastics, e.g., Mylar, or polyethylene terephthalate) have attracted
much recent attention (Davis 1980; Weiland & Davis 1981; Le Grand-Piteira et al. 2006).
In particular, Davis (1980) and Weiland & Davis (1981) studied the stability of a rivulet
with a fixed contact line, a moving contact line with a fixed contact angle, and a moving
contact line with the angles dependent smoothly on velocity. They concluded that for the
fixed contact line, the straight rivulet is stable if the flow is slow enough. For the moving
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2 B. Birnir, K. Mertens, V. Putkaradze, and P. Vorobieff

contact line with a fixed contact angle, the rivulet was unconditionally unstable. Finally,
for the case the contact angle α depending smoothly on the transverse rivulet velocity
v, the stability was found to depend strongly on the value of the derivative dα/dv. This
approach was further developed by Young & Davis (1987), who discussed the effects of
contact line motion and slip at the surface affecting the stability. In addition, Culkin
& Davis (1984) produced rivulets on different surfaces (including acrylic) and discussed
the conditions for stability and instability using a model of slender rivulets with a high
Reynolds number, where pressure gradients were generated by curvature, surface tension
and contact-angle hysteresis balance (also see Kim et al. (2004)). Experiments and to
some extent theories (Nakagawa & Scott 1984; Schmuki & Laso 1990; Nakagawa 1992)
were interpreted to suggest the existence of a stability boundary, beyond which there is
a bifurcation from stable to an unstable regime. Such stability boundaries of different
regimes, as well as various quantities in a meandering stream on a Mylar plate (e.g., the
leading unstable wavelength), were recently assessed by Le Grand-Piteira et al. (2006).
Again, this study deemed the contact-angle hysteresis to play a major role.

These works concentrate on the dynamical approach to this problem, treating mean-
dering as an inherent instability of the fluid rivulet. Further development of the theory
was strongly hampered by the complexity of the contact angle behavior (see deGennes
(1985) for fundamental reference), with a complete theory of contact angle hysteresis
unavailable to this day. Nevertheless, by the end of 1990s it seemed that the instability
of the flow for high flow rates had been established and the problem was solved at least
in principle. Three major conclusions were derived from earlier works. First, above a cer-
tain flow rate, meandering is inevitable, at least for some surfaces. Second, a dominant
wavelength exists in the meandering regime. Third, a regime of stationary meandering
is realized for parameter values different from the time-dependent meandering.

Then, there was a surprising (and largely unnoticed) work by Nakagawa & Naka-
gawa Jr. (1996) reporting the re-stabilization of the rivulets in the regimes presumed
unstable. The formation of braids close to the stream origin was reported (the braids
were called beads of a rosary in that original paper). Mertens et al. (2004, 2005) ob-
served rivulet re-stabilization for a large range of values in the parameter space and fully
explained braiding theoretically, finding the transition boundary between the braiding
and the non-braiding regimes. Our subsequent experiments on an inclined acrylic surface
put in further doubt the theory treating meandering as an inherent rivulet instability.

First, by eliminating flow rate disturbances, we can completely suppress the mean-
dering for all parameter values attainable in our experiment. Re-introducing the distur-
bances back into the stream makes the stream meander; turning off the disturbances
reliably stabilizes the stream. The stabilization is achieved easier for higher flow rates.

Second, we show that, while a large variety of meandering profiles is realized, the power
spectrum of even a small data set of meandering flow fields shows a power-law behavior
and thus rules out the existence of a dominant wavelength. In a sense, meandering is
akin to turbulence, where all wavelengths are present.

Third, at flow rates attainable at our experiments (Reynolds number 500 − 18, 000),
we were unable to produce repeatable observations of the stationary meandering regime.

Our experiments show the fluid meandering on a partially wetting smooth surface to be
driven exclusively by disturbances in the flow. Thus it is necessary to use the stochastic
approach to the problem, which is the object of the theoretical part of the paper and has
not been considered before. There are two stochastic forces at work here: first, the flow
rate disturbances that cause the meandering, and second, the forcing of the stream by
droplets left on the surface by the previous meanderings. The final results of our theory
depend on the presence of these droplets, but are independent of the exact nature of their
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Figure 1. Schematic of the experimental arrangement.

distribution in the plane, as long as this distribution remains more or less uniform all
the way downstream. This approach enables us to formulate the stochastic theory of this
phenomenon explaining all the available experimental data with no fitting parameters.

While we make no explicit claim on the possibility of modeling rivers with our model for
a stream on a partially wetting surface, we must nevertheless point out several uncanny
similarities between the statistical properties of real-world rivers and streams in our
laboratory: in this paper, we show that in the limit of very long streams, our modeling
equations predict the meandering exponent of the stream to be 1/6, which coincides with
that of rivers. We also show that the the growth of the basins of real rivers and of the
streams in our experiments are described by exactly the same power law.

2. Experimental setup and observations
The experimental arrangement (Fig. 1) provides a highly constant discharge rate from

a tall cylindrical top reservoir through a hole in its bottom connected to a flexible plastic
tube. The diameter of this tube, and the hole, is d = 3 mm. The diameter of the container
is D = 15 cm. Thus d � D, and the flow discharge rate Q is fairly well approximated by
the formula originally introduced by Torricelli (Clanet 2000), Q = πd2/4

√
2gZ, where g

is acceleration due to gravity and Z is the height differential between the location of the
hole and the free surface. Thus, if Z remains constant, Q ≡ const as well. For a fixed
tube diameter, Q can be altered by changing Z.

The flexible tube that carries the flow to the inclined plane is necessary to prevent any
capillary instabilities that might form on the free surface of a water jet. An electronically
controlled valve can alter the flow rate by squeezing the tube, thereby reducing its cross-
section. The inclined plane is a produced by placing a large (2.4 m long and 1.2 m wide)
sheet of acrylic plastic (3.2 mm thick) on top of a 2.4 m×1.2 m×2.5 cm urethane slab,
which in turn is mounted on a welded–steel frame. This frame is attached to two pivots,
with a screw arrangement controlling its angle of incline α with respect to the horizontal.

After the flow exits the tube, it runs down the incline and into a long rectangular
bottom reservoir, from which it is recirculated with an electric pump connected to the
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Figure 2. Time sequence of images (left to right) showing meandering flow. The images are
processed with an edge-detection filter that emphasizes droplets deposited on the surface and
makes it possible to observe both the current and the former rivulet paths. Arrows denote the
current flow path. Interval between images is 7.5 s. Inset shows similar behavior of simulated
meandering flow.

top reservoir. Note that the top and bottom reservoirs are also connected with an overflow
tube, which ensures that the free surface of the top reservoir remains at a constant level.

Figure 2 shows the flow of water with trace amounts of food coloring, captured with
a 4-megapixel grayscale digital camera mounted above the incline. The effective resolu-
tion of the images is about 1 mm per pixel. Any optical distortions are removed from
these images as follows. An image of a rectangular grid is captured by the camera. This
bitmapped image with any distortions is then mapped to the bitmap containing the
undistorted image. The mapping procedure produces a bicubic spline mapping scheme
which is then used to process the experimental images. Prior to each experimental run, a
background image with no stream is captured, to be subtracted from the images showing
the stream and the droplets left in the process of its meandering. Subsequently, the cen-
terline of the stream is extracted from the processed images. Our conservative estimate
of the cumulative error of the extraction and distortion correction for the centerline co-
ordinates is on the order of one pixel (about 20 % of the characteristic stream width).
The stream of fluid in this setup is highly controllable. After some initial settling time,
the stream flowing down the plane assumes a straight shape for all the flow regimes we
investigated. During the settling time, three distinct flow regimes could be observed: first,
a region in the immediate downstream where stabilization had occurred, second, a region
of continuous meandering, and third, a region where the stream breaks up. In the third
regime, stream splitting events usually occur at the inflection points of the stream.

If the flow control valve remains open (no flow rate disturbances), the stream always
stabilizes to the stationary non-meandering shape. Note that the long and narrow top
reservoir stabilizing the flow is crucial for rivulet stabilization. If that reservoir is removed,
or a flat and shallow reservoir is used (even having the same volume capacity), the
meandering never stops due to the inherent disturbances introduced by the pump. Thus,
careful attention to disturbances in the flow is imperative for this experiment.

The steady-state regime is described in our previous work, see Mertens et al. (2004,
2005). To destabilize the rivulet and produce continuous meandering, we added an elec-
tronically operated valve to our original flow system, introducing flow rate fluctuations at
will, which destabilize the straight rivulet flow, producing meandering at all the attain-
able flow rates. When the valve is switched off, the stream always returns to the straight
shape, although the relaxation time can be quite large for smaller flow rates. In a few
cases where we observed a meandering pattern become stationary without straightening
out (stationary meandering according to Le Grand-Piteira et al. (2006)), this effect could
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Stream on an Inclined Plane: Meandering 5

always be attributed to the sedimentation of dirt and dust particles on the surface. Clean-
ing the surface and re-starting the experiment led to reemergence of the non-stationary
meandering if flow rate disturbances were present in the flow. If the disturbances were
absent, restarting the experiment produced a straight rivulet.

Some of the discrepancy between our findings and previous literature may be due to
the difference in the surface wetting properties. It was noted by Le Grand-Piteira et al.
(2006) that surface properties play a crucial role in this phenomenon. The presence of
the droplets could explain an apparent discrepancy between our results and some earlier
works, since the stream could deposit droplets in different fashions for different surfaces.
Another possible explanation is the accumulation of electric charges on some surfaces
that also may influence the flow dynamics in other experiments. We shall note, for all
surfaces we have used (acrylic, Rain-X coated acrylic and polypropylene) the spectrum
results reported in this paper are identical, although individual meandering profile as
well as droplet distributions are drastically different.

3. Governing equations
Consider the flow of fluid on an inclined plane at an angle α with the horizontal. Let

us define the (x, y) Cartesian coordinate system in this plane so that its origin coincides
with the origin of the stream, and the x−axis is pointing straight downstream (i.e.,
the centerline of a non-meandering rivulet will follow the x−axis). Then the momentum
equation for the fluid in the rivulet can be written as

dU
dt

+ U · ∇U =
1
ρ
∇P + g sinαêx + ν∇2U + H, (3.1)

where U is the fluid velocity vector, P is the pressure field, ρ the fluid density, ν its
kinematic viscosity, α is the angle of the incline (α = 0 for a horizontal plane), and êx

is the unit vector pointing downstream. H denotes additional forcing, whose nature may
vary depending on the specific setting of the problem. The dominant contributions to
the force balance come from the surface tension, friction on the bottom of the stream,
and internal viscous dissipation, all of which work against fluid inertia and gravity.

We use the standard lubrication approximation to reduce the full three-dimensional
equations with boundary conditions (z−axis being normal to the plane of the flow) to
equations in two dimensions where the z−dependence is averaged out and the no-slip
condition on the bottom is implicitly accounted for. A very similar technique has been
described in detail in the first part of our paper. The lubrication approximation is based
on the assumption that the vertical velocity profile in the fluid is parabolic, due to the
non-slip boundary condition on the bottom of the stream, and the stress-free condition
on the top (free surface). With these assumptions, we can show the x−component of
the friction force to be Ff,x = −3νu/l2, where u is the value of the x−component of
velocity averaged in the z direction and l is the average stream depth. As the stream is
narrow, we can safely assume that u does not vary much in the cross-stream direction.
Thus we introduce single values of the velocity components (U = uêx + vêy) in the x−
and y−directions for a given cross-section of the stream.

Let the stream discharge rate at a given location be Q = Au, where A is the cross-
sectional area of the stream in the plane normal to the x−axis. Assume that the width of
the stream is w.The simplest possible form of the equation describing the free surface ζ in
this plane is parabolic, ζ = 3

2 l
(
1− 4y2/w2

)
The area of this section is A = lw. Now, using

Q = Au = lwu, we write the equation for the friction force as Ff,x = −3
(
u2w

)
/ (Ql).

The ratio w/l is actually related to the contact angle φ as follows. By evaluating ∂ζ/∂y
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at y = −w/2 (the edge of the stream), we find its value to be 6l/w. But this slope equals
tanφ. Thus w/l = 6/ tanφ and Ff,x = −18u2/(Q tanφ). By introducing a parameter
λ = 18ν/ (Q tanφ) and performing similar analysis for the y−component of the friction
force, we can then write the following expressions for the components of the friction force
in the two-dimensional formulation of the problem: Ff,x = −λu2 and Ff,y = −λuv.

Next let us consider the pressure term, with the pressure to be inferred from the influ-
ence of surface tension. For this derivation, assume that the variation of the width of the
stream w(x, t) is sufficiently small that the width can be represented by its characteristic
value w. In reality, the shape of the cross-sectional area of the stream changes with time,
and the contact angle is subject to hysteresis. However, if we are dealing with gradual
movement of the stream (characteristic contact-line velocities associated with meander-
ing are much lower than U = |U|), it is reasonable to assume that the variation of this
shape is commensurately small, and so are the variations of w and l. For this and the
subsequent derivations, we also regard the downstream velocity components as uniquely
defined by the downstream distance x, as all the variations of velocity in the cross-section
of the stream are either small enough to be irrelevant (in the y−direction) or have been
averaged out (in the z−direction).

Let the deviation of the centerline of the stream from the x−axis be h(x, t). For a
straight rivulet, h(x, t) ≡ 0. Then the length of the centerline of the stream between
downstream locations x1 and x2 is L =

∫ x2

x1

√
1 + h2

xdx, where hx = ∂h/∂x. For a
contact angle characterizing a partially wetting surface (φ < 90◦), the stream is shallow
(l = w tanφ/6). Thus the surface area of the stream between x1 and x2 is approximately
the same as the wetted area

S = wL = w

∫ x2

x1

√
1 + h2

xdx

The surface tension will tend to minimize this surface area, thus the surface tension force
per unit length is equal to Fs = γδS/δh. Thus, the corresponding capillary force per unit
volume is

Fs

A
=

Fs

wl
= −γ

l

∂

∂x

(
hx√

1 + h2
x

)
.

Subsequently the component form of the equations of motion Eq. 3.1 takes the form:

∂u

∂t
+ u

∂u

∂x
= −λu2 +

1
Aρ

δS

δh
cos θ + g sinα + ν

∂2u

∂x2
+ ηx (3.2)

∂v

∂t
+ u

∂v

∂x
= −λuv +

1
Aρ

δS

δh
sin θ + ν

∂2u

∂x2
+ ηy (3.3)

The terms containing λ are added as the result of our use of the lubrication approx-
imation. Angle θ in the terms representing the components of the pressure (i.e., sur-
face tension) force is the angle between the direction of the stream and the x−axis, in
other words, tan θ = hx. The components of the random force H are ηx = η cos θ and
ηy = η sin θ. We must also add the continuity equation, which can be written in the form
of a kinematic condition for h(x, t):

∂h

∂t
+ u

∂h

∂x
= v (3.4)

The system (3.2 – 3.4) can be further simplified by considering the order of magnitude of
various terms under the assumption that v � u. Then, hx � 1 and the surface tension
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term linearizes as follows:
δS

δh
= − hxx√

1 + h2
x

' −hxx . (3.5)

An important part of the subsequent discussion is the structure of the noise term η.
There are two possibilities. First, one can take η(x, t) as a white noise with the corre-
lation < η(x, t)η(x′, t′) >= Aδ(x − x′, t − t′). This assumption leads to an analytical
solution (in stochastic sense) for the system (3.2–3.4) under the assumption that the
friction coefficient λ in (3.2,3.3) vanishes. The solution, interestingly enough, provides
a meandering exponent of 1/6 corresponding to the real-world rivers. This solution is
presented later in the paper.

However, assuming η(x, t) to be white noise is not adequate for explanation of experi-
mental results. Indeed, the white noise ansatz for η(x, t) can only be assumed if there is a
large number of droplets of random sizes distributed all over the length of the meandering
stream, affecting it at all times. We believe that this assumption is correct for large-scale
flows like rivers, where there is continuous random forcing on all scales. However, in our
experiment at each given time instant the stream encounters only a very limited number
of droplets. Thus, we use the assumption that η(x, t) is a ’spike’ appearing at a random
sequence of times t1, . . . tn, . . .. At each time tk, the position of the spike xk is also chosen
at random. We have tried several distributions of these droplets in space, and as long
as they are not too skewed (i.e., concentrated towards the beginning or the end of the
stream), the results we report below do not change for wavelengths corresponding to the
scales larger than droplet size. In addition, our results do not change depending on the
shape of each droplet as long as it is localized. We have tried a rectangular pulse function
of width l, inverse helmholtzian exp(−|x− xk|/l) and Gaussian exp(−(x− x2

k)/l2). Note
that in experiments, droplet size distribution changes with the substrate (Birnir et al.
2008), but all experimental droplet distributions on different substrates lead to exactly
the same power spectra presented in Fig. 3.

Note that all the modeling results presented here assume uniform distribution of
droplet times t1, . . . tn, . . .; for each time tk the distribution of droplets xk is uniform
in space. The shape of the forcing is Gaussian, with width l equal to the cross-section of
the stream (2 mm). Several examples of the profiles for the deviation from the centerline
h(x, t) are given at Fig. 2.

4. Quantitative analysis of experiments and comparison with theory
Our analysis of the stream presented here is based on 105 flow images on acrylic sub-

strate acquired with a high-resolution computer-controlled digital camera (behavior of the
flow on other partially wettable substrates is remarkably similar statistically, see Birnir
et al. (2008)). The time intervals between the pictures were random and long enough
for the flow patterns to be statistically independent. From each image at time tm, we
extracted the deviation of the stream from the centerline hm(x) as the function of down-
stream distance x. From members of the ensemble hm(x), m = 1 . . . 105, we computed
power spectra Sm(k), where wavenumber k = 2π/λ corresponds to a spatial wavelength
λ. While the power spectra Sm(k) based on single images are rather noisy, the spectrum
produced by averaging over the ensemble S(k) manifests a smooth graph with appar-
ent power-law scaling S(k) ∼ k−5/2 over the span of about two decades (Fig. 3, left).
Note that averaging over as few as 30 realizations from the ensemble produces a smooth
graph with the same power-law exponent. Deviation from this scaling is noticeable only
for k > kmax ' 5cm−1, corresponding to physical scales smaller than the characteristic
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8 B. Birnir, K. Mertens, V. Putkaradze, and P. Vorobieff

stream width. The largest physical scale we can acquire (and thus the smallest wavenum-
ber) is constrained by the 2.4 m streamwise extent of our experimental arrangement. The
scaling behavior is a persistent feature of all our experiments, representing a universal
characteristic of the problem of the flow down a partially wetting incline. One impor-
tant conclusion from the power law behavior is that the leading wavelength associated
with meandering instability claimed by previous authors does not exist. The results were
repeated for three surfaces: acrylic (contact angle 57 ± 2◦) , acrylic with hydrophobic
coating (contact angle 74 ± 5◦) and polypropylene (contact angle 99 ± 4◦). The results
for spectra and “basin area” (see below) for these surfaces appear indistinguishable.

To compare the experimental results with our theory presented above in Sec. 3, we
have performed numerical simulation of Eqs. (3.2-3.4) over a long time and computed an
average of the spectrum for the deviation of centerline for an ensemble hm(x) = h(x, tm)
using a sequence of time points tm. This spectrum is also presented in Fig. 3, left. The
only fitting parameter is the normalization for noise strength η(x, t), taken as a constant
for all runs. Our theory faithfully reproduces the scaling behavior up to the largest
physically relevant values of k corresponding to the droplet forcing width.

As another test of our theory, in Fig. 3 we plot the area enclosed between the mean-
dering stream and its centerline as a function of downstream distance. The deviation of
the model from the power law is likely due to the length scale associated with the forcing
(characteristic droplet size 1-5 mm). The area grows as x7/4 = x1.75 with the distance,
consistent with the power law k−5/2 of the spectrum. Surprisingly, it is the same growth
law for the growth of the area of a river basin versus length of the river discovered by
Hack (1957). In our case, there is clearly no basin per se and no side streams forming
that basin. We deliberately avoid plotting Hack’s law data for rivers on the same graph
here for fear of misleading the reader into thinking that our experiment is describing
river basin erosion. However, an overlap of the properly scaled data for Hack’s law in
Fig. 3 with the river data from Rigon et al. (1996) would be nearly perfect.

Thus we can conclude that the behavior of a stream meandering down an inclined
plane is dominated by the effects of the stream interacting with droplets on the plane,
which can be modeled by including appropriate random forcing into the equations.

5. Sketch of stochastic solution for (3.2–3.4)
It is interesting to compare the numerical results of the model with the exact analytical

solution in stochastic sense for (3.2–3.4), which we will now sketch briefly. Following
previous argument, we assume that the noise is quenched, or colored, just as in turbulence.
This implies that both u and v scale as the solutions of the noise-driven Navier-Stokes
equation in one-dimensional turbulence, see Birnir (2007). A typical Reynolds number
value for our experiment is about 4500, but in extreme cases it can vary from as low as
500 (water replaced with glycerin, small fluxes) to 18000 (water, large fluxes).

The stochastic solution proceeds as follows. First, we assume ht in (3.4) to be negli-
gible compared to uhx and v. Then we get hx = v/u. We define second-order structure
functions sf =

∫
|f(x+ `)− f(x)|2dx as in Frisch (1995); Birnir et al. (2007) and assume

scaling sh ∼ `2ph , su ∼ `2pu and sv ∼ `2pv . Then the powers are related as ph = pv−pu+1.
We can disregard the lubrication friction terms in (3.2,3.3) by setting λ = 0, and setting
η to be white noise. Then, the u equation (3.2) is simply a noise-driven Burgers equation
which can be solved exactly, giving pu = 3/2. On the other hand, (3.3) can be solved
exactly under these assumptions using the Feynman-Kac technique as in Simon (2005),
yielding pv = 2/3, and from the equation for ph we conclude that ph = 1/6.

Sadly, in our case setting any realistic value of λ > 0 in (3.2,3.3) destroys the scaling
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Stream on an Inclined Plane: Meandering 9

Figure 3. Comparison of experiments and theory (experimental data for acrylic surface used).
Left: Power spectra of the deviation of the stream from the centerline. Solid line represents
α = −5/2 power law. The noise amplitude in the model (a universal constant for all experiments)
is fixed to achieve agreement at small wavenumbers k, which continues over all the k values
having physical relevance. Right: Area enclosed between the stream and the centerline as the
function of downstream distance. Solid line shows power law with exponent 7/4 = 1.75. The
deviation of the model from experiment is observed for distances comparable to the width of
noise forcing, equal to the diameter of the stream.

ph = 1/6. Also, numerics show that the characteristic time for the system to evolve
ph = 1/6 scaling for any realistic initial conditions is so large that it can only be observed
after several km downstream. It is nevertheless interesting that the meandering exponent
ph + 1 ' 1.16 agrees with that of mature rivers (1.1 − 1.2). It was shown recently
that the river meandering exponent is fundamental and all other exponent in Earth’s
morphology can be derived from it, see Dodds & Rothman (1999, 2000a,b,c). These
curious coincidences between our experiments and models with real river morphology
warrant further investigation.

6. Conclusions and further directions
In this paper, we demonstrate that meandering of a fluid stream on a partially hy-

drophobic surface is caused exclusively by the presence of disturbances in the flow rate
and is maintained by the presence of droplets left behind by a meandering stream. We
derive a model from the first principles that provides an accurate description of the
stochastic behavior of the stream. Interestingly enough, some of the results of the model
fit not only our simple experiment, but also well-established results for river morphology.
In particular, the basin of rivers versus river’s length and the unsigned area between the
centerline versus position grow with exactly the same exponent, 7/4. In addition, the
meandering exponent for our model (3.2-3.4) with the white noise for η and no friction
dissipation (i.e., λ = 0) corresponds to the meandering of rivers.

We thank Profs. T. Bohr and J. Krug for fruitful discussion. VP is grateful for the
support of the Humboldt foundation and the hospitality of the Institute for Theoretical
Physics, University of Cologne.
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