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Scott D. Peckham

Institute of Arctic and Alpine Research, University of Colorado, Boulder

Vijay K. Gupta

Center for the Study of Earth from Space, Cooperative Institute for Research in Environmental Science

University of Colorado, Boulder

Abstract. The well-known Horton’s laws are empirical observations on how the means of
measurements for river networks and basins vary with Horton-Strahler order. It is now

known that these laws are a consequence of an average-sense self-similarity in the

extew sien

bifurcation structure of river networks. In this paper we present a reformulation of
Horton’s laws which generalizes the familiar scaling of first moments, or means, to scaling
of entire distributions. We also present extensive data analysis which supports this
reformulation and show that this feature is also exhibited by Shreve’s well-known random

topology model.

1. Introduction

The Horton laws of drainage composition have been known
in terms of statistical averages for more than half a century. We
generalize Horton’s laws by first reformulating them in terms
of probability distributions. This reformulation implies that
Horton-type relations are true not only for the means but for
all higher-order statistical moments whenever these moments
exist. The theoretical significance of this reformulation lies in
the interpretation that it is a form of “statistical self-similarity”
called “simple scaling.” Self-similarity represents a symmetry
of a system under scale change. It has attracted a great deal of
attention within the last decade in a variety of hydrologic
investigations [see, e.g., Sposito, 1998}-A mathematical formu-

“lation of the notion of simple-scaling requires the specification

of a natural “scale parameter,” so that “tapologic self-
of a family of subnetworks at different scales of

similarity”

rf‘:?t?lh’tigns can be defined. In the context of a branching tree
structure a scale parameter can be defined in a variety of
different ways, and we give some examples. However, it ap-
pears that Horton-Straher (H-S) ordering is most natural as a
scale parameter compared to other alternatives. For example,
it is difficult to define topologic self-similarity of a family of
networks at different scales of resolutions on the basis of link
magnitude. Our reformulation is empirically tested here for
large drainage networks which were extracted from digital
elevation models (DEMs).

Horton’s laws were formulated by R. E. Horton [Horton,
1945] on the basis of a numerical enumeration of drainage
networks. This scheme was later modified by Strahler and is
called H-S ordering. A large number of empirical studies
[Jarvis and Woldenberg, 1984], analytical theories [Shreve, 1967,
Tokunaga, 1966], and network evolution models [Rodriguez-
lturbe and Rinaldo, 1997] have illustrated that Hortonian rela-
tions generally hold for drainage networks. Horton’s laws are
typically stated in terms of averages or means of variables
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because spatial variability and randomness are present as dom-
inant features in network branching patterns. A Horton law
states that if (X ) is the average measured value of some
variable X for all complete H-S subbasins of order w € 1, 2,
3,+++, then ‘

(Xo)(X.) ~ Ry, (D)
where the approximation sign indicates rapid convergence to
the constant R,, which is known as the Horton ratio. The
convergence is often so rapid that the approximation sign can
be replaced by an equals sign to good approximation when w
exceeds 2.

Horton’s original work and subsequent investigations by oth-
ers found that these relationships hold not only for the topo-
logic and geometric variables, such as stream number, basin
area, and stream length [Schumm, 1956], but also for the hy-
draulic-geometric variables, such as slope, width, depth, bank-
full discharge, and velocity [Leopold and Miller, 1964]. Hor-
ton’s laws seem to represent a fundamental mathematical
property of how the geometry and the physics of drainage
network patterns are spatially organized in the presence of
systematic spatial variability and randomness. A lot of the
recent literature has begun to shed light on this issue [see
Rodriguez-Iturbe and Rinaldo, 1997, and references therein].
However, a precise theoretical understanding of Horton’s laws
cannot be achieved by limiting them to a statement about
means rather than entire probability distributions.

Self-similarity (and self-affinity) of a system can be defined
in terms of its geometry, statistics, dynamics, or some combi-
nation of these three, and it implies that some property re-
mains similar across a wide range of scales. For instance, geo-
metric self-similarity means that under magnification of scale
the geometry of smaller features embedded within a large
object is similar to that of the large object. Mandelbrot’s [1982]
work drew a great deal of attention to geometric self-similarity
because it was found to be present in a wide variety of natural
objects such as coastlines, clouds, etc. Geometric self-similarity
leads to nonintuitive mathematical attributes since these ob-
jects are characterized by fractional dimensions. They are
called “fractals” following Mandelbrot [1982]. These ideas be-
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gan to be formally explored in the context of drainage network
patterns almost a decade ago, and many of these ideas are
reviewed by Rodriguez-Iturbe and Rinaldo [1997]. Intuitively, a
drainage network is a natural candidate for a fractal because
small subnetworks are nested within large networks. Indeed,
Tokunaga [1966, 1978] introduced the idea of self-similarity in
network topology within a H-S framework. This important
body of work is acquiring a new significance as the ideas of
self-similarity in channel networks are beginning to be ex-
plored widely [Peckham, 1995a; Tarboton, 1996].

Statistical self-similarity implies that probability distribu-
tions of a variable as measured over a continuous range of
scales, or, in our case, at a particular discrete sequence of
scales, can be viewed as rescaled versions of each other. This
sequence of scales is mathematically represented by a scale
parameter. As will be discussed in section 2, one can choose
from a variety of scale parameters for branching trees, of which
H-S ordering is only one. However, the H-S ordering seems
most natural for this purpose, and it lends itself to formalizing
the concept of topologic self-similarity in the sense of Toku-
naga [1966, 1978].

Statistical simple scaling was first investigated in the context
of river networks within a magnitude-based setting for link
elevation drops [Gupta and Waymire, 1989]. Using a link-based
formulation, it is possible to derive a distributional version of
Horton’s laws for the H-S stream lengths of different orders, as
shown in this paper, within the context of the random topology
model. However, such an approach is analytically complex for
link drops because the magnitudes of links comprising a stream
of a certain order are not statistically independent.

~Section 2 gives a brief overview of H-S ordering as derived
bj/ Melton [1959] and explains why this ordering scheme is ideal
for defining topologic self-similarity, whereas other ordering
schemes are not. This is followed by a summary of some key
results for deterministic self-similar trees and a review of some
link- and magnitude-based distributional results, including sta-
tistical self-similarity. Section 3 gives a motivation for and the
mathematical interpretation of the distributional version of
Horton’s laws in terms of statistical self-similarity. Two theo-
retical examples are also given there for stream lengths for the
random topology model. Section 4 gives empirical tests of a
distributional version of number of side tributaries and of
Horton’s laws for channel lengths, areas, and drops. Finally, we
conclude with some comments for further research.

2. Background

In this section we begin with a discussion of two general
stream ordering systems. This discussion is followed by a re-
view of Horton-Strahler stream ordering, which has a number
of unique properties that make it particularly useful as a scale
parameter for river networks. Next, we give a brief review of
the self-similar tree model, which is based on the H-S ordering
concept. Finally, we describe some distributional results which
are link- and magnitude-based.

2.1. General Stream Ordering Systems

Mathematically, a scale or similarity parameter can be intro-
duced in the context of river networks by assigning a numerical
value, or an “order,” to every link in a branching tree. Such
ordering schemes have a long history, which dates back to at least
1914 (sce Zavoianu [1985, chapter 3] for a brief review). Once
each link has been assigned a number (usually an integer), then

“maximal” chains of links that have the same order can be iden-
tified as “streams” of that order, which can be compared both
to other streams of the same order and to streams of other
orders. That is, the branching tree can then be decomposed or
partitioned into objects that consist of one or more links.

Most ordering schemes assign an order to a link on the basis
of the orders of the two or more “child” links that flow into its
upstream end. In this case, the order of a link is given by @ =
f(i,J), where i andj are the orders of its child links and f is an
arbitrary function. Two important special cases are magnitude,
where f(i, j) = i + j, and Horton-Strahler order, where f(i,
j) = max (i, j) + &, (In both cases, exterior links are
assigned a value of 1.) The special properties of these two
ordering schemes become apparent as soon as we try to gen-
eralize to other schemes. For example, we find that for some
schemes it may happen that f(i, i) = i, which leads to streams
that are treelike rather than single threaded. An interesting
magnitude-based example that has some features in common
with H-S order can be written as o = Llog,(6m — 2)J, where
m is the magnitude and the brackets indicate the smallest
integer that is greater than or equal to the real-valued argu-
ment. Similarly, we find that if we want the streams to consist
of multiple links (or to “persist”), then there must be (i, j)
pairs such that f(i, j) = max(/, j). Hence, requiring streams
to be single-threaded, multilink objects rules out a great num-
ber of schemes.

It is not until we turn to the issue of similarity that the
unique properties of H-S ordering become apparent. Note that
in the H-S ordering scheme, there is only one way for a Hor-
ton-Strahler stream to begin, and this occurs when i = j; that
is, f(i, i) = (i + 1). The fact that this equation holds for all
values of i and is the only way for an H-S stream to begin is
essentially what makes H-S ordering so useful as a scale pa-
rameter. Recent work Peckham [1995a] with the self-similar
tree model has helped to clarify this issue.

2.2. Horton-Strahler Stream Ordering

Horton-Strahler (H-S) stream ordering is a numerical clas-
sification scheme for identifying and ranking the major and
minor tributaries in a river network. The essential idea was
introduced by Horton [1945] but was later modified by Strahler
[1952, p. 1120, 1957] to make it more natural and easier to use.
This scheme is usually presented via a recursive assignment
rule, but this rule hides the underlying significance and unique-
ness of H-S ordering with respect to changes in scale. An
alternate derivation based on a pruning operation was sug-
gested in a short paper by Melton [1959] and has recently been
reemphasized by Peckham [1995a, b]. In Melton’s scheme a
reduction in scale is equivalent to a pruning of low-order
streams. We will briefly describe Melton’s method first, fol-
lowed by the equivalent recursive assignment rule.

In both approaches the river network is viewed as a tree
graph which is rooted at its outlet, and the exterior links, or
leaves in the tree, are defined to have an H-S order of 1.
Melton’s idea was to look at the tree graph that results from
removing all of these order 1 streams. We can imagine that this
less-foliated tree graph has little scars where its order 1 streams
were originally attached. Exterior links, or leaves, can again be
identified for the pruned tree, and the multilink chains are the
H-§ streams of order 2. The ones that originally contained
multiple links will have little scars. Repeating this pruning
procedure allows H-S streams of order 3 and higher to be
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determined, until there is only one stream of the highest order
remaining.

The recursive rule is (1) exterior links are assigned order 1,
(2) any link with two or more child links (upstream) of the
same order w are assigned order (w + 1), and (3) any other link
is assigned the maximum order that any of its child links have.
Consccutive links that have the same H-S order form chains,
and maximal chains, which begin with the confluence of two
links of order (w — 1) and terminate at the downstream end in
a link of order (o + 1), are called complete H-S streams of
order w. This procedure assigns exactly the same H-S order to
each link in a tree graph as the pruning method of the last
paragraph.

2.3. Self-Similar Tree Model

Tokunaga [1966, 1978] introduced a general tree graph
model for river networks which is based on the H-§ ordering
scheme of the last section. Peckham [1995a] extended the results
of Tokunaga and showed that the model’s defining equation,

Tousr=Ts (2)

could be used as a general definition of self-similarity in the
context of tree graphs. Here T, , _, is the (average) number
of tributaries of order (w — k) that enter a stream of order o
from the sides. The log linearity on Horton plots is a mathe-
matical consequence of the recursive formulas that all self-
similar tree graph constructions must obey. One of these for-
mulas gives the total number of streams of order w (anywhere
in the tree) as

N=-w
No=2N,+ D TNy 3)

k=1

It is immediately clear from this equation that Horton’s laws
do not follow as an automatic consequence of the H-S ordering
scheme itself; this issue has been debated in the literature
[Kirchner, 1993; Troutman and Karlinger, 1994]. While the first
term on the right-hand side (which counts upstream tributar-
ies) follows from the definition of H-S order. it is the term
containing 7, that determines whether the ratio NN, will
converge to a number Ry, and if so, the value of R, = 2.
Generating functions can be used to compute R, and other
stream ratios from the sequence of 7', values, and except for a
few special cases of self-similar trees, such as the “structurally
Hortonian” trees where T, = 0 for k > 1, strict log linearity
is only achieved in an asymptotic sense [Peckham, 1995a]. This
log linearity implies that (asymptotically) the sample average
grows exponentially with Strahler order, namely,

(X} = RY. 4

Empirical laws of this generic form are known collectively as
“Horton’s laws,” although some were discovered by other re-
searchers after Horton’s original work. The constant Ry, the
log of which appears as the slope of the regression line on the
Horton plot, is referred to as a stream ratio and typically varies
from one basin or region to the next.

Data analysis by Tokunaga (1966, 1978), Peckham [1995a, b],
and Tarboton [1996] has shown that the deterministic self-similar
tree model does a very good job of capturing the average internal
bifurcation structure in real river networks. The last two authors
used DEM-derived data for large river networks.

2.4. Link- and Magnitude-Based Results

Several authors have obtained distributional results for link
attributes within a magnitude-based framework. Perhaps the
best known of these is a result concerning the tail probabilities
of link magnitudes and areas. Rodriguez-Iturbe et al. [1992] and
Rigon et al. [1993] showed that link magnitude and area distri-
butions for both real and simulated river networks are de-
scribed by the following formula:

PIMz=m] =m™. (5)

P[M > m] is the probability the network has magnitude
greater than m. These and related results are summarized in a
book by Rodriguez-Iturbe and Rinaldo [1997]. A similar for-
mula, with & = 1/2, was derived by de Vries et al. [1994] for the
random topology model.

Peckham [1995b] showed how the methods of de Vries et al.
[1994] could be extended to derive a similar formula that
applied to any deterministic self-similar tree graph. The first
step is to compute the probability that a randomly selected link
has order w (in a tree of order () as

n

P[W=w]=NL., / > Vil (6)

k=1

Here W is the order of the chosen link, C, is the number of
links in any stream of order w, and N, is the total number of
streams of order w. Next, one uses the fact that both N, and
C,, obey Horton-type laws (in the limit) to derive the approx-
imation

P[W=w] = (Rc/Rp) """, (7

where R, and R~ (<R},) are the bifurcation and number-of-
links ratios, respectively. Finally, one makes the following crit-
ical observation for deterministic self-similar trees: a link’s
order exceeds w if and only if its magnitude exceeds M,,. Here
M, is the magnitude of a complete subnetwork of order w
which obeys a recursive formula similar to (3) and a Horton-
type law. Combining these facts leads to the result that

a=(1-p), t)]

where B is the “topological” Hack exponent and is given by B =
log(Re)log(Rp). It is interesting that although this result is for
links, the mathematical derivation of it is based on H-S order and
both scaling exponents are functions of two key stream ratios.

A search for the correct statistical structure of link drops led
Gupta and Waymire [1989] to the hypothesis of statistical sim-
ilarity for the link drops. It says that the probability distribu-
tions of any two link drops H(m,) and H(m,) of links of
magnitudes m, and m, in a drainage network are related as

H(m,) = (m/my)® H(m,), 9)

where 6 is a statistical scaling exponent. Predictions of the em-
pirical link concentration function (LCF) by the mean LCF using
(9) showed very good agreement with the data. In contrast, three
other sets of hypotheses regarding the distributions of link drops
consistently gave much worse predictions of the empirical LCF by
mean. Gupta and Waymire [1989] argued that by using empirically
observed downstream hydraulic-geometric relations between the
bankfull discharge and channel slopes one should expect a “pow-
er law” relationship between mean channel height and magni-
tude, as predicted by (9), and this reference should be consulted
for further details regarding these issues. Gupta and Waymire
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Figure 2. Comparison of F, _ (k) and F, (k/2) for the w values (a) 3, (b) 4, (c) 5, and (d) 6. The curves
are drawn as if k varies continuously, even though k is integer valued.

seen with previous magnitude-based analysis and the H-S or-
dering used here. However, the essential property that one is
investigating remains the same. Self-similarity is either present
or not and is not introduced by the ordering scheme itself.

3.2. A Reformulation of Horton’s Laws
in Terms of Statistical Self-Similarity

As explained in section 2, Strahler stream ordering is an
ideal way to decompose a river tree or basin into a finite
number of discrete scales. This decomposition groups subba-
sins of the same Strahler order into “ensembles” and puts
Strahler order w in the role of a scale parameter. In a tradi-
tional Hortonian analysis one measures some quantity X
(e.g., basin area, length of the highest-order stream, etc.) for all
of the complete H-S subbasins of order w in some large river
basin. One then computes the sample average (X ) for each w
and plots log(X ) versus w. For almost any geometric or to-
pologic quantity X, one finds that the data points can be fit
quite well by a straight line. Figure 1 shows Horton plots for a
variety of different measurements taken for the Kentucky
River basin. The log linearity is seen to hold remarkably well.

Horton’s laws can also be formulated mathematically by
viewing X, as a random variable and (X ) as an estimate of
this random variable’s expected value £(X ). In this context,
Horton’s laws are expressed in the form

E(X.,) = Ry *E(X,), (10)

where w and k are any two Strahler orders. This has been the
accepted version of Horton’s laws for half a century.

However, is this the strongest statement that one can make
about how the measurement X, varies with the scale param-
eter »? In section 4 we will present empirical evidence that the
measurements X, are statistically similar to the measurements
X, where w and k are two different Strahler orders. We will
also show that this feature is present in Shreve’s well-known
random model. A convenient mathematical formulation of this
hypothesis is

X(d d
(E(Xw)) 27 VYo, (11)

where Z is a random variable with mean 1 that does not
depend on w. Recall from section 3.1 that (11) states that if we
normalize or rescale the random variable X, by its mean,
which effectively nondimensionalizes the data, the distribution
of the resulting random variable is independent of w. We will
refer to (11) as the hypothesis of weak statistical self-similarity
(SSS). The prefix self indicates that (11) is hypothesized to
hold for all values of w present in some large basin.
A consequence of (11) is that

X, a5 [M:ka.

E(X}) (12)

Combining (12) with a Horton law in the form (10) gives

(13)

where, again, » and k are any two Strahler orders. Writing
Ry = e, this type of statistical self-similarity can be shown to
be the most general scaling property of the form

X, =Ry*X,,

Xu,ég(w—k)X;,, (14.)

where g is an arbitrary function. Similarly, the magnitude-
based definition of self-similarity X,, = (m/j)° X; is the most
general scaling property of the form

X, = g(mlj) X;. (15)

The functional forms for g follow from the definitions them-
selves using a recursive argument [see Peckham, 1995b]. We
will refer to (13) as the hypothesis of strong SSS. Clearly, (13)
is consistent with Horton’s laws, since it was obtained by com-
bining these laws with weak SSS: note that computing expected
values on both sides of (13) returns us to (10). However, strong
SSS is a significant generalization of Horton’s laws from scaling
of first moments, or means, to scaling of entire distributions.
For example, assuming that the CDF of X, scales according to
(13), it follows immediately that all of the moments must scale
according to the formula

E(X1) = R{“™E(X}), (16)
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Figure 5. Testing the weak form of the statistical self-similarity hypothesis for along-channel stream lengths,

using ECDFs.

distributions of these random variables. As discussed in section
2.4, it was shown by Gupta and Waymire [1989) that link drops
cannot be assumed to be independent of link magnitude. Note,
however, that link lengths are observed to be approximately
independent of link magnitude for many large river networks
[Shreve, 1969].

33.2. Example 2: Unit link lengths in Shreve’s model.
The results of the last section held exactly for any pair of
Strahler orders w and k and not just in an asymptotic sense.
This relied, in part, on choosing the link lengths from an
exponential distribution. However, we expect the statistical
self-similarity to be primarily due to the geometric distribution
of links in a Strahler stream, and hence it should appear in an
asymptotic sense whenever the distribution used for the link
lengths has a finite second moment. This conjecture can be
motivated by the following heuristic argument.

Suppose that all of the links in G,, have unit length. This
implies that the length of our randomly selected Strahler
stream of order w, denoted here as L, is equal to the number
of links in this stream, so that L, = C,. We now show that
L,.1 = 2L,, as w tends to infinity. To do this, we will work
backward through a sequence of equivalent statements until
the postulated asymptotic equality can be verified. Hence we have

Lo =2L.
Fi (k) =F (k/2) Yk
[1-(1=-p.)=[1-0-p ¥ Yk

(28)
(1 —Pun) =(1 “Pm}l"l

wheren = 2%

( 1)”___( 1 )m’z
=0) = G

However, for sufficiently large n = 2 (or sufficiently large o,
note that n is not the magnitude) it is a well-known fact that
both sides of the last equality approach the common value of
e”'. Actually, the limiting equality in the distribution is ap-
proached rather quickly, as can be seen from Figure 2. For w =
3 (Figure 2a) the curve for F, . (k) is very close to the one for
F, (k/2), and for o = 6 (Figure 2d) the two curves are
indistinguishable.

4. Empirical Tests for Large Basins

4.1.  Empirical Cumulative Distribution Functions (ECDFs)

Each of the formulations of statistical self-similarity that we
have discussed involves the notion of “equality in distribution,”
as reviewed in section 3.1. Given a set of measurements (or
samples) being viewed as realizations of a random variable, the
ECDF can be estimated as follows. Let 1 be the number of
samples, and let {x,, x5, **+, x, } be these samples sorted in
ascending order. The ECDF S, (x) is defined as the step func-
tion that has height (k/n) on the interval [xr_1, X)), where
k = 0 andx, = -, Note that §,.(x) gives the proportion of
the n sample values that are less than x. This function in-

— A

[ I o T Y N
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Figure 6. Testing the strong form of the statistical self-similarity hypothesis for along-channel stream

lengths, using ECDFs.

creases from the value 0 up to the value 1 as it should, since this
is a defining property of a CDF.

In this paper we are primarily interested in the stream-based
formulation of statistical self-similarity. In sections 4.2-4.5 we
will measure some quantity X, for all of the complete Strahler
subbasins of order w in a given large river basin. Then, these
measurements will be used to compute an ECDF for X .
Repeating this for each value of w, normalizing as necessary,
and graphically comparing the resulting ECDFs will allow us to
check the hypotheses (11) and (13) directly for many different
basin measurements. In section 4.6 we will discuss a more
quantitative method for comparing ECDFs called the Kolmog-
orov-Smirnov two-sample test.

The measurements that are analyzed here were made using
the RiverTools software toolkit. RiverTools automates the ex-
traction of river networks from very large DEMs and uses
state-of-the-art algorithms that are similar to those used by the
U.S. Geological Survey (USGS). These algorithms are contin-
ually evolving, and better methods for dealing with issues such
as (1) source identification, (2) routing across flats, and (3)
divergent flow at the hillslope scale are still an active area of
research. For an in-depth discussion of these issues, see Peck-
ham [1998, and references therein]. However, years of practi-
cal experience with these algorithms has demonstrated that
they are robust and well suited to a variety of statistical anal-
yses for large river networks. It is our judgement that the
anticipated refinements to these procedures will not signifi-
cantly affect the results we are presenting here.

4.2. ECDFs for Strahler Basin Areas

It turns out that both the weak and strong versions of the
SSS hypothesis for basin areas hold remarkably well for many
basins. Let 4, denote the drainage area of a Strahler basin of
order w. The weak hypothesis for basin areas is then simply

A,

E(A,,,)_Z Vo, (29)
where Z is some random variable with mean 1. Figure 3 shows
the ECDF for the variable A,/E(A,) overlaid on the ECDF
for A JE(A,), where w is varied from 1 to 6. Hence (29) is
being tested directly. A Strahler order of 2 was chosen as a
“reference scale” because order 1 streams and basins are
rather unique in that they have no streams entering their up-
stream end and they are positioned at the transition between
hillslopes and channelized flow.

Not surprisingly, we have found that the statistics of first-
order basins do not always conform to the same pattern as the
other orders. Though the ECDFs are smoother for smaller
values of w (since the sample sizes are larger), all of the curves
lie on top of one another. Though the agreement is visually
quite good, a quantitative comparison using the Kolmogorov-
Smirnov two-sample test also supports the weak SSS hypoth-
esis. The strong SSS hypothesis,

A,=Ro*4, (30)

can be tested in a similar manner, except that instead of com-
paring the ECDF for A /E(A,) to that of A,/E(A,) one
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compares the ECDF of 4 /R4~ to that of A, for each value
of w; see Figure 4. Again, the agreecment is quite good. Similar
results have been obtained for several other basins [Peckham,
1995b]. In fact, of all of the quantities to be examined in this
paper, basin areas seem to satisfy the SSS hypotheses best.
These results are consistent with the idea that basin shapes are
statistically self-similar but do not necessarily imply that this is
the case. See Peckham [1995b] for the construction of a simple
and informative counterexample. Notice that the strong SSS
hypothesis relies on rapid convergence to the stream area ratio
R ;. Moreover, to test this hypothesis, we require an accurate
estimate of this ratio. A Horton plot provides one method for
estimating R ,; additional methods are discussed by Peckham
[1995b]. Convergence is but one of many issues that make it
difficult to obtain accurate estimates of stream ratios.

4.3. ECDFs for Strahler Stream Lengths

Let us now examine the weak and strong SSS hypotheses for
the along-channel lengths of Strahler streams, namely,

L

w

EL) *

L =Ry 'L, (31)
The hypotheses in (31) are tested through a graphical compar-
ison of ECDFs in Figures 5 and 6. Both a graphical comparison
and the more stringent Kolmogorov-Smirnov two-sample test
support the weak SSS hypothesis for the Kentucky River basin
and its subbasins, while the strong hypothesis appears to break
down for Strahler basins of order 4 and 5; see Figure 6,

We can also check the weak and strong SSS hypotheses for
the straight-line lengths L*, of Strahler streams, Equations

o

similar to (31) are checked graphically in Figures 7 and 8, and,
again, the agreement is good. As argued by Peckham [1995b,
pp. 152-156], straight-line stream lengths are thought to be
largely determined (or constrained) by basin shape.

4.4. ECDFs for Strahler Stream Drops

For elevation drops across H-S streams H, the weak and
strong SSS hypotheses take the form

HJEH,)=Z H,<Ry'H, (32)
As in the previous sections, these hypotheses are tested graph-
ically by comparing ECDFs in Figures 9 and 10.

The step-like character in the plots can be traced to the fact
that 3-arc sec USGS DEMs are made by fitting a surface to the
points obtained from digitizing a contour map. This causes
contour elevations to be overrepresented in the resulting
DEM, even if the width of the contour line is only one pixel
wide. If the contour line is wider than a pixel, then “terraces”
appear in the DEM. Notice, however, that stream drops of a
size comparable to the contour interval are most affected. For
streams with drops spanning several contour intervals, the
problem begins to disappear. This explains why the tails of the
stream-drop ECDFs are so much smoother. Considering this
problem, the ECDFs are seen to match up fairly well for both
versions of the SSS hypotheses. Clearly, additional analysis
using DEMs that do not have the terracing problem will be
needed to properly test these hypotheses. The terracing prob-
lem for stream drops also affects stream slopes but to a lesser
extent because of the stabilizing effect of stream lengths.
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Figure 8. Testing the strong form of the statistical self-similarity hypothesis for straight-line stream lengths,

using ECDFs.

4.5. Histograms for Number of Side Tributaries

We have seen that the hypothesis of statistical self-similarity
seems to hold quite well for many of the geometric quantities
in river basins. In this section we will give empirical evidence
which supports the idea that real river networks also have
statistically self-similar topologies as defined below.

Let X, ., _; be arandom variable corresponding to the num-
ber of tributaries of order (@ — k) entering a given stream of
order w from the sides. Peckham [1995a] showed that the
sample average (X, ., _,) could be closely approximated by a
constant T, that depended on k but not w, or (X, ,_x) = T;.
This was evident from the fact that the generator natrix as-
sembled from these averages had values that were roughly
constant along diagonals. Peckham [1995b, p. 173] suggested
that a natural extension of statistical self-similarity to network
topology is the following

Xowr=2Z, Vo, (33)

where Z, is a discrete (i.e., integer valued) random variable
that depends only on k, with mean E(Z,) = T,. Notice that
this hypothesis differs somewhat from the weak and strong SSS
hypotheses, in that it involves no w-dependent rescaling.
Since (33) involves discrete (i.e., integer valued) distribu-
tions and no rescaling, it is more appropriately tested by com-
paring frequency histograms rather than ECDFs. Figure 11
shows such a comparison for the case k = 1, while Figure 12
shows the results for the case k = 2. The agreement seems
quite good based on a visual comparison. In particular, the
histograms for w = 2 and @ = 3 are virtually identical. Unfor-

tunately, the Kolmogorov-Smirnov test is not appropriat_é for
discrete random variables like X, ,_,, as discussed in section 4.6.

4.6. Kolmogorov-Smirnov Two-Sample Test

Throughout this paper we have been computing ECDFs
from data and testing the weak and strong SSS hypotheses
graphically. However, it is also possible to make this compar-
ison quantitative and objective using a statistical test called the
Kolmogorov-Smirnov two-sample test. The underlying idea be-
hind this test is quite simple. Let S, (x) and T,,(x) be two
ECDFs, where n and m are the number of samples in the two
different ensembles. Now define a test statistic as

D = max |S,(x) = T.(x)], (34)

which is just the maximum difference between our two ECDFs.
Note that if these two step functions overlap exactly, then we
will have D = 0, otherwise D will be a measure of the dis-
crepancy between the two functions. However, this measure is
based on the worst case, or the largest gap between the curves.
Other measures are also possible; for example, one could use
the average of the mean square separation.

In practice, D can be computed by combining the measure-
ments for the two ensembles and sorting these values to get a
sequence {zy, Z,, ***, Z,+mt- We then define r, as the
number of values in the subsequence {z,, z,, -*+, z,} that
came from the ensemble with n samples and s, as the number
that came from the one with m samples. Notice that (r, +
s;) = k. It is not difficult to show that D can be computed
from the formula
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Fy Sk

= (35)

D = max
k

The remarkable thing about the test statistic D is that its
distribution is independent of the distributions of the random
variables we are measuring. Statistical tests with this property
are called nonparametric or distribution-free tests. Unlike
parametric tests, these tests require no a priori assumptions
about the distribution of the data.

1t is clear that the distribution of D must depend on the
sample sizes n and m. However, as n and m become moder-
ately large (say, greater than ~40), the distribution of the
normalized test statistic D = DVnm/(n + m) approaches a
limiting distribution that is independent of n and m. Tables for
this limiting distribution are widely available and contain val-
ues for p and d,, which are defined as

P(D=d,) =p. (36)

Observe that d,, is the pth quantile of the random variable D.
Some benchmark (d,, p) pairs are given by {(1.224, 0.10),
(1358, 0.05), (1.517, 0.02), (1.628, 0.01), (1.858, 0.002), (1.950,
0.001)}. Hence, if our hypothesis is true, then the odds of D
being >1.224 are 1 in 10, while the odds of it being >1.950 are
only 1 in 1000. This means that if D is <1.224, we can accept
the hypothesis with a confidence of 90%. The statistic D is
included as an inset in each of the ECDF plots in this paper. As
is typical for statistical tests, the emphasis is on whether we
should reject the hypothesis. While a failure to be rejected is
reassuring, it does not prove that our hypothesis is correct.
In closing, we should point out that this test assumes that the

measured quantities vary continuously and that there are no
ties. Therefore this test is suitable for measurements like
length and area but not for discrete measurements like mag-
nitude and number of links per stream. It should be kept in
mind, however, that even our length and area measurements
are likely to contain some ties because of the finite pixel size of
the DEMs. It is also implicitly assumed that we are drawing our
samples at random from an infinite population. For more de-
tails on ECDFs and the Kolmogorov-Smirnov test, see Bradley
[1968, 288-295]. A one-sided test based on this same idea can
also be constructed by removing the absolute value signs from
the previous equations for D. It is also possible to generalize
from a two-sample test to an n-sample test, which in some ways
would be more natural for the current problem. However, the
two-sample test seems adequate for our purposes.

5. Final Remarks

We have presented a theoretical formulation of statistical
self-similarity in the geometry of river basins involving H-S
stream lengths and areas, in the hydraulic-geometry involving
H-S stream drops, and in the topological or branching struc-
ture of river networks in terms of the statistical distribution of
side tributaries as defined by (33). We have shown that a
mathematical reformulation of Horton’s laws in terms of prob-
ability distributions is in excellent agreement with available
data. The traditional Horton’s laws in terms of statistical av-
erages are a very special case of this reformulation. The far-
reaching implication is that certain information learned from
studying the low-order basins in a region can be scaled up in a
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using ECDFs.

straightforward manner to get statistical information about
much larger basins.

These results in conjunction with a recent result by G. A.
Burd et al. (unpublished manuscript, 1999) suggest that there
is a critical need for developing a new class of stochastic self-
similar models for river networks. This class must be able to
accommodate the observed deviations between data and the
predictions of the random model and the deterministic self-
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similar class of Tokunaga [1966, 1978] should be a special case
of this reformulation. Moreover, statistical self-similarity in
Horton’s laws as reported here should also follow from such a
class of models. Some new theoretical results in this line of
research have been obtained by S. Veitzer and V. Gupta (un-
published manuscript, 1999). Previous analytical results by
Wang and Waymire [1991] for fluctuations around average
strcam numbers are specific to the random topology model.
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However, they can be used to devise a statistical test of hy-
potheses for the observed deviations between data and the
predictions of the random model for stream numbers reported
by Peckham [1995a].

How basins evolve to a statistical self-similar state as de-
scribed here is a newly developing theme of research in theo-
retical geomorphology. For example, in a companion paper
(S. D. Peckham et al., manuscript in preparation, 1999) we
have demonstrated the dynamical significance of Horton ratios
by §ta.rting from first principles involving conservation laws and
a postulate of “dynamic self-similarity.” Although this compan-
ion paper has thus far considered only averages rather than
entire probability distributions, it leads to a new theory of
downstream hydraulic geometry and to theoretical predictions
of numerous hydraulic-geometric exponents that are all in
good agreement with empirical observations for drainage net-
works [Leopold et al., 1964]. Other new results involving scaling
symmetries and conservation laws are given by Peckham
[1995b, 1999]. We expect that a certain degree of statistical
homogeneity in geology and climate is required for basins to
reach a state of statistical self-similarity.
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