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A long-standing theoretical problem in biology is the relation between organism size M 
and metabolic rate Q. This long history of research into such a basic pattern is due to the 
particular shape of the relationship: it is generally observed that the relation is well 
described as Q ∝  Mb where b is most often in between 0.5 and 1. Numerous analyses 
have focused on determining b using interspecific data, in particular to test whether b = ⅔ 
or b = ¾. Here a large amount of intraspecific data is analysed, which shows that b ≠ ⅔, b 
≠ ¾, and especially that there is no single, universal value of b. 
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Introduction 
 
Despite numerous established relations between body size and metabolic rate within as 
well as between species from various taxa (e.g. Peters 1986), there is still no consensus 
on what shapes the relation. An early theory suggested it is shaped by the geometry of 
organisms maintaining stable body temperature. In Euclidian geometry, the surface area 
of an object increases as the ⅔ power of its volume. If the rate of heat loss is assumed to 
be proportional to the surface area of the body, the power required to keep such an object 
at constant temperature increases with the ⅔ power of its volume. Initially this was found 
to be quite close to the observed pattern, but as empirical deviations from b = ⅔ 
accumulated it became replaced by b ≈ 0.72-0.73, which was eventually replaced by b = 
¾ (see Dodds et al. 2001 and references therein). 
 
Although many accepted b = ¾ as a ubiquitous rule, the value remained purely empirical: 
there was no theoretical explanation except that it was observed that if organism 
geometry had a fourth dimension, metabolic rate would scale as body size to the power ¾ 
(Blum 1977). Only recently a serious potential fourth dimension was proposed. With the 
discovery of fractal geometry in biology, it was noted that the internal transport networks 
most organisms use (e.g. lungs, trachea, the blood vascular network) appear to have a 
fractal dimension. It was suggested that if organisms use such networks to minimize the 
cost of transporting substances inside the body, then metabolic rate scales as the ¾ power 
of body size (West, Brown & Enquist 1997, 1999). This theory, which elegantly relies on 
the intuitive supposition that organisms have evolved so as to maximize interal energetic 
efficiency, has proved powerful to explain various relationships associated with scaling in 
plants as well as animals (Enquist, Brown & West 1998, Gillooly et al. 2001, West, 
Brown & Enquist 2001). 
 
There is little evidence against ¾-power scaling though some have questioned its 
generality (Whitfield 2001). It has been shown that the individual processes that make up 
the whole-organism metabolic rate (e.g. ventilation, cardiac work, circulation) have 



different scaling characteristics (Darveau et al. 2002, Weibel 2002, see also Reich 2001). 
Also it was shown that in birds the observed relations are not statistically significantly 
different from the ⅔ scaling relationship (Dodds et al. 2001), and that mammal species 
below and above the modal body size of a taxon appear to have different scaling relations 
(Dodds et al. 2001, Lovegrove 2000). 
 
However, much of the evidence for (and against) universal ¾-power scaling of metabolic 
rate comes from analyses of interspecific data affected by neglection of species’ 
phylogenetic non-independence (Symonds and Elgar 2002). Thus, the variability of 
estimates of b in literature may be due to (i) measurement error, (ii) neglection of the 
historical relationships of species and (iii) true variation between species (Lovegrove 
2000). The phylogenetic uncertainty in interspecific analyses can be considerable, 
especially if one takes into account that a character like metabolic rate may evolve in a 
punctuated manner rather than gradually over time (Lovegrove 2000, Bokma 2002). It is 
therefore more informative to investigate intraspecific allometry, avoiding assumptions 
on tempo and mode of metabolic rate evolution. If the relationship between body size and 
metabolic rate is shaped by geometrical factors -whether this geometry is Euclidian or 
fractal does not matter- metabolic rate should increase with body size within species in 
the same way as between species (West, Brown & Enquist 2001). 
 
Methods 
 
Measurements of fish metabolic rate were downloaded from the online database at 
www.fishbase.org. Of all available data on metabolic rate (n = 6555 measurements from 
313 species) those obtained from measurements under stress were excluded. Also 1158 
measurements obtained from active animals were excluded. Of the remaining 3575 
another 3 were excluded as they did not specify the mass of the fish measured. The 3572 
measurements that were finally used for analysis came from 113 species in 217 series, 
and ranged in temperature from -1.5 °C to 38°C and in mass from 0.01 g to 10.4 kg. 
 
The relation between metabolic rate and body size within species was determined by least 
squares linear regression of the natural logarithm of oxygen consumption on the natural 
logarithm of body mass. Regression coefficients and intercepts (that is body size 
exponents and coefficients, respectively) were calculated for all combinations of 
temperature and salinity for which there were at least three measurements (after 
averaging measurements at identical body size). This was done because temperature 
affects metabolic rate (Gillooly et al. 2001) and also salinity might do so. A total of 198 
regressions were analysed. For some species more than one regression was available. For 
example, the carp bream Abramis brama is represented twice, with a series of three 
measurements at 18 °C and a series of 32 measurements at 20 °C. Variance in the 198 
estimates of b may be due to chance alone, or to true variation between species. Equality 
of regression coefficients was assessed by analysis of covariance (ANCOVA, Zar 1996 p. 
362). 
 
The data contains a number of measurements at constant body mass and constant 
conditions, which allows estimation of measurement error. Measurement error was 



defined as the standard deviation of repeated measurements sde. 114 such series of 
repeats (containing 421 measurements) were used to determine the best linear relation 
between average (Q) and standard deviation of repeated measurements as: sde = exp(0.94 
lnQ - 1.72). This relation between sde and Q was used to obtain Monte Carlo estimates of 
statistical power for the 198 regressions. For all mass data supporting a certain observed 
regression coefficient, Q was calculated as Mb + e where e is measurement error, sampled 
from a normal distribution with zero mean and standard deviation sde. From those 
simulated data regression coefficients were estimated (50 repeats for every regression). 
These estimates are on average b, but deviate more or less from this expectation 
depending on the number and spread of the mass data. Their variance indicates the 
statistical power of the observed regression. This procedure may be somewhat imprecise, 
but gives a relatively good picture of which are the most informative estimates of b. 
 
Results 

Intraspecific allometry 
The regressions yielded a variety of body size exponents, as expected in a large set of 
estimates, especially as some were based on small sample sizes. Indeed, the variance of 
estimates decreases with increasing sample size (Fig. 1a) and with increasing body size 
range (Fig. 1b). The most informative estimates of body size exponents (with least 
sampling variance in the simulations) are from large samples spanning a large body size 
range. Even these estimates deviate considerably from b = ⅔ and b = ¾ (Fig. 1c). The 
most powerfull sample is one containing 37 measurements of sea trout Salmo trutta 
trutta, over a body size range from 0.1 to 600 grams. The corresponding estimate of the 
body size exponent of metabolic rate is 0.86 (r2 = 0.997) which is highly significantly 
different from both ⅔ and ¾ (P < 0.001). 
 
The weighted average of estimated body size exponents was calculated, with the 
weighting factor the inverse of the standard deviation of simulated estimates. The thus 
obtained average is 0.715, which in between the ”traditional” hypothesised values. 
 
Estimates of the body size exponent were tested for significant departure from the 
hypotesised values ⅔ and ¾ using t-tests. When compared against a theoretical value of 
¾, 21 out of 198 estimates are significant at the 5% level after sequential Bonferroni 
correction. When compared against the theoretical value ⅔, 16 out of 198 estimates 
remain significant after sequential Bonferroni correction. The data thus clearly reject both 
hypothesised body size exponents. 
 
As the data do not agree with the hypothesised exponents, it is possible that there is 
another exponent, perhaps in between ⅔ and ¾, or that there is no universal scaling 
relation. In the latter case the individual estimates come from populations with different 
body size exponents b. ANCOVA revealed that the 198 estimates are very unlikely to 
come from populations with identical b (F197,1342 = 7.33, P << 0.001). If the analysis of 
covariance is restricted to the 25 most powerful estimates (thus excluding the estimates 
from small samples and small body size ranges) this conclusion remains (F24,466 = 15.96, 
P << 0.001). 



 
Discussion 
The data reject not only both hypothesised body size exponents b = ⅔ and b = ¾ but –
more importantly- also the hypothesised existence of universal scaling of metabolic rate. 
That result does not rely on the estimates of b from small samples, which may be affected 
by the use of least squares regression where the use of reduced major axis regression or 
other statistics (Dodds et al. 2001) might have been more appropriate. The differences 
between these alternatives are neglegible in the statistically powerful samples if the 
correlation coefficients are high. In fact, the correlation coefficients in the 25 most 
powerful samples are high, and these samples also strongly reject the existence of 
universal scaling. 
 
The finding that b ≠ ⅔ contradicts the conclusion of Dodds et al. (2001) who carefully re-
analysed available data on bird metabolic rate and found that the data do not reject b =  
⅔. The traditional theoretical explanation for b = ⅔ is that heat leaves the body through 
the surface of the body, which in Euclidian geometry scales with the ⅔ power of body 
volume. It is tempting to argue that changes in shape during individual development 
cause deviations from intraspecific ⅔-power scaling, or that not all heat is lost through 
the body surface. However, it can be shown largely on theoretical grounds that the 
scaling of basal metabolic rate is not caused by scaling of the requirements to maintain 
stable body temperature. If basal metabolic rate is set by the requirement to maintain 
stable body temperature, organisms would decrease metabolic rate as far as permitted by 
the environmental circumstances. The contrary is observed in homeotherms, that do not 
decrease metabolic rate below a certain level as environmental temperature raises. This 
level is defined as basal metabolic rate, and its existence proves that there is a limit below 
which metabolic rate cannot go, and that this limit is not set by requirements to maintain 
stable body temperature. It is this limit that scales. Thus, basal metabolic rate does not 
scale due to the geometry of heat loss. 
 
It is therefore more interesting that the data also reject b = ¾, the prediction of much 
recent physically inclined theoretical work (West, Brown & Enquist 1997, 1999). If the 
scaling of metabolic rate is determined by the fractal dimension of branching networks as 
suggested, deviations from b = ¾ may be due to non-fractal branching. Biological 
networks are not true fractals that break an organism into smaller but self-similar 
structures. Biological networks are instead what Bejan appropriately called 
”constructals”: structures that are build up of small units that together form larger, more 
or less self-similar structures. As compared to adult individuals from different species, 
especially in individuals of increasing size of the same species that building-process may 
be dominantly present. 
 
So far however the data support theories that explicitly allow for differences in scaling 
relations (Weibel 2002, Darveau et al 2002). Darveau et al.’s (2002) theory however 
”predicts” the scaling of maximum and basal metabolic rate from observed scaling 
relationships of the individual processes that make up those overall rates. It thus fails to 
explain why metabolic rate would scale in the first place and why the individual 
processes would scale as they do. That is a serious shortcoming, as it is not unknown that 



also non-living systems such as car engines and electrical amplifyers cannot increase 
their maximum power without increasing power at stationary performance, which suggest 
a universal, perhaps thermodynamic, reason for some sort of scaling. 
 
We are just starting to understand the basic rules that appear to govern much of biology’s 
seemingly dazzling complexity. It cannot be overemphasized how important those 
unifying developments are in the light of the biological tradition of emphasizing 
differences. It appears however that with respect to the scaling of metabolic rate there just 
are more differences than present unifying theories allow for. 
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Figure 1. Estimates of the body size exponent of metabolic rate plotted against (a) the 
number of measurements, (b) the difference between the largest and smallest body sizes 
in the sample, and (c) a Monte Carlo estimate of statistical power which unites sample 
size and body size range. The best estimates place the exponent in between 0.5 and 1. 
 
Figure 2. The relation between metabolic rate and body size in sea trout Salmo trutta 
trutta. The line through the dots is the least squares regression line Q ∝  M0.86, the line 
above the dots is the theoretical prediction Q ∝  M¾, shifted up for clarity. 
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