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1 Introduction

In a wide variety of simple disease models, the rate of change in the number of
infected people can be written as

f:ﬁS—TI—m1=<ﬁ;—m>1, (1)

where I is the number of infected people, S is the number of susceptible people,
T is the total number of people in the population, f§ is the transmission rate of
the disease, and m is the rate at which individuals leave the infected group.
Here I means the derivative of I with respect to time, a convention we will use
throughout the paper.

Equation (1) is applicable to a wide variety of one-group models. Follow-
ing Castillo-Chavez et al. [3], we allow f to be a function of T, allowing
a variety of assumptions about mixing. Depending on the type of model, the
per-capita removal rate, m, may include the rate of “background” mortality or
disease-induced mortality, or transitions to immune, susceptible or quaran-
tined compartments.

Note that the number of infectives will increase when S/T > m/f and
decrease otherwise. The ratio S/T gives the proportion of susceptibles in
a population, and hence the probability that a given contact of infectious
individual is with a susceptible individual, under the assumption of homo-
geneous mixing. This ratio is at a maximum (generally 1) in a popu-
lation where the disease is absent, and decreases as the disease begins to
invade a population. It is this phenomenon of the disease reducing its own
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Fig. 1. A forward bifurcation. The curve shows the non-trivial bifurcating equilibrium. The
arrows show the direction of flow for the model disease system, after the system reaches the
manifold on which slow dynamics occur

reproductive rate by depleting the pool of susceptibles that leads to the
ubiquity of the pattern shown in Fig. 1 in simple disease models.

Figure 1 shows a bifurcation diagram for a simple disease model. The
x-axis shows R,, the average number of new infections produced by an
infectious individual near the disease-free equilibrium. In (1), if everyone is
susceptible at the disease-free equilibrium, R, would be fi/m. For a given set of
parameters, R, remains fixed, and the change in the number of infectives is
shown by the diagram — in this case when R, < 1, the number of infectives
decreases to zero, while when R, > 1, the number of infectives will increase or
decrease to the curved line that marks the endemic equilibrium.

We will call the type of bifurcation shown in Fig. 1 a “forward bifurcation,”
with respect to R,. Characteristics of forward bifurcations include:

1. the absence of positive equilibria near the disease-free equilibrium when
R, < 1 (for simple models, the disease-free equilibrium is often the only
equilibrium for Ry < 1); and

2. a low level of endemicity when R, is slightly above 1.

This pattern was perhaps first noted by Kermack and McKendrick [14], and
can be observed in SI and SIR models which include recruitment and deaths,
and in SIS and SIRS models with or without recruitment and deaths (see e.g.,
[12, 15]).



Backwards bifurcations and catastrophe in simple models of fatal diseases 229

The forward bifurcation is also commonly found in multi-group models.
In many multi-group models, the equation for the number of infectives in
group i can be written:

. S.
Ii:ﬂ%Ai_mili (2)

Here A; is the “force of infection™ as seen by members of group i. Since I; and
A; tend to increase together, a decrease in the proportion of susceptibles will
tend to retard disease spread, just as in the one-group case. This leads to
forward bifurcations in many cases.

Lajmanovich and Yorke [15] showed that in simple multi-group SIS
models with constant population the disease-free equilibrium is globally
stable when R, < 1, and there is a unique, globally stable endemic equilibrium
when R, > 1. In other words, these simple models are completely character-
ized by a forward bifurcation. Simon and Jacquez [17] extended this work to
show similar behavior for a class of models, inspired by HIV/AIDS, which
allowed for multiple stages of infection. These models allowed for variation
among groups in transmission of the disease, but not in susceptibility to the
disease or in rates of progression of the disease.

Some multi-group models, however, exhibit more complicated behaviors,
including “backwards bifurcations.” In general, when R, = 1, another equilib-
rium bifurcates from the disease-free equilibrium. In a forward bifurcation,
this bifurcating equilibrium is biologically meaningful (that is, positive) when
R, > 1, and is stable. In a backwards bifurcation, the bifurcating equilibrium
is biologically meaningful when R, < 1, and is unstable (see Fig. 2). As shown
in Fig. 2, a backwards bifurcation often implies parameter values for which the
disease-free equilibrium and some endemic equilibrium may both be locally
stable.

Hadeler and Castillo-Chavez [11] have demonstrated the existence of
backward bifurcations in models that include behavioral responses to per-
ceived disease risk. In a particularly striking result, Castillo-Chavez et al. [4, 2,
13] found backwards bifurcations in a multi-group model similar to that of
[17], also inspired by HIV/AIDS, including disease-induced mortality and
asymmetric transmission.

The possible presence of backwards bifurcations in simple disease models
has important qualitative implications. Backwards bifurcations allow mul-
tiple stable states with fixed parameters. Further, small changes in parameters
can produce large changes in equilibrium behavior. Imagine a population in
which the disease is absent and R, is changing slowly. In a forward bifurca-
tion, when R|, first crosses one, the disease can invade to a very low endemic
level. If R, drops below 1 again, the disease will disappear from the population
(see Fig. 1). On the other hand, in a backward bifurcation, once R, crosses 1,
the disease can invade to a relatively high endemic level. Further, decreasing
Ry to its former level will not necessarily make the disease disappear.

If we conceive of the parameters that underlie R, as changing slowly
compared to the dynamics of the disease, backwards bifurcations allow the
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Fig. 2. A forward bifurcation. The curve shows the non-trivial bifurcating equilibrium. The
arrows show the direction of flow for the model disease system, after the system reaches the
manifold on which slow dynamics occur. Note that the upper branch of (stable) equilibria
need not exist in all disease systems with backwards bifurcations. This picture represents the
simplest possibility for global behavior with a backwards bifurcation, but not the only
possibility (see text)

possibility of slow change punctuated by much more rapid changes when the
disease-free equilibrium becomes unstable or when the endemic equilibrium
ceases to exist. This sort of behavior is known as “catastrophe” and was first
introduced in ecology by Ludwig et al. [16] in a paper discussing outbreaks of
the spruce budworm.

It is important to note that Fig. 2 represents only one possibility for the
global bifurcation diagram in the case of a backward bifurcation — the
simplest one. The backwards bifurcation implies non-local behavior, and
therefore a non-local attractor, for R, slightly above 1. Although we cannot
prove that this picture always holds for our model, this is the picture we have
found for specific parameter values leading to a backwards bifurcation. This is
also the picture found by [11] and [7] in other disease models which can give
rise to backwards bifurcations.

This paper attempts to provide a general framework for the mechanisms
behind backwards bifurcations in simple disease models. We discuss the
biological interpretation of the features of the model that produce these
bifurcations. We also simplify and discuss the criterion developed by Huang
et al. [13] for establishing the sign of a bifurcation.
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2 A practical criterion for backwards bifurcations

As a disease invades it reduces the number of susceptible individuals in the
population, which tends to reduce its reproductive rate. For a backward
bifurcation to occur, other factors must outweigh this tendency, so that as the
disease invades its reproductive rate increases. If a disease lowers its reproduc-
tive rate by invading, it would be expected that when R, < 1 and it cannot
invade a naive population, it could never persist at all. Further when R, is
slightly above 1, the disease would be expected to reach a low endemic level,
because of this negative feedback.

On the other hand, a disease that increases its reproductive rate by
invading may be able to survive when established in a population, even when
R, < 1 and it cannot invade. Similarly when R, is even very slightly above 1,
the positive feedback between increase of the disease and rate of spread may
lead to a relatively high endemic rate of infection.

In particular, when Ry, is precisely 1, each infection exactly replaces itself in
the linear approximation. Hence, whether the disease will invade when Ry = 1
will be determined by whether the reproductive rate increases or decreases as
the disease increases along the center manifold. Hence, we would expect the
disease to be able to invade at R, = 1 in the case of a backward bifurcation,
but not in the case of a forward bifurcation. This is the behavior implied by the
bifurcation diagrams (Figs. 1 and 2). A simple criterion for a backwards
bifurcation, then, is one in which the disease can invade when R, = 1.

Figure 3 shows a projection of the phase plane of a simple disease model.
In Fig. 3a, the parameters are such that the disease cannot invade when
Ry =1 (middle panel). If we decrease R, slightly, we create a small, linear
“pull” toward the disease-free equilibrium. This would not be expected to
affect the qualitative dynamics (top panel). If we increase R, slightly, we create
a small, linear “push” away from the disease-free equilibrium (bottom panel).
Although the push is small, because it is linear it will be dominant in some
small neighborhood of the disease-free equilibrium. As can be seen from the
figure, the properties of a forward bifurcation — the absence of a low-level
unstable equilbrium when R, < 1 and a stable equilibrium bifurcating from
the disease-free equilibrium when R, > 1 — arise naturally when the disease
does not invade when R, = 1.

Figure 3b shows a phase plane for a system in which the disease does
invade when Ry = 1 (middle panel). In this case, increasing R, to provide
a push does not change the qualitative dynamics (bottom panel), while
decreasing R, to provide a linear pull towards the disease-free equilib-
rium creates a zone where the disease goes extinct (top panel). Here we have
the properties of a backward bifurcation — an unstable equilibrium bifurcating
from the disease-free equilibrium when R, < 1, giving rise to multiple stable
states.

Formally, the bifurcation of the disease-free equilibrium will have the
topological properties shown in Fig. 3b whenever the bifurcation at Ry = 1 is
a transcritical bifurcation (see [10, Chap. 37), which is generally the case for
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Fig. 3. Phase space diagrams for different parameter values in the neighborhood of two
different types of bifurcation points. A triangle indicates an asymptotically stable equilib-
rium point, a cross a saddle point, and a square an ‘indeterminate’ (non-hyperbolic)
equilibrium

simple disease models. The global behaviors shown hold for many simple
models, but a wide range of global behaviors is possible.

3 A simple multi-group model

Our model is a simplified version of the one developed for AIDS by Huang
et al. [13]. The model is a multi-group SI model with disease-induced mortal-
ity. In general, we can write:

I;=B;— wilo; + 1)1

. A)
Si=4; — Bi — iS;
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Here I; and S; are the number of infectives and susceptibles, respectively, in
group i. Individuals are recruited into the susceptible pool at rate A;, and
contract the disease at rate B;. Both A; and B; can be functions of any or all of
the dynamic variables. Susceptible individuals die at rate u;, while infected
individuals experience disease-induced mortality at a rate that is ¢; times as
great, as well as mortality from other sources at the rate y;.

Since B; is often the most complicated term in such a model, we simplify
the treatment by rewriting (3) in terms of I; and T;, where T; = S; + I; is the
total number of people in group i:

I; = B; — ufo; + DI,

: )
Ti= A — T — poid;

We simplify this general model by assuming proportional mixing,
and by assuming that the mixing rate for each group, the probability of
transmission between any two groups and the rate of recruitment into each
group remain fixed. If the mixing rate of group i is ¢;, then the total mixing
activity is ) ;¢;T;, and the proportion of group i’s contacts that are with
members of group jis ¢;T;/Y, ¢, Ty. Let 4;; be the fraction of contacts between
group i susceptibles and group j infectives which lead to infection. Since the
proportion of group j that is infected is I;/ T;, and the total number of contacts
made by group i susceptibles is ¢;S;, the rate at which group i susceptibles
become infected is:

C )\’l i I i
B; = ¢;S; M 5
2iciTi
For convenience of notation, define the total mixing activity,
N(T) =} ;¢;T;, the transmission rate from group j to group i, /;; = ¢;¢;4;; and
the total death rate of infectives, m; = u;(g; + 1). Then (4) becomes:

Ii: . li~I<—m,-Ii
N(T)%l I

: (6)
T = A — wTi — woil;

We assume that the mixing rates ¢; remain constant as subgroup sizes
change. This assumption is an important part of the reason why backwards
bifurcations are observed. Under the common assumption of bilinearity
(where the transmission term is given by S;I;, rather than S;I;/N(T )), mixing
rates increase linearly with subgroup sizes and backwards bifurcations do not
occur in this model. It is commonly thought that real mixing patterns lie
somewhere between these two extremes. See [18] for a discussion of the
importance of the relationship between population sizes and mixing rates on
disease dynamics. For the sake of mathematical simplicity, we will also
assume that all of the /;; are positive, and hence that every subgroup has at
least some transmission of the disease to every other subgroup.
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4 Determining the sign of a bifurcation

Huang et al. [13] have analyzed the bifurcations of this model, using u as
a bifurcation parameter. We are going to take a different approach. We define
R, formally as the dominant eigenvalue of the ‘next-generation” matrix (see
[6]). Thus we know that a bifurcation point (that is, a point where the leading
eigenvalue of the Jacobian matrix at the disease-free equilibrium is zero) will
occur whenever R, = 1. We analyze the sign of the bifurcation in the neigbor-
hood of a particular bifurcation point by analyzing whether the disease can
invade at the bifurcation point. Appendix 2 shows formally that this calcu-
lation determines the sign of the bifurcation with respect to a change in
parameters that increases the leading eigenvalue in the neighborhood of zero,
and thus that increases R, in the neighborhood of 1.

At the bifurcation point, the dominant eigenvalue of the Jacobian matrix,
zero, is associated with a unique right eigenvector, which we will call the
dominant eigenvector. This eigenvector gives the distribution of infected
individuals in different groups in the direction in which the disease initially
spreads. In the case where the disease does not spread, the dominant eigenvec-
tor gives the asymptotic distribution of infecteds in different groups as the
disease dies out.

The Jacobian matrix also has a dominant left eigenvector, corresponding
to the zero eigenvalue. Caswell [5, Chap. 4] has provided a biological
interpretation of dominant left eigenvectors. The left eigenvector gives the
projection of a vector onto the dominant eigenvector in the eigenvector basis.
The dominant eigenvector component in turn determines the long-term dy-
namics of the system. Hence the dominant left eigenvector reflects how much
an infected individual in each subgroup contributes to the spread of the
disease, as it begins to invade.

Intuitively speaking, we are going to develop a criterion for whether
the disease can invade when R, = 1 by assuming that the disease invades
a small amount along the dominant eigenvector, calculating the vector field at
a point along the dominant eigenvector near the disease-free equilibrium, and
multiplying by the dominant left eigenvector to find out if the component of
the vector field in the direction of the dominant eigenvector is positive or
negative.

More formally, let V = (I, T') be the vector of dynamical variables and
V=0T),T=(A/ui,. .., A/ u,)" be the disease-free equilibrium. Then we
can write (6) in vector form as:

V=HWV)V -7) (7
Here
< F(V) 0 >
HV) = : .
— diag{p;o;} — diag{p;}
and

F(v) = [% l,-,} — diag {1}
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LetN =Y i T;be N(T) evaluated at the disease-free equilibrium and let

-~

T

F=FV)= [ﬁl l,-j] — diag{w;}

be the matrix F evaluated at the disease-free equilibrium. Then we can write
the Jacobian matrix (H evaluated at the disease-free equilibrium) as:

7= < - diag{uioi} -~ dié(l)g{,ui}>

Since we have assumed that the dominant eigenvalue of H is zero, it follows
that the dominant eigenvalue of F is zero. Furthermore, since the off-diagonal
entries of F are positive, the dominant eigenvalue, zero, must be a simple
eigenvalue and the dominant eigenvector I° = (I?) is strictly positive

[9, Chap. 12].
By inspection, it can be seen that the dominant eigenvector of H
is VO=(1°T°), with T® =(—0a,I%,..., —0a,I2)". Hence, as the disease

invades along the dominant eigenvector, people in subgroup i die from
the disease at a rate o; times as fast as the rate that the number of
infectives increases. This may seem surprising, since we may suppose that
the disease would invade on a faster time scale than it would cause mortality.
This is true in general, but here we have chosen the parameters such that we
are at a bifurcation point, and hence the linear rate of increase of the disease is
zZero.

Similarly, F has a strictly positive dominant left eigenvector, which we will
call I*. Then, by inspection, V'* = (I*, 0) is the dominant left eigenvector of H,
which we will choose so that V*. 1% = 1. Since V* gives the projection of the
vector field onto the dominant eigenvector, we conclude that this projection is
determined by the I components, and not the T components, of the vector
field.

In Appendix 1, we show that as the disease initially invades along the
dominant eigenvector, the component along the eigenvector is governed by
the equation

4 = ha* + 0(c) , (8)
where
h=V*.HV°

is the projection of the initial direction of the vector field onto the dominant

eigenvector, and

d .
H =—H +aV°)l,=0
do

is the initial rate of change of the matrix H as the disease invades. The disease
can invade when R, = 1, and hence we have a backward bifurcation, when
h>0.
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Also in Appendix 1, we calculate h for the system (6) and show that:

1 N
h ZTZmiIka? <ch0k11? ——(o; + 1)1?> . 9)
N k T;

13

As the corollary in Appendix 2 shows, when h < 0, changing the para-
meters slightly to make R, slightly greater than one will yield a positive
(biologically meaningful) branching equilibrium, while making R, slightly less
than one will not. This is the pattern for a forward bifurcation. Similarly, when
h > 0, the branching equilibrium is positive when Ry is slightly less than 1,
giving a backwards bifurcation.

Now let J® = (1/y;m;I¥I7)I*. Like I*, J° is a dominant left eigenvector,
giving the relative weights of the various groups in spreading the disease. Our
condition for a backward bifurcation (9) becomes:

J LN

13

If we further let w; = ¢;T; /i J-Tj be the proportion of total mixing activity
accounted for by group i, then (10) becomes:

I° I°
ZW1%01>ZmlI?JlO?l(O'I+1) (11)

i i

5 Interpreting the backwards bifurcation

The criterion (11) allows an intuitive explanation of how backwards bifurca-
tions can occur in this simple model. Since

both sides of the inequality can be interpreted as weighted averages. The
right-hand side is a weighted average of the relative rate at which people
contract the disease and leave the susceptible pool. The reduction in the
number of susceptibles tends to reduce the reproductive rate of the disease.
The left-hand side is a weighted average of the rate at which people leave the
mixing population due to the disease. Because we have assumed that mixing
rates remain the same as population sizes get smaller, decreasing population
size alone tends to increase the disease reproductive rate, after the negative
effect of reducing the pool of susceptibles is taken into account. When the
disease is invading, the population is initially entirely susceptible. Hence the
rate at which individuals leave the mixing population entirely must be less
than the rate at which the leave the susceptible pool.

Although the left-hand side is an average of a smaller quantity than the
right-hand side, if the weights are suitably skewed it is possible for the
left-hand side to be larger and for a backwards bifurcation to occur. The
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weights on the left-hand side simply reflect the proportion of mixing activity in
the population due to each subgroup. The weights on the right-hand side are
a measure of the effect of the disease on the subpopulation, since they combine
a measure of how quickly the population is getting (and spreading) the disease
with a measure of how quickly individuals in the subpopulation die once they
have the disease.

For the disecase to invade when R, =1, the right-hand side must
be relatively small, implying a negative relationship between J?, the effect
of infectives of group i on the spread of the disease, and I?(c; + 1), the
effect of the disease on the subgroup. Note that J? gives the per-case
contribution of group i to the dominant eigenvector, and hence to the
spread of the disease. Hence, for the disease to invade there must be groups
that are strongly affected by the disease but less important in spreading it
(which we will call ‘victim’ groups) and groups that are more important in
spreading the disease but are less affected by it (which we will call ‘core’
groups).

For a disease to invade at a neutrally stable equilibrium, the depletion of
susceptibles must be counteracted by a change in population structure that
favors the disease. This requires that the disease be fatal (or at least debilitat-
ing) so that it can change the overall structure of the mixing population. It also
requires that the subgroups most important in spreading the disease be
different from those most affected by it, so that the population composition
changes favor the disease. Finally, it requires that a reduction in the size of the
mixing population increase the amount of contact between those individuals
who remain. Here we have assumed that §(T) = b, a constant. If we had
assumed instead that §(T) = bT, then reducing the pool of susceptibles could
only have a negative effect. If we had assumed an intermediate form for f§ (see
[18] for a brief review) then backwards bifurcations would still be possible,
but less likely.

6 A two-group example

A simple example will perhaps help to clarify the mechanism of backwards
bifurcations. To understand the behavior in a region of parameter space near
a given bifurcation point we study the bifurcation point itself. A simple set of
parameters that correspond to a backwards bifurcation point is:

12 1
C; = 1, i = 05, g; = 15, Ai = 1, li' = 12
Iz (1) <4O 6> (12)

For simplicity, we have chosen all the parameters except the transmission
rates (/;;) symmetrically for the two groups. In fact, interactions between
transmission, mixing and disease-induced mortality can be important in
backwards bifurcations, as we will discuss below.
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With the set of parameters (12) we can calculate:

< -2 1 /2>
F =
20 -5
and hence I° = (1,4)" and J° = (10, 1)*/112 (the 112 is chosen to satisfy our
assumption that ¥,m;I?J? = 1). Hence the first group is more important in
allowing the disease to spread, but people in the second group get sick more as
the disease spreads (and hence die more, since ¢ is constant). This is the sort of
phenomenon that can lead to a backwards bifurcation.
In fact, if we evaluate the criterion (11) we see:
1° 115 1
zi:Wi ? g; = 5 ? +

L

10 5 2 104
I%J° (6, + 1) =2-8+=--32="— 1486
;ml i i Tl(o-l—i_ ) 7 +7 7

Hence (11) holds and (12) describes a backwards bifurcation point.

When R, < 1 close enough to a backward bifurcation point, we expect to
see multiple stable equilibria. Figures 4 and 5 illustrate the behavior of this
system when p = 0.52. Figure 4 shows the behavior of the system if we start
with T; = T, the population levels at the disease-free equilibrium — and
I, = T;/100 — that is, one percent of the population in each group is infected
initially. Initially the level of disease in the victim group increases. This is due
to the fact that infection in the core group tends to give rise to higher levels of
the disease in the victim group. However, once the number of infected in the
victim group rises high enough above the level of the core group, the number
of infected in both groups decreases to zero, because R, < 1 and the disease
cannot be sustained.

Figure 5 shows the same system, but where the initial number of infected in
each group is 10 percent of the total. Again the number of infected in the
victim group initially rises, after which the number infected in both groups
decreases. In this case, however, the disease has a dramatic effect on the
population of the victim group, and changes the relative proportions of core
and victim groups enough that it is able to persist. Note also the damped
oscillations in the ratio of number of infected individuals in the two groups.

7 Separable transmission

Although our criterion (11) gives some insight into the causes of backwards
bifurcations, the dependence of the eigenvectors I° and J° on the parameters
is somewhat difficult to interpret. In this section we evaluate the criterion in
the special case where transmission is separable to examine some of the
tradeoffs that might lead to backwards bifurcations.
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Fig. 4. The time course of the model when R, < 1, near a backward bifurcation point, with
1% of the population initially infected
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Recall that [;; = ¢;c;4;;. We assume that A;; = v; f; where v; measures the
susceptibility of a member of group i and f; measures the tendency of
a member of group j to transmit the disease. To help clarify interpretation, we
will also assume that the death rate of susceptibles is a constant, p.

With these assumptions, the expression for the change in the number of
infectives becomes (from (6)):

ZIVJ

Z CVﬁJ m;1;
j

The linearized equation for the change in the number of infectives is thus:
T
IiZTZCiCjViﬁjIj_mili (13)
N'j

Hence the linearized transmission matrix F can be written:
F = K — diag{m;}
where K is the separable matrix given by:

Ticivi
N cjﬁjzwivicjﬂj

Kij =

At a bifurcation point, if I = I° — the dominant eigenvector — the disease
should neither increase nor decrease in the linearized model. Hence FI° = 0
which implies KI° = (m;I?)" o

J

Since ¥ ,¢; ;15 is the same for all values of i, we can write I1° as (w;v;/m;)". In
other words, the number of cases in group i as the disease begins to spread is
proportional to the proportion of mixing contributed by members of group
i and their susceptibility to the disease, and inversely proportional to the rate
at which infected members of the group leave the mixing population.

For (14) to hold, we must have:

Ro =Y c;pilf =Y cifpwyv;/m; =1 (15)
7 7

This is the condition that the parameters in fact constitute a bifurcation point.
We omit the proof that R, is in fact the basic reproductive model for this
model, as defined by Diekmann et al. [6].

We can similarly calculate the distribution of the left eigenvector J°. We
know J°F =0, hence J°K = (m;J?), or

C,ﬁlZWJVJJJO = m,JlO
J
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and Jo, = (¢;f;/m;). In other words, the contribution of an infectious individual
in group i to the spread of the disease is proportional to the mixing rate and
the transmission coefficient of group i, and again inversely proportional to the
‘death’ rate.

Note that, fortuitously, these unscaled values for I° and J° yield

YmdlJ? =Ry =1,

satisfying the assumptions of (11).
Hence we can write (11), the criterion for a backwards bifurcation, in the
case of separable mixing as:

Zw

w,v, wiV; Wy

——0; >Zcﬁ,

m; m; mlT,

(i + 1)
Multiplying both sides by N and recalling that w; = ¢;T;/N;, we obtain:

Zw-—a >Z

WV CiV;

“(o;+ 1) (16)

l

Note that
ZW:‘ = Zciﬁiwivi/mi =1.

Hence, as in (11), we can interpret the left-hand side as a weighted average of
the rate at which people die of the disease, and the right-hand side as
a weighted average of the (higher) rate at which people contract the disease.
Now recall that m; = u(o; + 1), and multiply both sides of (16) by x to obtain:

chv gi >Z ﬂ ) Cv; .

Here the left-hand side is a weighted average of ¢;v;, the mixing rate times
the susceptibility rate, multiplied by a ‘discounting factor’ of ¢/(¢ + 1), while
the right-hand side is a weighted average of ¢;v;. The weighting factors differ
by a multiple of

Pi
g+ 1

CiVi

(ignoring the constant u). For a backwards bifurcation, we require a negative
association between the weighting factor and c;v; strong enough to overcome
the ‘discounting factor’, despite the fact that ¢;v; is itself a factor of the
weighting factor. Thus, as c¢;v; increases, f5;/(g; + 1) must decrease sharply
enough that the product of the two terms, which yields the weight, decreases.

In this simplified separable model there are four tradeoffs which can lead
to backwards bifurcations. Groups with a higher mixing rate ¢ could have
sharply lower transmission rates or sharply higher disease-induced death
rates. Or more susceptible groups might display either of those characteristics.
Interestingly, there are two tradeoffs — that between transmission rate and
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disease-induced death rate, and that between mixing rate and susceptibility
— which cannot produce backward bifurcations.

8 Discussion

Our purpose in writing this paper was to provide an intuitive explanation of
the mechanisms that drive backwards bifurcations in some simple disease
models, and thus to make it possible to explore in what circumstances such
bifurcations might occur in more realistic disease models and hence in what
circumstances we should look for the dynamical signature of the backwards
bifurcations — breakpoints above which the disease can persist for certain
values of Ry, and the possibility of ‘catastrophic’ fast dynamics as underlying
parameters change slowly — in real-world disease systems.

The original models on which our analysis is based are AIDS models [4, 2,
13]. Tt is natural to consider the possibility that backwards bifurcations of the
type discussed here may occur in AIDS, with men making up the core groups
and women the victim groups, since male homosexual transmission is thought
to be very important to the spread of AIDS in many places. For this to cause
backwards bifurcations, however, AIDS would need to change the population
structure in such a way as to increase the proportion of men’s sexual contacts
that were with other men. This is certainly possible, but does not intuitively
seem likely. In general, models of sexual mixing involve complicating social
factors beyond the scope of this discussion. An exploration of the possibility of
core/victim backwards bifurcations in AIDS would certainly be of interest,
however. Another difficulty with AIDS modeling is that, directly contrary to
our discussion of slow-changing parameters, it seems likely that behavioral
‘parameters’ in a disease like AIDS change quickly compared to the time scale
of disease spread itself.

For a wide variety of other diseases, it is at least plausible that a ‘core’
group of healthier, more active people might be both more important than
other groups at spreading the disease, and less affected by it. For backwards
bifurcations to be caused by the mechanism discussed here, however, it would
be necessary for such a disease to cause enough mortality or morbidity to
substantially change the structure of the mixing population, which sharply
reduces the range of possibilities. It is possible that this mechanism for
backwards bifurcations would be more relevant in studies of animal diseases.
Studies have demonstrated that diseases like anthrax [1] and myxomatosis
[8] have had profound effects on animal populations.

9 Appendix 1

Since the dominant eigenvalue of the Jacobian matrix is zero, it is well known
that we can decompose a neighborhood of the disease-free state into a stable
manifold W5 and a center manifold W€ (see e.g. [10, Sect. 3.2]. In particular,
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the dynamical behavior of (7) near the disease-free equilibrium is determined
by the flow on the center manifold. Moreover, the fact that zero is a simple
eigenvalue implies that W€ is one-dimensional and it is tangential to the
eigenvector V° at 0, thus the center manifold W€ can be parameterized as

WE={(V4+aV®+ Z(a): V¥ Z() =0, —ay=<oa=o)

where o, > 0 is a constant, and Z: [ — o, oty ] — Ran(H) satisfies:

That is, Z(x) = O(a?).

In other words, o gives the component of the center manifold that lies
along the dominant eigenvector, while Z(«) gives the component of the center
manifold that does not lie along the dominant eigenvector, in the eigenvector
basis. Hence V* - Z(«) = 0. Since the center manifold is tangent to V', we have
that Z(«) = O(o?) is small compared to the component along the dominant
eigenvector.

To determine the flows on W€ we need to see how « depends on time, t.
Let

V)=V +a@®)V° + Z(a(t) ,

since W€ is invariant, from (7) we have

d .
a(t) Ve + yr Z(t) = V()

=HV OV (@)~ V]
=H(V + a()V° + Z@®)[2(0) V° + Z(x(1))]

Multiplying both sides of above equation by V* and using the fact that

d N
vee 2 Z@0) =0, V*H =0, yE-vO =1

and Z(x) = O(«?) we arrive at
a=V*HWV +aV°+ Z()[aV° + Z(2)]
=V* HWV + aVO)[aV° + Z(2)] + 0()
=V*.[HV +aV°) — H][aV° + Z(®)] + O(c®)

Since the difference [H(V + oV °) — H]is of order «, its product with Z ()
is O(«®) and we have:

a=aV*-[HV 4+ aV°®) —H]V + 0(%) (17)
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The sign of this expression for small « is what determines whether the
disease can invade at the bifurcation point. In the limit, as o goes to zero, (17)
goes to:

a=V*HV%? + 0(*), (18)
where
dH(V + aV° oH
H = dH(V +aV7) =y
do =0 i Vily=v

gives the rate of change of the vector field as the disease invades. Hence, the

number
h=V*HV® (19)

determines whether the disease can invade when R, = 1, and hence gives the
sign of the bifurcation.
For our system specifically, we note that, due to the zeroes in H and V*, we
have
h=1I*F'I°
where
dF(V + aV?)

F/
do

a=0

From the definition of F, and our expression for T°, it follows (with some
calculation) that:

1 R N
b lg)- s ]

Hence the direction of change of the vector field is given by:

J

| AN ~
(F/Io)i = ﬁ <Ti§0kakll9 — N(Gi + 1)IIO> ZZUI]O

We can simplify this expression by making use of the fact that, since
FI° =0,

J

2>| ~

Hence:
/70 1 0 o N 0
(F'I7); = — mI; ZCkUka ——(0; + DI;
N k Ti

~

1 N
N k T;

13
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10 Appendix 2

In this appendix we present a generic bifurcation theorem.
Let f:IR" x R™ — IR" such that

f0,4)=0, VieR".
Further we suppose that

1. f(x, A) is sufficiently smooth with respect to x, and D, f(x, A) and
D2 f(x, ) are continuous on (x, /) in a neighborhood U x VCR" x R™
of (0, 0);

2. D.f(0,0) has a simple zero eigenvalue.

By the continuity of eigenvalues with respect to the parameter 1 we
conclude that there exists a neighborhood VCV of A =0 and a continuous
function 7: ¥ — IR such that y(0) = 0 and for Ve V, y(4) is a simple eigen-
value of D, f(0, A).

Theorem. Let x, and x§ be the right and left eigenvectors of D, f(0, 0) corres-
ponding to the zero eigenvalue with xixo = x§xo = 1. If

h = x§D3f(0, 0)(xo, Xo» + 0,

then there are neighborhoods U CIR" of x = 0 and VCR™ of /. = 0 such that
VieV,f(x,2) =0 has a solution x(1) € U\{0} if and only if y() * 0.

Proof. For /. € V,let x¥ and x;, be the left and right eigenvectors of D, (0, 1)
corresponding to the eigenvalue (/) such that xx, = x¥x, = 1. Since (/) is
a simple eigenvalue of D.f(0,4), IR" can be decomposed as
R" = Span[x,] ® R;, where R, is the generalized eigenfunction space corres-
ponding to all eigenvalues of D, f(0, A) other than y(4). Hence for Vx e R,
there exist unique « € R and y € R, such that & = x¥x and x = ax, + y. By
applying the Taylor expansion we have

S(x, 4) = flax; +y)
=D, f(0, Y(ax; + y) + g(o y, 4)
=aD,f(0,)x;, + D f(0, )y + g(o, y, 1)

= OW()“)XZ + TAy + g(CX, Vs j') ) (21)
where

1

T/l = Dxf(oa /l)s g((xa Vs /l) = J Dif(e(uxl + Vs i))0d0<u-xm + Y, 00X, + Y> .
0

Let g(«, y, A) be decomposed as

glo, y, 4) = Bile, y)xs + Y, (o y) (22)
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with f,(a, y) = x$g(o, y, )€ R and Y,(a, y) € R;. By substituting (22) into
(21) one sees that for « e R and ye R;, f(ax; + y, 4) = 0 if and only if

oy(4) + Bale, y) =0

3 (23)
T).y + Yﬂ(aa y) =0 B

where T, is the restriction of T, on R;.
Note that for /e V, the linear operator T,: R, — R, is invertible. More-
over, following the definition of Y,(«, y) it is easy to verify that

Y,00,00=0, D,Y,0,00=0. (24)

Therefore the implicit function theorem implies that there are a neighborhood
OCR of 0 and a continuously differentiable function y,: O - R, such that

T:y:(@) + Yl y,(@) =0, VaeO. (25)
As a consequence of (24) and (25) we have
yA(O) = 09 Docy).(o) =0.

Together with the fact that T; ! and partial derivatives of Y, with respect to
« and y are continous on (/, o, y) we conclude that y,(x) = O(x?) as « —0
uniformly for A e V. Substituting y = y, () into the first equation of (23) we
obtain the equation for o as

oy(4) + Bale yi (@) = 0. (26)

A straightforward computation from the definition of 8, shows that
Biler, ya(@) = x3DS(0, 2)<xz, x; 002 + O(e)

Since x¥DZf(0,2)<{x;,x;>—>h as A—0, Sgn(xiDif(0,)<{x,,x;)) =
Sgn(h) if e V and V is a sufficiently small neighborhood of 1 = 0. Since we
have assumed h = 0, we have that the second term of (26) is nonzero Vie V.
Hence the equation (26) has a nonzero solution o, € O if and only if y(1) % 0.
And furthermore

- —7(4)
XEDZf(0, 2)<x x5
Now it is clear that x = o;x, + y,(2;)) gives the unique solution to f(x, 1) = 0

in a small neighborhood U\ {0} of x = 0.
As an immediate consequence of (27) we have:

(27)

L%}

Corollary. If the eigenvector x, defined in above is strictly positive, then the
bifurcating solution x = o;x; + y,(2;)) of f(x, A) = 0 is strictly positive if and
only if y(A)h <0

Ify is the dominant eigenvalue of D, f (0, 0), we know that y > 0 precisely when
Ry > 1 [6]. Hence the bifurcating solution will be positive (and have biological
meaning) for Ry > 1 when h < 0 and for Ry < 1 when h > 0.
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