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The Fourth Dimension of Life:
Fractal Geometry and

Allometric Scaling of Organisms
Geoffrey B. West,1,2* James H. Brown,2,3 Brian J. Enquist2,3

Fractal-like networks effectively endow life with an additional fourth spatial
dimension. This is the origin of quarter-power scaling that is so pervasive in
biology. Organisms have evolved hierarchical branching networks that termi-
nate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase
molecules. Natural selection has tended to maximize both metabolic capacity,
by maximizing the scaling of exchange surface areas, and internal efficiency, by
minimizing the scaling of transport distances and times. These design principles
are independent of detailed dynamics and explicit models and should apply to
virtually all organisms.

Evolution by natural selection is one of the
few universal principles in biology. It has
shaped the structural and functional design of
organisms in two important ways. First, it has
tended to maximize metabolic capacity, be-
cause metabolism produces the energy and
materials required to sustain and reproduce
life; this has been achieved by increasing
surface areas where resources are exchanged
with the environment. Second, it has tended
to maximize internal efficiency by reducing
distances over which materials are transport-
ed and hence the time required for transport.
A further consequence of evolution is the in-
credible diversity of body sizes, which range
over 21 orders of magnitude, from 10213 g
(microbes) to 108 g (whales). A fundamental
problem, therefore, is how exchange surfaces
and transport distances change, or scale, with
body size. In particular, a longstanding question
has been why metabolic rate scales as the 3/4-
power of body mass, M (1).

Biological scaling can be described by the
allometric equation Y 5 Y0 Mb, where Y is a
variable such as metabolic rate or life span,
Y0 is a normalization constant, and b is a
scaling exponent (1). Whereas Y0 varies with
the trait and type of organism, b characteris-
tically takes on a limited number of values,
all of which are simple multiples of 1/4. For

example, diameters of tree trunks and aortas
scale as M 3/8 rates of cellular metabolism and
heartbeat as M21/4, blood circulation time
and life span as M1/4, and whole-organism
metabolic rate as M 3/4. The question has been
why these exponents are multiples of 1/4
rather than 1/3 as expected on the basis of
conventional Euclidean geometric scaling.

Recently, we presented a model which
suggested that the explanation could be found
in the fractal-like architecture of the hierar-
chical branching vascular networks that dis-
tribute resources within organisms (2). The
model accurately predicts scaling exponents
that have been measured for many structural
and functional features of mammalian and
plant vascular systems. It is not clear, how-
ever, how this model can account for the
ubiquitous 3/4-power scaling of metabolic
rate in diverse kinds of organisms with their
wide variety of network designs, and espe-
cially in unicellular algae and protists, which

have no obvious branched anatomy. Here we
present a more general model, based on the
geometry rather than hydrodynamics of hier-
archical networks, that does not require the
existence of such explicit structures and that
can account for the pervasive quarter-power
scaling in biology.

We conjecture that organisms have been
selected to maximize fitness by maximizing
metabolic capacity, namely, the rate at which
energy and material resources are taken up
from the environment and allocated to some
combination of survival and reproduction.
This is equivalent to maximizing the scaling
of whole-organism metabolic rate, B. It fol-
lows that B is limited by the geometry and
scaling behavior of the total effective surface
area, a, across which nutrients and energy are
exchanged with the external or internal envi-
ronment. Examples include the total leaf area
of plants, the area of absorptive gut or capil-
lary surface area of animals, and the total area
of mitochondrial inner membranes within
cells. In general, therefore, B } a. It is im-
portant to distinguish a from the relatively
smooth external surface, or “skin,” enclosing
many organisms. We further conjecture that
natural selection has acted to maximize a
subject to various constraints while maintain-
ing a compact shape. This is equivalent to
minimizing the time and resistance for deliv-
ery of resources by minimizing some charac-
teristic length or internal linear distance of
the hierarchical network.

Broadly speaking, two sets of variables
can be used to describe the size and shape of
an organism: a conventional Euclidean set
describing the external surface, A, enclosing
the total volume, V; and a “biological” set
describing the internal structure, which in-
cludes the effective exchange area, a, and the
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Table 1. Examples of the biological network variables l, a, and v in plant, mammalian, and unicellular
systems.

Variable Plant Mammal Unicellular

l Mean path length from root
to leaf, or between leaves

Mean circulation
distance from heart to
capillary, or between
capillaries

Mean distance from cell
surface to mitochondria
and between
mitochondria

a Total area of leaves; area of
absorptive root surface

Total area of capillaries;
gut surface area

Actual cell surface area;
total surface area of
mitochondrial inner
membranes

v Total wood volume; total
cell volume

Total blood volume;
total tissue, or cell,
volume

Volume of cytoplasm
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total volume of biologically active material, v
(Table 1). Although it is clearly a very diffi-
cult technical problem to calculate a, there
are some general scaling properties that it
must obey regardless of the detailed dynam-
ics. Before examining these, it is instructive
to consider the simpler case of how the area
of skin, or external physical surface, of an
organism or any Euclidean object, scales.

We first show how, and under what con-
ditions, the classic 2/3-power Euclidean scal-
ing law for A arises (3). In general, A is some
complicated function of the various length
scales, L1, L2, L3, . . ., which parameterize
size and shape: A 5 A(L1, L2, L3, . . .). On
purely dimensional grounds this can be ex-
pressed as A(L1, L2, L3, . . .) 5 L1

2F(L2/L1,
L3/L1, . . .), where F is a dimensionless func-
tion of the dimensionless ratios L2/L1, and so
on. Suppose that we change the overall size
by making a uniform scale transformation on
all the lengths, Li: Li 3 Li

9 5 LLi (i 5 1, 2,
3, . . .), where L is some arbitrary number.
This similarity transformation preserves the
shape of the object as its size varies. In this
case F clearly does not change, so A responds
in the following manner:

A3 A9 ; A(LL1, LL2, LL3, . . .)

5 L2A(L1, L2, L3, . . .) (1)

The Euclidean volume of the object, V 5
V(L1, L2, L3, . . .), can be treated similarly; on
dimensional grounds, V 5 L1

3C(L2/L1, L3/
L1, . . .), where C is a dimensionless function
of the dimensionless ratios L2/L1, and so on.
After the scale transformation, which leaves
C unchanged,

V3 V9 ; V(LL1, LL2, LL3, . . .)

5 L3V(L1, L2, L3, . . .) (2)

From Eqs. 1 and 2, it is clear that A9/V 92/3 5
A/V 2/3, that is, A } V 2/3; similarly, Li } V 1/3.
Notice that these are consistent with writing
V 5 AL, where L is some length that is a
function of the Li and scales as L3 L9 5 LL.
Assuming a size-invariant uniform density,
these then give the conventional Euclidean
geometric scaling results L } Li } M1/3 and A
} M 2/3. These should apply, for example, to
the body length and skin area of vertebrates.

The above argument ignores two basic
facts of biology. First, the metabolic process
relies on the hierarchical fractal-like nature of
resource distribution networks. Examples in-
clude the macroscopic branching vascular

networks of plants and animals and the com-
plicated ultrastructure within cells. We em-
phasize that the network can be “virtual”; it
need not be a physical system of branching
tubes, so long as it exhibits hierarchical path-
ways of material flow. Second, although or-
ganisms vary widely in size, these networks
terminate at invariant units of fixed size that
can be characterized by a biological length
scale, l0. At the whole-organism level they
include capillaries of mammals and leaves of
plants. At the cellular and molecular levels,
they include mitochondria and chloroplasts,
and the metabolic rate-limiting cytochrome ox-
idase and RuBisCo (ribulose-1,5-bisphosphate
carboxylase-oxygenase) molecules within these
organelles. We now modify the above scaling
argument by incorporating these two important
biological features.

For a given type of organism the effective
surface area is a function of the invariant
length, l0, together with various independent
length scales, li, that parameterize its fractal-
like structure. It is important to distinguish
biological length scales, li, which character-
ize the interior networks of the organism,
from Euclidean ones, Li, which characterize
its exterior shape. For example, in a mammal
one of the li is the length of the aorta, whereas
one of the Li is the overall body length;
similarly, in unicellular organisms one of the
li is the distance between mitochondria,
whereas one of the Li is the cell radius.
Working as before, the effective exchange
area, a, can be expressed as

a(l0, l1, l2, . . .) 5 l1
2fS l0

l1
,

l2

l1
, . . .D (3)

where f is a dimensionless function of the
dimensionless ratios l2/l1, and so on. Now, as
the size of the organism changes, l0 remains
fixed. Consider, then, an arbitrary scale trans-
formation on the network: li 3 li9 5 lli (i 5
1, 2, 3, . . .) keeping l0 fixed. The analog of
Eq. 1 reads

a 3 a9 [ a(l0, ll1, ll2, ll3, . . .)

5 l2l 1
2fS l0

ll1
,

l2

l1
,

l3

l1
, . . .D (4)

Because l0 is fixed, the right-hand side is
no longer simply proportional to l2 as in
Eq. 1. Although we do not know the l-de-
pendence of f, we can parameterize it as a
power law reflecting the hierarchical frac-

tal-like organization:

fS l0

ll1
,
l2

l1
,
l3

l1
, . . .D 5 leafSl0

l1
,
l2

l1
,
l3

l1
, . . .D (5)

where ea is an “arbitrary” exponent. In this
case

a3 a9 [ a(l0, ll1, ll2, ll3, . . .)

5 l21eaa(l0, l1, l2, l3, . . .) (6)

The crucial point here is that, because of
the presence of l0, a does not scale simply
as l2. The assumption of a power law does
not require the existence of an idealized
mathematical self-similar fractal, which
has no “fundamental” length scale such as
l0. Even though the actual physical network
is not a pure fractal because it has terminal
units of fixed size and can be asymmetric, it
is still natural to use the fractal language.
We can therefore interpret the exponent in
Eq. 6, (2 1 ea) [ da, as the fractal dimen-
sion of a (4). As such, it satisfies 0 # ea #
1. The lower limit, ea 5 0, is the conven-
tional Euclidean case discussed above; the
upper limit, ea 5 1, represents the “maxi-
mum fractality” of a volume-filling struc-
ture in which the effective area scales like
a conventional volume.

Similarly, the biological volume, v, asso-
ciated with a, can be expressed as v(l0, l1, l2,
l3, . . .) 5 l 1

3c(l0/l1, l2/l1, l3/l1, . . .), where c
is a dimensionless function of the dimension-
less ratios l2/l1, and so on. This represents the
volume of protoplasm or biologically active
material in the organism. It is not necessarily
identical to V, because most organisms con-
tain empty spaces enclosed by the skin; how-
ever, v } V. By analogy with f, we assume
that, under a scale transformation, c trans-
forms as a power with an exponent ev: c(l0/
ll1, l2/l1, l3/l1, . . .) 5 levc(l0/l1, l2/l1, l3/
l1, . . .). Consequently, v scales as

v 3 v9 [ v(l0, ll1, ll2, ll3, . . .)

5 l31evv(l1, l2, l3, . . .) (7)

with 0 # ev # 1. Combining Eqs. 6 and 7
straightforwardly leads to a } v(21ea)/(31ev).

Now v can always be expressed as v 5 al,
where l is some length characteristic of the
internal structure of the organism. We can
therefore relate the scaling behaviour of v to
that of a and l, with l expected to be propor-
tional to one of the li. It is instructive, how-
ever, to consider the more general case and
write l 5 l(l0, l1, l2, . . .) 5 l1s(l0/l1, l2/
l1, . . .), as was done with a and v; s is a
dimensionless function, analogous to f and
c. This scales as l3 l9 5 l11ell, where dl [
1 1 el is the fractal dimension of l, with 0 #
el # 1. Consequently, v 3 v9 5 l31ea1elv
which, when compared to Eq. 7, gives ev 5
ea 1 el (4). Assuming a uniform constant
density, so that v } M, then gives

a } n
21ea

31ea1el } M
21ea

31ea1el (8)

Table 2. The scaling of length, area, and volume associated with biological networks compared to the
conventional Euclidean case. Allometric relations with M assume that tissue density is constant.

Variable Conventional Euclidean Fractal biological

Length L } A1/2 } V 1/3 }
M1/3

l } a1/3 } v1/4 } M1/4

Area A } L2 } V 2/3 } M2/3 a } l3 } V 3/4 } M3/4

Volume V } L3 } M v } l4 } M

R E P O R T S

4 JUNE 1999 VOL 284 SCIENCE www.sciencemag.org1678

 o
n 

O
ct

ob
er

 2
7,

 2
01

0 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


Our conjecture that organisms have evolved
so as to maximize the scaling of a implies
that the exponent, b [ (2 1 ea )/(3 1 ea 1
el), must be maximized. It is straightforward
to verify that this occurs when ea 5 1 and el

5 0, thereby giving b 5 3/4. Metabolic rate
should therefore scale as B } M 3/4, regardless
of the details of the branching architecture (5)
and dynamics governing the metabolic pro-
cess and distribution of resources.

This has several important consequences.
First, because a } M 3/4, the number of in-
variant units in the network also scales as
M 3/4. Second, the result el 5 0, which gives
dl 5 1, implies that internal distances associ-
ated with the network are not themselves
fractal. This is consistent with the constraint
that times for supply of resources, and there-
fore path lengths, should be minimized.
Third, and perhaps most significant, is that ea

5 1, which implies that the fractal dimension
of a is da 5 3 rather than the canonical
Euclidean value of 2. Thus, the effective
surface area is “maximally fractal” and the
network structure is volume-filling. It is in
this sense that organisms have exploited a
fourth spatial dimension (6) by evolving hi-
erarchical fractal-like structures to maximize
resource acquisition and allocation. More
specifically, the area of the effective ex-
change surface scales as if it were a volume:
a 3 a9 5 l3a, (rather than l2a), whereas
characteristic internal lengths associated with
the fractal-like structure scale as l3 l9 5 ll.
Consequently, the biological volume scales
as v 3 v9 5 l4v, so that in addition to a }
M 3/4, we also have l } li } M1/4.

These relationships should apply to all
organisms that have been selected to maxi-
mize metabolic power under the constraint of
minimizing internal transport distances and
thereby having a maximally compact three-
dimensional body shape (Table 2). For organ-
isms such as roundworms and flatworms,
which may be functionally one- or two-di-
mensional, these geometric relationships can
be appropriately modified. In D dimensions,
for example, our argument straightforwardly
generalizes to give a } B } MD/(D11) as in (2)
and l } M1/(D11) for the biological variables,

and A } M(D21)/D and L } M1/D for the
Euclidean ones. These relationships are not
expected to apply to a few organisms, such as
filamentous algae and fungi, that have been
selected to maximize linear dimensions so as
to sparsely occupy a maximal volume.

The present derivation is more general
than our original model in which it was as-
sumed that resource distribution networks
were volume-filling and that energy dissipat-
ed was minimized. Incorporating dynamics
led to a complete description of the physics
and geometry of the networks that were
shown to be fractal-like with 1/4-power scal-
ing (2, 7). Versions of this physically explicit
model show how the universal geometric der-
ivation given here is realized in a variety of
systems in different kinds of organisms. It is
no accident, therefore, that many biological
networks exhibit area-preserving branching,
even though different anatomical designs ex-
ploit different hydrodynamic principles (2,
7). Unlike the genetic code, which has
evolved only once in the history of life, frac-
tal-like distribution networks that confer an
additional effective fourth dimension have
originated many times. Examples include ex-
tensive surface areas of leaves, gills, lungs,
guts, kidneys, chloroplasts, and mitochon-
dria, the whole-organism branching architec-
tures of trees, sponges, hydrozoans, and cri-
noids, and the treelike networks of diverse
respiratory and circulatory systems. It is not
surprising, therefore, that even unicellular or-
ganisms exhibit quarter-power scaling, in-
cluding the 3/4-power scaling law for meta-
bolic rate. Although living things occupy a
three-dimensional space, their internal phys-
iology and anatomy operate as if they were
four-dimensional.

Quarter-power scaling laws are perhaps as
universal and as uniquely biological as the
biochemical pathways of metabolism, the
structure and function of the genetic code,
and the process of natural selection. The vast
majority of organisms exhibit scaling expo-
nents very close to 3/4 for metabolic rate and
to 1/4 for internal times and distances. These
are the maximal and minimal values, respec-
tively, for the effective surface area and linear

dimensions for a volume-filling fractal-like
network. On the one hand, this is testimony to
the power of natural selection, which has
exploited variations on this fractal theme to
produce the incredible variety of biological
form and function. On the other hand, it is
testimony to the severe geometric and phys-
ical constraints on metabolic processes,
which have dictated that all of these organ-
isms obey a common set of quarter-power
scaling laws. Fractal geometry has literally
given life an added dimension.
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