sediments’,

of dissolved

York. pp.
ite adsorp-
ained sedi-
numerical

-996.
ds), Metal

ce metals’,

(Quebec)y’, &
&

t Disposal

sediment’,
s’, J. Geo-
ments’, J.

s of phos-

Res., 11,

HYDROLOGICAL PROCESSES, VOL. 8, 125-135 (1994) j

/ﬁv ARIANCE AND SCALING PROPERTIES IN THE
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N
The cumulative probability distributions for stream g_tger, stieam lengt}fg contributing area, and energy dissipation per
unit length of channel are derived, for an ordered drainage system, from Horton’s laws of network composition. It is
shown how these distributions can be related to the fractal nature of single rivers and river networks. Finally, it is
shown that the structure proposed here for these probability distributions is able to fit the observed frequency distri-
butions, and their deviations from straight lines in a log-log plot.

KEY WORDS Geomorphology Fractals Drainage basins

INTRODUCTION

Mandelbrot (1982) suggests that dissipative systems with many spatial degrees of freedom, such as river
networks, will follow power law distributions of mass and energy. The cumulative probability distribution
of these characteristics can therefore be written as

PlX > x]ocx7? (1)

where oc indicates the presence of a proportionality factor. Rodriguez-Iturbe et al. ( 1992a) describe the
invariance properties of this probability distribution for mass and energy in river basins under wide
changes of spatial scales. Assuming the total cumulative area draining into a given site as a surrogate
variable for discharge, the values of the exponent 3 are explained on the basis (1) of the empirical relation-
shi i

p proposed by Gray (1961), that is e VJW | Vd@q’ g

& roed” H = .
which, with o = 0-568, provides a very good fit between main stream length L, and basin area, 4, and (2)
assuming that the Euclidean length from the outlet to the most distant point in the boundary of the basin
can be described as the first collision time of two fractal trails (Mandelbrot, 1982; Feder, 1988; Takayasu
et al., 1988). From this, a value of 3 approximately equal to 0-45 and 090 is predicted for mass and energy,
respectively, in good agreement with the observed values measured in five basins in North America. In fact,
the exponent 3 in the power law distribution of mass is ‘statistically indistinguishable among the different
basins and approximately equal to 0-43’, Rodriguez-Iturbe er al. (1992a).

In this paper the values assumed in Equation (1) for both the exponent 3 and the proportionality factor
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are explained on the basis of a quantitative analysis of river networks by means of Horton’s laws of net-
work composition (Horton, 1932; 1945; Strahler, 1952; Shumm, 1956). The structures proposed here for
the cumulative probability distributions for mass and energy are able to fit the observed distributions
and their deviation from straight lines at large values of area. It is also shown that the value of 3 can be
linked to the fractal structure of single rivers, with fractal dimension d, and river networks, with fractal
dimension D. These measures are derived, for an ordered drainage system, from Horton’s laws of drainage
composition, as proposed and discussed in Mandelbrot (1982), La Barbera and Rosso (1987; 1989; 1990),
Tarboton et al. (1988; 1990), and Rosso er al. (1991). Finally, with reference to the exponent fitted in the
empirical Equation (2), it is shown that the expected value of £ is 0-432.

HORTON’S LAWS AND THE FRACTAL STRUCTURE OF RIVERS AND RIVER NETWORKS

Horton’s laws of network composition are stated here in terms of Strahler’s ordering scheme. The structure
of a river network is therefore described as a system of streams which recognizes, through stream order, a
hierarchy among the different branches. Strahler’s ordering scheme postulates that: (1) source streams are
of order 1; (2) when two streams of equal order join, a stream of one order higher is formed; and (3) when
two streams of different order join, the continuing stream retains the order of the higher order stream. The
empirical laws of stream numbers and stream lengths (Horton, 1945) state that the bifurcation ratio, Ry,
and the stream length ratio, Ry, are constant within a catchment; the empirical laws of stream areas and
stream slopes (Shumm, 1956; Strahler, 1952) states that the stream area ratio, R,, and the stream slope
ratio, R,, are also constant. Denoting with w the order of a stream segment, these ratios are defined as

n

Ry = ?1..:1 (3)
B = ’j:‘ 4)
R, = A;':‘ (5)
R, =22 (©

where 7, is the number of streams of order w; /,, is the mean length of streams of order w; 4, is the mean
tributary area of streams of order w; and S, is the mean slope of streams of order w.

Estimates of Ry, R;, R, and R, for a river network can be obtained from the slopes of the straight lines
resulting from plots of the logarithmically transformed values of n,, I, 4, and S, versus order w, for w
ranging from 1 to §, the order of the basin.

Horton’s laws are geometric scaling relationships which yield the self-similarity of the catchment stream
system within a certain range of scales (Nikora, lﬁﬁ? the following derivations should therefore be
regarded as a mathematical descriptions which applies at the range of scales associated with Horton's
laws. Unfortunately, this range is not yet well assessed; a possible route in this direction could be from
the description of the erosional development of drainage networks, on the basis of the results obtained
from field observations (Montgomery and Dietrich, 1988; 1989), laboratory experiments (Sawai et al.,
1986; Shumm e al., 1987), mathematical models (Roth et al., 1989; Willgoose et al., 1991) and stability
analysis (Smith and Bretherton, 1972; Loewenherz, 1991).

On the basis of the self-similarity described by laws of stream lengths and stream areas, Rosso et al.
(1991) reported that rivers are fractal with a fractal dimension

d:max(l,ZIOgR') (7)
log R,

The estimates of d obtained from Equation (7) fit the measured values satisfactorily and are close to the
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value of 1136 hypothesized by Mandelbrot (1982) under the assumption that 7
d=2% zi " - D 8)

where a is the fitted exponent in Equation (2) between L and A.
On the basis of the self-similarity described by the laws of stream numbers and stream lengths, La
Barbera and Rosso (1987) reported that the fractal dimension of river networks is given by

. log Rb
D —m1n[2,max(i,m)] 9

The fractal dimension of a stream network, as estimated from Equation (9), can take values from two to
unity for the combined ranges of R, and R, values observed in nature. Although it has been observed that
river networks display varying values of fractal dimension D, this generally lies between 1-5 and 2, with an
average of approximately 1-7.

The scaling properties of the river network as a whole can be viewed as the product of the structural
composition of the drainage system, reflected by D, and the fractal nature of river length, described by
d. By introducing this source of fractal behaviour of individual streams in Equation (9), Tarboton et al.
(1990) obtain the fractal measure

D= Dd (10)
and, by combining Equations (7), (9) and (10). Rosso et al. (1991) obtain
lo gRb
— p)
D = min ("’2lgR) (11)

At scales greater then the fundamental length scale given by the drainage density, it can be assumed that
the network drains the whole river basin. This constrains it to be space filling with a fractal dimension
D = 2 (Mandelbrot, 1982; Tarboton et al., 1990). Assuming d = 2a = 1-136, the value D = D/d = 1761
is predicted from Equation (10).

DISTRIBUTION OF CONTRIBUTING AREA

The cumulative probability distribution for contributing area (i.e. mass) is here derived from a general
approach based on a knowledge of the distribution of stream order. This is obtained from the cumulative
probability distribution of a site having an upstream total stream length larger than a given value. The total
length Z,, of streams in a single subnetwork of order w < {1 is given by Eagleson (1970) as

in which /| is the mean length of first order streams. With w = Q, Equation (12) gives the total length of
streams for the whole catchment. The total length of streams in the subnetworks of order w within a basin
of order Q is therefore obtained as

Z\=Z R (13)

The cumulative probability distribution of a site having an upstream total stream length Z' larger than

Z,, can be consequently written as
R\ (@)
2 ]
(Rb) )

(g -y

Pz'>Z,|=1 S (&) - = (%)ﬂ

The total length Z,, of streams in the subnetworks of a given order within a catchment of order Q is
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related, throughout Equations (12) and (13), to the order w taken into consideration and to the contributing
area, A,,. From this, it follows that the cumulative probabilities of a site having an order w larger than w,, or
a mass larger than 4, , can be characterized by the same distribution, that is

PlZz'>Z.|=Pw2w]=P42 Al (15)

It must be pointed out that the knowledge of Plw > w,] could be viewed as the basis for the derivation of
the distributions of different characteristics for river basins, e.g. contributing area, energy dissipation,
stream gradient and mean basin altitude. Here it is used to obtain the distribution for contributing area
and energy.

From the definition of the area ratio, Ry, and assuming the total area of the basin, Aq, as a reference

value for normalization, the cumulative probability distribution of a site having a relative mass larger

than R; %) is
0
R
A (%)

A, . R\~
PlA> A, :P_>i=R““-)]=f__ (_1_ —1
i S [An TAn - (&) [\Rs 4
Ry

Finally, from the estimations of the fractal dimension of rivers [Equation (7)) and river networks
[Equation (9)], as obtained on the basis of self-similarity described by Horton’s laws, and with the math-
ematical derivations reported in the Appendix, we obtain

R\ .
P[_,L)ﬁ]:_(@_ (@)‘5’“)'”_1 T
_——_ A" 4o 1— (&)ﬂ Aq
- R Ry,

\

and, Assuming d = 2a = 1:136 and D = D/d = 1761

\-“—‘ —‘_VI'.“’»-“V V / P[ A > AW.} (AU.)—0432 1 (IS)
Rl Wi 3| PO Y o
\ Aq ~ Aq Ag

It must be pointed out that the use of Equation (17) is not limited to fixed values of the contributing area
to a given site, A, , obtained with reference to integer values of w,. In fact, contributing area in natural river
basins is a real continuous variable of which A4, , with integer w., is the expected value for a given stream
order, i.e. an integer parameter used to order and scan the network. In this mathematical framework, it can
be assumed that a corresponding real value of w, can be associated with a given value of the contributing
area. In other words, the continuous variable area, reduced to some expected values by the ordering pro-
cedure, is expanded again with reference to hypothetical real values of the order. Obviously, this assump-
tion cannot be applied to deterministic networks, such as the Peano fractal network; in fact, these are
defined only with reference to some fixed spatial scales, and not in a continuum of scales, such as natural
river networks. Equation (17) can be applied in deterministic networks only with reference to the scales at
which the network is defined.

The analysis of the drainage network, as obtained from the interpretation of digital elevation maps
(DEMs) for different river basins, shows that the cumulative probability distribution for mass follows &
straight line for nearly three scales in a log-log plot with a deviation at large values of area, i.e. Wl}‘“
the values of the areas approach the total area of the basin. This behaviour is predicted by Equation
(17). For the range in which the cumulative probability distributions of mass follows straight lines, 1.€-
for the range in which 4, < Aq, we obtain

A, -{(p-1)
G >

ol
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Figure 1. Cumulative probability distributions for contributing area (a) and energy (b) d = 1-136; D = 1'76; D =20; and © = 2:0.

and Equation (17) can be approximated, in a log—log plot, with a straight line with slope equal to

d
~5(D—1) % —0432 (20)

The cumulative probability distribution for area can be estimated from Equation (17) on the basis of the
knowledge of the values assumed by €, Ry, R and Ry, and, consequently, by d and D. The expected shape
of this function is presented in Figure 1, from which we can observe that the distribution is completely
defined, in a quantitative form, by Equation (17) and that a deviation from a straight line, at large values
of areas, is predicted. Moreover, 2 single basin can be described with reference to different spatial scales, i.e.
at different values of channel maintenance area. This case is presented in Figure 2, in which basin area is

0.2
0.4 -
0.6
0.8 A
1.0
-1.2 4
-1.4 -
1.6 -

Log(P[A = A1)

1.8 -
-2.0 H
2.2 -
2.4

2.6 T . : ;
5 -4 -3 -2 -1 0

Log(A/Aq)

H‘- Cumulative probability distribution for contributing area. The same basin is described with reference to different values of
: channel maintenance area. d = 1:136; D = 1:761; and D=20
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Log(PA = A,,))

-1.8

-2.0

2.2

2.4

2.6 — A . =
5 4 -3 2 -1 0

Log(A . /Aq)

Fig. 3. Cumulative probability distribution for contributing area. Different basins are described with reference to the same value of
channel maintenance area. d = 1-136; D = 1-761; and © =20

constant and the fractal dimensions are assumed to be insensitive to scale within the proposed range of
scales. Finally, different basins, with different catchment areas, can be described with reference to the
same fundamental scale, i.e. at the same value of channel maintenance area. This case is presented in
Figure 3, in which it is assumed that the different basins are characterized by the same set of fractal dimen-
sions and the reference area for normalization is the maximum basin area within the proposed set.

DISTRIBUTION OF ENERGY

The rate of energy expenditure per unit length of channel at any point in the network is proportional to the
product of discharge and slope. Assuming contributing area as a surrogate variable for discharge, we can
imagine the energy expenditure to be proportional to the product of contributing area and slope. From the
definition of the area and slope ratios, R, and Ry, and assuming AqSq as a reference value for normaliza-
tion, the cumulative probability distribution for energy can be therefore written as
P[AS > A, S.]= P[—/—qi > A, S,
C AqSq ~ AaSq
In the same framework used to derive the distribution of contributing areas, i.e. from the estimations of the
fractal dimension of rivers and river networks as obtained on the basis of self-similarity described by
Horton’s laws, introducing

= (RaRs)““*‘”"] (21)

— log R;, (22)
log Ry

and with reference to the mathematical derivations reported in the Appendix, we obtain

P[ A3 >Aw.3».l _ (%)n)g [(AM.SW.)*‘D*”“%,I] (23)

AaSq ~ ApSa ¥ = (%L AqSq
b

The shape of this function is presented in Figure 1. For the range in which the cumulative probat_?imy
distributions of energy follows straight lines, the function can be approximated, in a log-log plot, with 8 2

<w.
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Table L. Characteristics of the basins under analysis as evaluated from a digital elevation model. Areas are expressed in
Km?; 8 and S, are the calculated exponents in the cumulative probability distributions for contributing area and

energy, respectively

River Area Q Ry, R, R, R d D e 2 B
Magra 1600 8 3-97 2:10 4-25 0-47 1-03 1-86 1-92 —0-44 —0-92
Entella 400 7 3-88 2:11 415 0-49 1-05 1-82 2:03 —0-43 —0-84

straight line with slope equal to

d e

E(D 1)-(-9-_—] ~ —0-864 (24)
in which the value —0-864 is predicted assuming © = 2. Flint (1974) first derived © on the basis of power
law relationships used to describe the scaling of hydraulic and geometric variables, such as slope, contri-
buting area and discharge. In the work of Flint (1974) the estimates of ©, in the form introduced in the
present paper, take values in the range 1-2-2-7 with an average of 1-7. A relationship between slope and
discharge (i.¢ contributing area) was also proposed and discussed by Rodriguez-Iturbe et al. (1992b) as
a scaling implication of the principles of energy expenditure in drainage networks. The value 2, proposed
by Rodriguez-Iturbe et al. (1992b), is here assumed as a first estimation of ©. This assumption is confirmed
by the © values obtained from the avalysis of natural river systems reported in Table I.

(b)

Fig. 4. Drainage network for (a) Magra river basin and (b) Entella river basin
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Fig. 5. Magra river basin: cumulative probability distribution and cumulative frequency distribution for (a) contributing area and (b)
energy

PR R )

ANALYSIS OF NATURAL RIVER NETWORKS

The cumulative frequency distributions for contributing area and energy can be obtained from the analysis
of natural river networks throughout the use of DEMs. Two different basins in Italy are analysed here as
obtained from the interpretation of a DEM in a square grid with 225 m to a side. The drainage structure of
the two basins is described in Figure 4, whereas Table I reports the relevant characteristics of the river net-
works as obtained from the analysis of the network structure of the basins with no filtering procedure. Th
is equivalent to assuming that the channel maintenance area is equal to the pixel area (225 x 225m). The
observed cumulative frequency distributions for contributing area and energy are given in Figures 3 ﬂ“_d
In the same figures the corresponding theoretical cumulative probability distributions are drawn, a$ deri
from Equations (17) and (23), with reference to the characteristics of the two basins reported in Table L.

)
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y and (b) Fig. 6. Entella river basin: cumulative probability distribution and cumulative frequency distribution for (a) contributing area and (b)
energy
results show a good agreement between the predicted and the observed distributions for contributing area
) and energy.
ynalysis
here as
squreofl & CONCLUSIONS
VCI'_F;; The invariance and scaling properties of the cumulative probability distributions of stream length, stream
re. m-‘- °‘d°f_. contributing area (i.e. discharge mass) and energy dissipation per unit length of channel can be
;"zm a6 buti bed by the present approach. The structure proposed here for the cumulative probability distri-
e lons for areas and energy is able to fit the observed distributions and their deviations from straight lines

l;l;gke values of contributing area. The value of the exponent for the distribution of contributing area can
: ed to the fractal dimension of single rivers and river networks. The value of the exponent for the
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distribution of energy can be linked to the fractal dimension of single rivers, river networks and to the ratio
log R,/ log R;.
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APPENDIX

Distribution of contributing area

From the definition of contributing area ratio, R,, we obtain
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ratio A
w, —(Q-w.)
i S .
THA (A1)
and, consequently,
log(A.,/Aq)
search -(Q-w)= -—lﬁ'— (A2)
Inter-
-work It follows that
of the —(@—w.) log{Au. /40)
R\ R\~ TR log(4../Aa) R A, )\ log Ry — log Ry
URST =L == = exp |—————1og|{ == | | = ¢XP log| —= | ————
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and, finally, we obtain

~(Q-w.) -4(p-1)
morphol- ﬁ — A:..'. 2 Ad
1 (A4)
Ry Aq

(A3)

., Bras, R. Distribution of energy
h limit', J. From Equation (Al) and from the definition of the slope ratio, R,, we obtain
A5G 0
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off produc: < Following the same procedure used to derive Equation (A3), with © defined in Equation (22), we obtain
corks’, Wat. R\ @) (A,S —4(0-Ngx
ir I e A7
<. Wat. Re- (Rh> ( Aszsn) R
ational Sym=
(m. Bull.. 67,
.’ﬁ,’ur, Res.. &

42.
Phys. Rev- 4

4, 1317-132
works by

model 1. the*




