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Statistical Science 
1992, Vol. 7, No. 1, 69-122 

Statistics, Probability and Chaos 
L. Mark Berliner 

Abstract. The study of chaotic behavior has received substantial atten- 
tion in many disciplines. Although often based on deterministic models, 
chaos is associated with complex, "random" behavior and forms of 
unpredictability. Mathematical models and definitions associated with 
chaos are reviewed. The relationship between the mathematics of chaos 
and probabilistic notions, including ergodic theory and uncertainty 
modeling, are emphasized. Popular data analytic methods appearing in 
the literature are discussed. A major goal of this article is to present 
some indications of how probability modelers and statisticians can 
contribute to analyses involving chaos. 

Key words and phrases: Dynamical systems, ergodic theory, nonlinear 
time series, stationary processes, prediction. 

1. INTRODUCTION 

Chaos is associated with complex and unpre- 
dictable behavior of phenomena over time. Such 
behavior can arise in deterministic dynamical sys- 
tems. Many examples are based on mathematical 
models for (discrete) time series in which, after 
starting from some initial condition, the value of 
the series at any time is a specified, nonlinear 
function of the previous value. (Continuous time 
processes are discussed in Section 2.) These proc- 
esses are intriguing in that the realizations corre- 
sponding to different, although extremely close, 
initial conditions typically diverge. The practical 
implication of this phenomenon is that, despite the 
underlying determinism, we cannot predict, with 
any reasonable precision, the values of the process. 
for large time values; even the slightest error in 
specifying the initial condition eventually ruins our 
attempt. Later in this article, indications that real- 
izations of such dynamical systems can display 
characteristics typically associated with random- 
ness are presented. A major theme of this study is 
that this connection with randomness suggests that 
statistical reasoning may play a crucial role in the 
analysis of chaos. 

Strong interest has recently been shown in nu- 
merous literatures in the areas of nonlinear dy- 
namical systems and chaos. However, rather than 
attempting to provide an overview of the applica- 
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tions of chaos, I offer a review of the basic notions 
of chaos with emphasis on those aspects of particu- 
lar interest to statisticians and probabilists. Many 
of the references given here provide indications of 
the breath of interest in chaos. Jackson (1989) 
provides an introduction and an extensive bibliog- 
raphy [also, see Shiraiwa (1985)]. Berge, Pomeau 
and Vidal (1984), Cooper (1989) and Rasband (1990) 
discuss applications of chaos in the physical sci- 
ences and engineering. Valuable sources for work 
on chaos in biological and medical science include 
May (1987), Glass and Mackey (1988) and Basar 
(1990). Wegman (1988) and Chatterjee and Yilmaz 
(1992) present reviews of particular interest to 
statisticians. Finally, useful, "general audience" 
introductions to chaos include Crutchfield, Farmer, 
Packard and Shaw (1986), Gleick (1987), Peterson 
(1988) and Stewart (1989). 

Section 2 presents discussion of the standard 
mathematical setup of nonlinear dynamical sys- 
tems. Definitions of chaos are reviewed and chaotic 
behavior is explained mathematically, as well as by 
example. Next, I review relationships between 
chaos and probability. Two key points in this dis- 
cussion are: (i) the role of ergodic theory and (ii) the 
suggestion of uncertainty modeling and analysis by 
probabilistic methods. Statistical analyses related 
to chaos are discussed in Sections 3 and 4. In 
Section 3, the emphasis is on some "data analytic" 
methods for analyzing chaotic data. The goals of 
these techniques basically involve attempts at un- 
derstanding the structure and qualitative aspects 
of models and data displaying chaotic behavior. 
[Specifically, the notions of (i) estimation of dimen- 
sion, (ii) Poincare maps and (iii) reconstruction by 
time delays are reviewed.] Although statisticians 
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are now beginning to make contributions along 
these lines, the methods described in Section 3 
have been developed primarily by mathematicians 
and physicists. In Section 4, I discuss some possible 
strategies for methods of chaotic data analysis based 
on main stream techniques for statistical modeling 
and inference. Finally, Section 5 is devoted to gen- 
eral remarks concerning statistics and chaos. 

2. MATHEMATICS, PROBABILITY AND CHAOS 

2.1 The Complexity of Nonlinear Dynamical 
Systems 

A simple deterministic dynamical system may be 
defined as follows. For a discrete time index set, 
T = {0, 1, 2, ... }, consider a time series { x,; te T}. 
Assume that xo is an initial condition and that 
xt+1 = f(xt), for some function f that maps a do- 
main D into D. (D is typically a compact subset of 
a metric space). Chaotic behavior may arise when f 
is a nonlinear function. 

To begin, some numerical examples for one of the 
more popular examples of dynamical systems, the 
logistic map, are given. The dynamical system is 
obtained by iterating the function f( x) = ax(l - x), 
where a is a fixed parameter in the interval [0,4]. 
Let xo be an initial point in the interval [0,1]; note 
that then all future values of the system also lie in 
[0,1]. To get a bit of the flavor of this map, example 
computations are presented for an important value 
of a: namely, a = 4.0. Figure 1 presents time series 
plots of the first 500 iterates of the logistic map 
corresponding to the initial values 0.31, 0.310001 
and 0.32. The first thing to notice about these 
series is that their appearance is "complex." In- 
deed, one might be tempted to suggest these series 
are "random." Also, despite the similarity in the 
initial conditions, visual inspection of the series 
indicates that they are not quantitatively similar. 
To make the point, I have included scatterplots of 
these series, matched by time. The first 25 iterates 
of the maps in these plots are indicated by a differ- 
ent symbol from the rest. Points falling on the 450 
line in these plots suggest time values at which the 
corresponding values of the systems are quite close. 
We see that quite early in time, the three series 
"predict" each other reasonably well. However, the 
similarity in the series diminishes rapidly as time 
increases. (The rate of this "separation" is in fact 
exponential in time.) Note' that, except for very 
early times, the series corresponding to xo = 
0.310001 is really no better at predicting the 0.31 
series than is the 0.32 series. Also, predictions 
based on xo = 0.31 when the correct value is 
0.310001 are very poor, even though the error in 

specifying the initial condition is in the sixth 
decimal place. This sort of behavior, known as sen- 
sitivity to initial conditions, is one of the key 
components of chaos. To amplify on this phe- 
nomenon, the first frame of Figure 2 presents dot 
plots, at selected time values, of the dynamical 
system corresponding to 18 initial conditions 
equally spaced in the interval [0.2340, 0.2357]. 
There are two messages in this plot. First, note 
that the images of these 18 points are quickly 
attracted to the unit interval. Second, the initial 
conditions appear to get "mixed" up in an almost 
noncontinuous manner. (However, for the logistic 
map, xt is, of course, a continuous function of xo 
for all t). The second frame of Figure 2 is a scatter- 
plot of the values of the logistic map after 2000 
iterates against the corresponding initial condi- 
tions for 4000 initials equally spaced in the inter- 
val [0.10005, 0.3]. There is clearly essentially no 
meaningful statements about the relationship be- 
tween x2000 and xo, even though x2000 is a well- 
defined polynomial function (of admittedly high 
order) of xo. (Note that presenting this graph 
for 2000 iterates is a bit of "overkill." Corre- 
sponding scatterplots after even a 100 or so iterates 
would look quite the same.) 

2.1.1 Some mathematics for nonlinear dynamical 
systems 

This discussion is intended to provide some flavor 
of the mathematics concerning the appearance of 
complex or chaotic behavior in nonlinear dynami- 
cal systems. The presentation is a bit quick, and 
until Section 2.1.3, considers one-dimensional maps 
only. More complete details may be found in Collet 
and Eckmann (1980), Rasband (1990) and Devaney 
(1989). We begin by considering the long-run 
behavior of a dynamical system generated by a 
nonlinear function f. The study begins with the 
consideration of fixed points of f; namely, those 
points that are solutions to f(x) = x. The key re- 
sult in this context is the following proposition. 
Using conventional notation, let ffn(.) denote the 
n-fold composition of f. 

PROPOSITION 2.1. Let p be a fixed point of f. If 
I f'(p) I < 1, then there exists an open interval U 
about p such that, for all x in U, limn-+o fn(x) = p. 

Under the conditions of this proposition, p is an 
attracting fixed point and the set U is a stable set. 
It is also true that if i f'( p) i > 1, p is a repelling 
fixed point. (In these two cases, p is said to be 
hyperbolic; if I f'( p) I = 1, p acts as a saddle point 
and more delicate analyses are required. The rest 
of this discussion focuses on hyperbolic points.) 
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FIG. 2. Mixing behavior of the logistic map: a = 4;0. (i) Dot plots for 18 initial conditions. 0 denotes xo = .2340, .2341, .2342, .2343, 
.2344, .2345; x denotes xo = .2346, .2347, .2348, .2349, .2350, .2351; + denotes xo = .2352, .2353, .2354, .2355, .2356, .2357. (ii) 
Scatterplot of logistic map at time 2000 against xo for 4000 xo's in [.10005, .3]. 

Consider now the logistic map defined earlier. 
The fixed points of this map, i.e., solutions to the 
equation x = ax(1 - x), are easily seen to be 0 and 
Pa = 1 - 1 / a. Note that f'(x) = a(l - 2 x). We now 
consider the behavior of iterates of the logistic for 
various a. 

1. a < 1: Because f'(O) = a < 1, 0 is an attract- 

ing fixed point. Furthermore, the iterates x,, = 
ff(x) are monotonically decreasing for all x in 
(0,1], but bounded from below by zero, and so, since 
f is continuous, limp ,f (x) = 0. Note that this 
argument also happens to cover the nonhyperbolic 
case when a = 1. 

2. 1 < a < 3: First, note that now 0 is a repelling 
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fixed point. The transition from attraction to repul- 
sion occurred as f'(O) increased to one at a = 1 and 
became greater than one for a > 1. This is a flag 
that there is a potential change in behavior. Con- 
sider the other fixed point Pa. Note that I f'( Pa) I = 
12 - al < 1, and so Pa is an attracting fixed point 
if 1 < a < 3. Thus, for all 0 < x < 1 there is a 
chance that limn ,f'fn(x) = Pa. This conclusion is 
already guaranteed for the stable set of Pa. It is not 
hard to demonstrate that iterates of any point in 
(0,1) eventually enter the stable set. The conclusion 
is that for almost all, in the sense of Lebesgue 
measure, x in [0,1], limn,fn(x) = Pa. The only 
exceptions are the endpoints 0 and 1. 

3. a > 3: Now both 0 and Pa are repelling fixed 
points. Because f'(Pa) > 1, Pa can no longer attract 
iterates of the map except for x's such that there 
exists an n such that ffn(x) = Pa. This set is the 
collection of preimages of Pa. This set is countable, 
because there is a "denumerable" algorithm for 
finding the preimages: Namely, first find the solu- 
tions to f( x) = Pa. In this step the solutions are Pa 
and 1 - Pa. The next step is to "invert" 1 - Pa to 
obtain two more preimages, etc. Also, note that for 
all a, the preimages of 0 are 0 and 1, but 1 has no 
preimages. To see what happens to other points, 
consider the fixed points of f2(x). (Fixed points of 
f2 are periodic points of period 2 for f). Now, we 
must solve 

(2.1) a(ax(l - x))(1 - ax(l - x)) - x = 0, 

a fourth degree polynomial. However, we can recog- 
nize that both 0 and Pa are solutions. Accounting 
for these solutions, we can find the remaining two 
by solving the qi!adratic 

a3 x2 + (Pa - 2)a x 
(2.2) + a3(1 + Pa(Pa - 2)) + a2 = 0. 

The solutions are 

Pu = [a + 1 + `a2- 2 a - 3 ]/2a and 

Pi= [a+ 1 - Va2 -2 a -3 ]/2a. 

Note that, of course, f(pu) = Pi. First, these roots 
are real and distinct if a2 - 2 a - 3 > 0 or if a > 3. 
At a = 3, Pa = Pu = p1. That is, we observe a bifur- 
cation at a = 3, in which the attracting fixed-point 
Pa splits into two pieces. Next, we ask for what a 
are these roots attracting fixed-points of f2? Note 
that 

f21(x) = a2(1 - 2x)(1 - 2ax(1 - x)), 

and so f21(pu) = f21(pl) = 1 - (a2 - 2a - 3). 
Tlru I , - t .2 _ . qj I . i y 

Further, we apply Proposition 1.1 to f2 to infer the 
existence of a stable set, U, corresponding to p, 
such that for all x in U, j, lim nX f2n(X) = p, An 
analogous claim is true for Pl A bit more work 
then yields that for all x (0,1), except for the preim- 
ages of 0 and pa, and for 3 < a < 1 + V1, xn is 
asymptotically attracted to oscillate between pi 
and Pl Note that, theoretically, xn need not actu- 
ally ever reach pm or Pi exactly, although numeri- 
cal computations typically indicate exact oscillation 
on this two-point attractor. 

Because I f2't(p)I = 1 at a = 1 + 6 and 
I f2/(pu) I > 1 for a > 1 + V", we (correctly) antic- 
ipate another bifurcation at a = 1 + V in which 
the period two attractor splits into a period four 
attractor. However, the analysis based on the 
analogs of (2.1) and (2.2) for this, and later, bifurca- 
tions is no longer feasible. More delicate tools are 
needed to mathematically describe the behavior. 
The result is that the period doubling bifurcations 
of periods 4 to 8, etc., continue as a increases, on to 
"period 2X" at a,. = 3.56994.... The fundamen- 
tal mathematics explaining the "period doubling 
cascade" is due to the physicist, M. Feigenbaum 
(see Feigenbaum, 1978). For a > a,, the asymp- 
totic behavior of the logistic becomes even more 
complex than period doubling cascade and is still 
not completely understood. We observe more period 
doubling as well as aperiodic behavior. For some a 
xn appears to wander on a "singular" attractor 
(i.e., a Cantor set), whereas for other a, particu- 
larly, a = 4, as x0 varies, xn wanders on a "con- 
tinuous" set. One interesting phenomenon occurs 
in a small interval of a's near 3.83... . In this 
region, a period 3 attractor appears, and then 
quickly under goes its own period doubling cascade. 
This fact implies further complications in that, if a 
is such nontrivial three-cycle behavior is possible, 
then all other cycles have solutions. That is, if 
f 3(x) = x has nontrivial solutions, so does f n(X) = 

x, for all n. This result is a consequence of 
Sarkovskii's Theorem [see Devaney (1989), Section 
1.10]. Also, see Li and Yorke (1975). On the other 
hand, for each fixed a, there is at most one attract- 
ing periodic cycle. That is, except for a set of 
Lebesgue measure zero, all initial values lead to 
paths that are attracted to the same periodic cycle, 
if there is attracting cycle. We have seen a version 
of this property above: for 3 < a < 1 + V, there 
are nontrivial solutions to both f(x) = x and 
f2(x) = x. However, only the period 2 cycle is at- 
tracting. The period one cycle is only observable for 
the preimages of Pa and 0. 

To illustrate some of the ideas concerning peri- 
odic behavior, consider the case of a = 3.83001. 
This value of a corresponds to an attracting three- 
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cycle with attractor 0.1561 ... -. 0.5046... - . 
0.9574.... Figure 3 presents a scatterplot of the 
values of x500 against xo for 800 xo's equally 
spaced in the interval [0.17, 0.3]. After 500 iter- 
ates, all of these initial points lead to paths that 
approximately cycle through the attractor; but the 
phase of the cycling varies in a complicated fash- 
ion. This suggests a form of sensitivity to initial 
conditions, at least for points outside of stable sets 
corresponding to values in the attractor, in the 
periodic case. By exploring other initial conditions, 
we can in fact estimate the stable sets correspond- 
ing to the three points of the attractor; that is, the 
three attracting fixed points of f3. For example, my 
computations indicate that the stable set corre- 
sponding to the point 0.1561... is approximately 
I, = [0.14545, 0.163571. This estimate can be veri- 
fied by checking that f3(X) E 11 for xE 1I. This cri- 
terion was numerically satisfied for 2000 equally 
spaced points in I,. 

To summarize the asymptotic behavior of the 
logistic map, consider the plot in Figure 4. This 
plot is intended to indicate the attractor of the 
logistic map as a function of a. For a grid of values 
of a from 3.45 to 4, iterates 101 to 221 of the 
logistic have been plotted. The result, known as an 
orbit diagram, is an interesting, complex object. 

2.1.2 What is mathematical chaos? 

There does not appear to be a universally ac- 
cepted, mathematical definition of chaos. There are 
different ways to quantify what one might mean by 
complex or unpredictable behavior. The primary 
concept appears to b& the notion sensitivity to ini- 
tial conditions, typically quantified as: 

DEFINITION 2.1. f: D -+ D. displays sensitivity to 
initial conditions if there exists 6 > 0 such that for 
any x in D and any neighborhood V of x, there 
exists a y in V and n 2 0 such that fn(x)- 
fn(y)I > 6 

t'his definition suggests that there exist points ar- 
bitrarily close to x that separate from x during the 
time evolution of the dynamical system. However, 
the definition does not say all points must separate, 
apparently leaving open the possibility that sensi- 

I .. . .. . . .I..... . ... .. .... . . . 

0.18 0.21 0.24 0.27 0.30 

FIG. 3. Periodic behavior of the logistic map: a = 3.83001. 
Scatterplot of X500 versus x0 for 800 points in [.11, .3]. 
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tivity to initial conditions can occur with Lebesgue 
measure 0. Maps for which all points must separate 
under iteration are said to be expansive. However, 
expansiveness is typically too restrictive for most 
maps. (For example, consider the logistic map when 
a = 4. The initial conditions xo and 1 - xo result 
in identical realizations of the map. Therefore, since 
xo can be chosen arbitrarily close to 0.5, expansive- 
ness cannot be claimed). However, the set of all x 
leading to any periodic behavior when a = 4 is a 
set of Lebesgue measure zero. This sort of phe- 
nomenon is related to another component of the 
mathematical definition of chaos, namely the set of 
x's leading to periodic behavior is dense in D. That 
is, complex, aperiodic behavior can arise despite 
the existence of densely distributed opportunities 
for well-ordered behavior. This is implicit in the 
claim of Li and Yorke (1975) that "period three 
implies chaos." I think the way most people would 
like to interpret sensitivity is as if the map were 
almost everywhere, typically, in the sense of 
Lebesgue measure, expansive. 

DEFINITION 2.2. f:D - D is almost everywhere 
expansive if there exists 6 > 0 such that for almost 
all x in D and almost all y in D, there exists 
n 2 0 such that I fn(x)-fn(y) I > 6. 

Although I have not located discussion of such a 
definition, there may be relationships to some of 
the definitions relating chaos and randomness dis- 
cussed below. 

Another mathematical concept associated with 
definitions of chaos intuitively involves the rich- 
ness of chaotic paths. 

DEFINITION 2.3. f:D-+ D is topologically transi- 
tive if for any pair of open sets U, V in D there 
exists n > 0 such that f (U) ln v is not empty. 



CHAOS 75 

This definition suggests that some paths of the 
dynamical system generated by f eventually visit 
all regions of D. In fact, it turns out that f is 
topologically transitive if and only if the map pos- 
sesses a path that is dense in D. 

To this point, I have only listed properties associ- 
ated with chaos, but have not given an explicit 
definition of chaos. Indeed, different definitions ex- 
ist. The popularized view of chaos revolves around 
sensitivity to initial conditions as in Definition 2.1. 
A now standard and more complete, mathemati- 
cally motivated definition is given in Devaney 
(1989, page 50). Namely, a map is "chaotic" if it 
has the properties of: (i) sensitivity to initial condi- 
tions (Definition 2.1); (ii) topological transitivity 
(Definition 2.3); and (iii) periodic points are dense. 
Other related definitions of chaos (positive Lia- 
punov exponents, as introduced in Section 3.1.1, 
and the existence of continuous ergodic distribu- 
tions, as introduced in Section 2.2.3) involve no- 
tions of ergodic theory. See Collet and Eckmann 
(1980) for further discussion. 

2.1.3 Dissipative systems and chaos 

Much of the complex behavior of the logistic is a 
result of its noninvertibility. Indeed, noninvertibil- 
ity is required to observe chaos for one-dimensional 
dynamical systems, as defined here. However, ev- 
erywhere invertible maps in two or more dimen- 
sions can also exhibit chaotic behavior. Among the 
many interesting facets of dynamical systems, one 
area that receives much attention is the study of 
strange attractors. The basis issue is the long-run 
behavior of the system. As time proceeds, the tra- 
jectories of systems may become trapped in certain 
bounded regions of the state space of the system. 
As noted even for the logistic map, these trapping 
regions or attractors can display remarkable oddi- 
ties. An important example in two dimensions is 
the Henon map. This map can display the property 
of having a strange attractor; that is, the attractor 
"appears to be locally the product of a two-dimen- 
sional manifold by a Cantor set." This quote, along 
with a motivation of the map, may be found in 
Henon (1976). Also, see the previous references for 
discussion. The Henon map is given by the follow- 
ing equations: 

(2.3) xt1 = + yt - ax2 and Yt+1 = bxt 

for fixed values of a and b 'and t = 0, 1, .... This 
invertible map can not only possess strange attrac- 
tors, but also display strong sensitivity to initial 
conditions. as encountered earlier. [The rigorous 
verification of many of the properties of the Henon 
map is actually very difficult; see Benedicks and 
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FIG. 5. Plots for Henon map. (i) Scatterplot of first 2000 iter- 
ates. (ii) First 500 iterates of x. 

Carleson (1991).] To get a feel for this map, Figure 
5 presents a scatterplot of the first 2000 iterations 
(the attractor) of the map, as well as a time series 
plot of the "x" series. These computations were 
based on the conditions a = 1.4, b = 0.3, xO = 0.4 
and yo = 0.3. 

This example illustrates two important aspects of 
chaotic behavior. First, note that the complex geo- 
metrical structure of the Henon attractor. This ob- 
ject is of fractal dimension. Such objects appear in 
the study of many dynamical systems. The mathe- 
matics that suggest such behavior are as follows. 
The Henon map, viewed as a transformation from 
R2 to R2, has Jacobian equal to -b. If 0 < b < 1, 
we make the geometrical observation that Henon 
map contracts the areas of sets to which it is ap- 
plied. More generally, such maps are said to be 
dissipative. (Maps that maintain area under itera- 
tion are conservative.) Intuitively, the complex 
limiting behavior of chaotic, dissipative dynamical 
systems is the result of two competing mathemati- 
cal trends. Dissipativeness suggests that iterates 
tend to collapse to sets of Lebesgue measure zero. 
However, an effect of chaos is to prohibit periodic 
behavior. The natural results consistent with these 
two phenomena is for the system to be attracted to 
an inflnite, singular set of Lebesgue measure zero 
(in an appropriate manifold of Rk). Such attracting 
sets are known as strange attractors. (The above 
heuristics are not complete. For example, conserva- 
tive systems can display chaotic behavior without 
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being attracted to singular attractors. Rather, 
conservative systems can have attractors that are 
colorfully called "fat fractals"; that is, complex 
geometrical objects that are essentially "space-fill- 
ing." Such systems will not be considered further 
.n this article. The reader may consult the refer- 
ences for discussion.) 

Second, note that there is a relationship between 
the roles of time and dimension in the definition of 
dynamical systems. In particular, (2.3) can be writ- 
ten as a one dimensional relationship if we allow 
consideration of more lags of time: 

(2.4) x = 1 + bxt1 - ax. 

Statisticians familiar with more conventional time 
series modeling might see a kinship between (2.4) 
and a "nonlinear autoregressive model of order 2." 
I will return to such concepts in Section 4. 

2.1.4 Continuous time dynamical systems: Differ- 
ential equations 

Continuous time dynamical systems arise natu- 
rally in many applications in which the time 
evolution of the quantities of interest, composing a 
k-dimensional vector x(t), are modeled via differen- 
tial equations. In particular, consider a initial value 
problem where x(O) is an initial condition and the 
dynamics of the system are quantified by the differ- 
ential equation 

(2.5) dx(t)/dt = F(x(t)), t > 0. 

The value x(t) describes the state of the system at 
time t; the domain of possible values of x( ) is 
called the phase space. A specific solution to (2.5), 
"plotted" in the phase space, is known as an orbit. 
As in the case of discrete time, solutions to (2.5) 
can be chaotic in the sense that some views of the 
solutions may appear "random," solutions display 
sensitivity to initial conditions and, in the case 
of dissipative systems, now indicated when 

= 1 aFi /a xi < 0, orbits are attracted to strange 
attractors. 

Traditional methods for numerically solving dif- 
ferential equations typically involve discrete time 
approximations. The simplest method, in the con- 
text of (2.5) uses the approximation x(tn+l) = 

h F(x(tn)) + x(tJ) where the stepsize, h, is small 
and tn+1 = h + tn. Thus, numerical solutions to 
differential equations are themselves typically dis- 
crete time dynamical systems. For the actual 
computations in this article, I used a more sophisti- 
cated approximation known as the four-point 
Runge-Kutta method. This method appears to be 
considered a standard method for solving differen- 
tial equations. Further details are not relevant 

here. The reader can find a valuable discussion of 
the basics in Press, Flannery, Teukolsky and Vet- 
terling (1986). 

The following example of (2.5) is used in Section 
4. The differential equation, known as the Lorenz 
system, is extremely popular in the literature on 
chaos. The system, given component-wise, is 

dx/dt = a(y - x), 
(2.6) dy/dt = -xz + rx - y, 

dz/dt = xy - bz, 

where a, r and b are constants. Lorenz (1963) 
considered this system as a rough approximation to 
aspects of the dynamics of the Earth's atmosphere. 
Figure 6 presents plots in phase space of a numeri- 
cal approximation of a solution to (2.6) where a = 
10, r = 28 and b = 8/3. (I tried to indicate why the 
attractor is nicknamed "The Butterfly.") For this 
famous choice of the parameters, the solutions (see 
Figure 7) display sensitive dependence to initial 
conditions and "unpredictable" fluctuations. For 
almost all initial conditions, orbits are attracted to 
the object displayed in the various panels of Figure 
6. Note that I have plotted points from the discrete 
time numerical approximation in this figure. 
"True" solutions to (2.6) are continuous and are 
attracted to a "continuous," yet strange attractor of 
Lebesgue measure zero, since the Lorenz system is 
dissipative. 

2.2 Randomness and Chaos 

This section reviews various relationships be- 
tween chaos and randomness. The key ideas 
involve the interrelations between sensitivity to 
initial conditions, uncertainty modeling and er- 
godic theory. The discussion emphasizes ideas, but, 
for the sake of brevity, not rigor. 

2.2.1 Uncertainty, chaos and randomness 

The main topic of this section is how uncertainty, 
especially in the presence of complexity, naturally 
leads to the use of random or probabilistic methods. 
I will begin with a historical perspective. An early 
and persuasive suggestion that deterministic mod- 
els may be of limited value is the following discus- 
sion of Laplace, circa 1800, (from Laplace, 1951, 
page 4): 

Given for one instant an intelligence which 
could comprehend all the forces by which na- 
ture is animated and the respective situation of 
the beings who compose it-an intelligence suf- 
ficiently vast to submit these data to analy- 
sis-it would embrace in the same formula the 
movements of the greatest bodies of the uni- 
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FIG. 6. The Lorenz attractor: Four views of the Lorenz attractor 
based on iterates 1001-8000 of the four-point Runge-Kutta algo- 
rithm with stpsize = .01. 
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FIG. 7. Time series plots for the Lorenz system. 

verse and those of the lightest atom; for it, 
nothing would be uncertain and the future, as 
the past, would be present to its eyes. 

After briefly reviewing some of the success of sci- 
ence, Laplace continues: 

All these efforts in the search for truth tend to 
lead [human intelligence] back continually to 
the vast intelligence which we have just men- 
tioned, but from which it will always remain 
infinitely removed. 

Laplace beautifully itemizes the need for perfect 
knowledge of the natural laws and initial condi- 
tions in deterministic analysis. However, he also 
clearly questions the relevance of his "vast intelli- 
gence" vis-a-vis human efforts. [Laplace has often 
been misunderstood in this regard. Readers of 
Laplace who emphasize the first portion of the 
above quote seem to believe that Laplace was a 
strict determinist. For example, see Stewart (1989, 
pages 11-12). For a particularly unjust appraisal of 
Laplace, see Gleick (1987, page 14) Laplace also 
wrote, "It is remarkable that ... [the theory of 
probabilities] should be elevated to the rank of the 
most important subjects of human knowledge" 
(Laplace, 1951, page 195). These are hardly the 
words of a strict determinist.] 

A primary example of the use of probabilistic 
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methods to partially overcome difficulties in a com- 
plex, deterministic setting is statistical mechanics. 
The key issue is the study of the motions of a large 
number (on the order of 1024) of particles floating 
around in a box. Suppose that the system is such 
that we can assume that the motion of all the 
particles are governed by the deterministic laws of 
motion of classical physics. In principle, we should 
then be able to compute, given all of the requisite 
initial conditions, the exact future behavior of the 
entire system. However, we immediately recognize 
a problem: can we ever claim, for such a large 
system, that we actually know, -with sufficient ac- 
curacy to perform the calculations, all of the initial 
conditions? At least for the last 140 years, the 
commonly agreed upon answer is no. Indeed, in the 
presence of uncertainty concerning these initial 
conditions, the motion of the particles (or, at least, 
observable functions of these motions) not only ap- 
pear "random," but are successfully modeled via 
stochastic techniques. 

The second pertinent class of historical examples 
directly relates to nonlinear dynamical chaos. For 
example, probabilistic methods have long been sug- 
gested in the area of fluid dynamics, particularly, 
turbulence; see Grenander and Rosenblatt (1984, 
Chapter 5) for pertinent discussion. The genius of 
Poincare anticipated a great deal of the current 
interest in nonlinear dynamics. Consider the now 
frequently cited comments of Poincare, circa 1900 
(from Poincare, 1946, pages 397-398): 

A very small cause, which escapes us, deter- 
mines a considerable effect which we cannot 
help seeing, and then we say that the effect is 
due to chance. If we could know exactly the 
laws of nature and the situation of the uni- 
verse at the Initial instant, we should be able 
to predict the situation of this same universe at 
a subsequent instant. But even when the natu- 
ral laws should have no further secret for us, 
we could know the initial situation only ap- 
proximately. If that permits us to foresee the 
succeeding situation with the' same degree of 
approximation, that is all we require, we say 
the phenomenon had been predicted, that it is 
ruled by laws. But it is not always the case; it 
may happen that slightly differences in the 
initial conditions produce very great differ- 
ences in the final phenomena; a slight error in 
the former would make an enormous error in 
the latter. Prediction becomes impossible, and 
we have the fortuitous phenomenon. 

This eloquent passage captures the key points for 
our discussion. It includes the mathematical prob- 
lem of sensitivity to initial conditions. More ger- 

mane to my current thesis, however, is Poincare's 
explicit suggestion that we can perceive "chance" 
to be at works as a result of our uncertainty. 
Poincare went further by suggesting an operational 
approach for dealing with such problems that basi- 
cally involve the treatment of unknown initial con- 
ditions as random. (This idea is known as the 
"Method of Arbitrary Functions" and will be dis- 
cussed further in Section 5.) 

2.2.2 Defining chaotic to be random 

I will only give a simple description, based on 
Jackson (1989), of the basic idea of what is known 
as symbolic dynamics. Consider a discrete time 
dynamical system such as the logistic map. At each 
iterate, xn, n > 0, of the process, we will associate 
a simple indicator function based on the location of 
xn. In particular, suppose we let Yn = 1 if Xn ES 

and Y,, = 0 otherwise, where S is some subset of D. 
That is, each initial condition of the system is now 
associated with an infinite sequence of 0's and l's. 

DEFINITION 2.4. A map is chaotic if for any se- 
quence of 0's and l's, there exists an initial condi- 
tion yielding the same sequence of Yn's defined 
above for some fixed S. 

The idea here is that if this definition is satisfied, 
the deterministic dynamical system is, in a sense, 
at least as rich as Bernoulli coin tossing. For exam- 
ple, it turns out that the logistic map is chaotic as 
long as a is large enough (a > 3.83 ... ) to permit 
period three (and, thus, all higher periods) behav- 
ior. There is a direct relationship between Defini- 
tion 2.4 and the mathematical definitions relating 
to periodic points being dense, as described in Sec- 
tion 2.1. I will return to symbolic dynamics in the 
following subsection. 

2.2.3 Ergodic theory and chaos 

Perhaps the strongest relationships between de- 
terministic chaos and randomness are found 
through consideration of ergodic theory. [Only a 
cursory presentation is given here. Some valuable 
references include Breiman (1968); Cornfield, 
Fomin and Sinai (1982); Eckmann and Ruelle 
(1985); and Ornstein (1988).] To motivate the cen- 
tral ideas, imagine that some arbitrary system (sto- 
chastic or deterministic) is under study. Consider 
one experiment in which we will observe the evolu- 
tion of some variable of the systems over time. In 
another experiment, we will observe the same vari- 
able as in the first, but for several "similar" repli- 
cates of the same system at a given time point. 
Ergodic theory seeks to answer the question, "When 
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can we expect the average of the data, over time, in 
the first experiment, to be the same (in expecta- 
tion) as the average of the data, over the replicates 
at a fixed time?" There is an intriguing relation- 
ship between the question of ergodic theory and the 
familiar question of "independent versus repeated 
measures" observations. Of particular interest to 
Bayesians, the role of exchangeability in ergodic 
theory deserves attention. Pursuit of these issues is 
beyond the scope of this paper. 

To see the role of ergodic theory in deterministic 
chaos, we will need a bit of formalism. Consider a 
probability triple (X, F, P), where X is a sample 
space for some experiment, F is a a-algebra of 
subsets of X and P is a probability measure. As- 
sume X is a subset of R1 and, thus, permit P to 
represent a probability measure or corresponding 
distribution function. Next, we introduce a func- 
tion, f which maps X to X. For X distributed 
according to P, consider the random variable f( X). 
The function, or transformation, f is said to be 
measure preserving (or invariant) with respect to P 
if the random variable f(X) has distribution P. To 
solidify this definition by example, let X = [0,11 
and let P be the arc-sine [or beta(0.5, 0.5)] distribu- 
tion, with probability density function p( x) = 
{wr /x(1 - x) }I-. It is easy to check that the logis- 
tic function, f(x) = 4 x(1 - x), is invariant with 
respect to P. 

A few more definitions are needed to relate these 
ideas to dynamical systems. For an invertible 
transformation f, a subset AeF is invariant if 
f ̀ (A) = A. For a noninvertible f, invariance of A 
means f t( A) = A for all t > 0. Further, f is said to 
be ergodic if for every invariant subset, AeF, 
P( A) = 0 or 1. That is, if f is ergodic, sample paths 
of the dynamical system obtained from f do not 
become trapped in proper subsets of the support of 
P, but rather mix over its support. (Note the corre- 
spondence to topological transitivity in Definition 
2.3.) Furthermore, if f is ergodic with respect to 
two probability measures P, and P2 on the same 
measure space, then either P, = P2 or P1 is orthog- 
onal to P2. With this structure, we can state a 
simple version of the ergodic theorem: 

If f is measure-preserving and ergodic on (X, F, 
P) and Y is any random variable such that E( I Y I) 
< oo, then 

1n 
E Y(f '(xo)) -+Ep(Y) a.s.(P), asn -oo. n i=l 

To illustrate this result, again consider the logis- 
tic map with a = 4 and let P correspond to the arc 
sin law. To see that f is ergodic, it is not hard to 
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FIG. 8. Example of ergodic behavior: Logistic map, a = 4.0. (i) 
Histogram of 4000 iterates of xo = .20005. (ii) Histogram of the 
logistic map at time 2000 for 4000 xo's in [.10005, .30005]. 

show that except for X, for which P(X) = 1, any 
invariant subset must be denumerable and thus 
have P-measure 0. Ergodic behavior is suggested 
by considering sample paths of the logistic. Figure 
8 (i) presents a histogram of 4000 iterates of this 
map, beginning at the initial condition xo = 
0.20005. Figure 8 (ii) presents the histogram of the 
values of the logistic map at time 2000 for 4000 
different initial conditions. In both cases, we see 
the appearance of something like the arc-sine den- 
sity. In the construction of Figure 8 (ii) I have used 
what is perhaps the most important feature of the 
application of the ergodic theorem to deterministic 
dynamical systems. The key point is to note the 
power of the "almost sure" convergence of the theo- 
rem. That is, the initial condition xo of the system 
need not be randomly generated according to P for 
ergodicity to apply to the resulting dynamical sys- 
tem. Indeed, the initial condition need not be "ran- 
domly generated." We must only avoid sets of P- 
measure zero. (For the arc-sine distribution, this 
means Lebesgue measure zero.) Furthermore, for 
any logistic with a large (a > 3.83 ... ) enough to 
admit periodic cycles of all orders, each periodic 
cycle generates a discrete ergodic distribution that 
assigns equal mass to the components of the cycle. 
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Note that all these distributions are mutually or- 
thogonal. An implication of these considerations 
suggest that, to observe ergodic behavior corre- 
sponding to the arc sine for the logistic with a = 4, 
we must particularly avoid the preimages (see Sec- 
tion 2) of all periodic points. 

Actually, the above arguments offer only a par- 
tial explanation of why we see ergodic, apparently 
random behavior in computer-generated dynamical 
systems. Electronic computers can only represent a 
finite, although, fortunately, quite large number of 
numbers and thus no numerically computed dy- 
namical system can truly be aperiodic. In the logis- 
tic map example of Figure 8, the initial conditions 
were necessarily only truncated real numbers, and 
thus, lie in a set of Lebesgue measure zero. A 
possible explanation of why we still can observe 
behavior expected under the ergodic theorem in- 
volves the so-called shadowing property. The idea 
is that the computer-generated orbit of the system 
is, in a sense, an approximation to some true orbit. 
The result is that we can be reasonably confident 
that, if proper care is taken, computer results, espe- 
cially aggregated results such as the histograms of 
Figure 8, do in fact capture the correct qualitative 
features of the system. The required care alluded to 
in the previous statement refers to the roundoff 
error present in the numerical computation of the 
nonlinear function f. Further discussion of compu- 
tational issues for dynamical systems is beyond the 
scope of this paper [see Guckenheimer and Holmes 
(1983); Hammel, Yorke and Grebogi (1987); and 
Parker and Chua (1989)]. 

The story of ergodic theory, chaos and random- 
ness is still not complete. A most intimate relation- 
ship accrues from the following result. Under the 
assumptions of the ergodic theorem, if the initial 
condition xo is generated according to P, the se- 
quence { Y(fi(xo)) = Yi(xo), i > 0} is a stationary 
stochastic process. (The probabilistic structure of 
this stochastic process varies with the ergodic dis- 
tribution used to generate xo.) Thus, if we choose Y 
to be the identity transformation, Y(x) = x, the 
deterministic dynamical system with initial condi- 
tion somehow chosen, with care to avoid sets of 
P-measure zero, is a realization of a stochastic proc- 
ess. This result is also important in symbolic dy- 
namics; indeed, the previous statement provides a 
natural generalized definition of chaos in the spirit 
of Definition 2.4. Consider the symbolic definition 
of Section 2.3 for the logistic when a = 4 and S = 
[O,.5]. In this case, if the initial condition has the 
arc sine distribution, it can be shown that the Y's 
are actually independent, identically distributed 
("equally likely") Bernoulli random variables. [For 
related discussion, see Breiman (1968, page 108).] 
In such a case, the ergodic theorem coincides with 

the strong law of large numbers. Pursuing the 
deterministic argument, I will leave it to philoso- 
phers to debate the meaning of the claim, "Starting 
at initial condition xo = .2958672..., the proba- 
bility that Yn = 1 and Yn+1 = 0 is 0.52 if 
n = 101oo.'' Although there is nothing "random" 
here, the probability statement still makes sense to 
me. 

3. DATA ANALYSIS AND CHAOS 

In this section I will review some of the problems 
associated with chaotic models and data that are of 
particular to statisticians. 

3.1 Measuring Chaos 

Important questions arise in attempting to char- 
acterize what a chaotic time series of data should 
look like. Intuitively, a chaotic series should look 
"random," but this intuition is not necessarily easy 
to quantify in terms of the mathematical or proba- 
bilistic definitions discussed in Section 2. 

3.1.1 Liapunov exponents 

One of the most popular measures of chaos, 
Liapunov exponents, are based on mathematics as- 
sociated with the sensitivity to initial conditions 
concept described in Section 2. [Nearly all of the 
general references given here present discussions; 
especially see Eckmann and Ruelle (1985).] Con- 
sider a univariate, discrete time dynamical system 
where xn fn( xo). To study the impact of varying 
initial conditions, it is natural to consider deriva- 
tives dxn /dxo. The Liapunov exponent, say X(so), 
is defined as (x0) = limn- (1/n) log[ I dxn/ dxo ]. 
Note that via the chain rule, dxn /dx0 can be repre- 
sented as a product and so X((xo), under appropriate 
conditions, may be subject to the ergodic theorem. 
If so, then X(x0) = X, independent of x0, almost 
surely with respect to an appropriate ergodic distri- 
bution. Under such circumstances X is a quantita- 
tive measure of the dynamical system's degree of 
sensitivity to initial conditions. In particular, the 
approximation 

(3.1) dxn z eXndxo 

suggests that for large X, small changes in initial 
conditions result in separation of paths at an expo- 
nential rate as n grows. 

Note that, in the ergodic case, X can be estimated 
from a single time series. This means we can assess 
sensitivity to initial conditions even though the 
data is based on a single x0. Of course, this as- 
sumes that ergodicity applies and that the xo that 
generated the data is in support of the appropriate 
ergodic distribution. (Recall the ergodic distribu- 
tions, although orthogonal, need not be unique.) 
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Furthermore, by using an appropriate independent 
sample of initial conditions, we can potentially 
combine estimates of X to obtain more precise esti- 
mates and associated standard errors. 

I have defined X for a univariate dynamical sys- 
tem; extensions to higher dimensions can be found 
in the references. Also, the work of Nychka, McCaf- 
frey, Ellner and Gallant (1990) on estimating Lia- 
punov exponents with nonparametric regression 
techniques is of special interest to statisticians. 

3.1.2 The geometric structure of chaos 

A second class of measures of chaos involves the 
notion of attractors of dynamical systems men- 
tioned in Section 2.4. Attempts at characterizing 
complex geometrical objects have a long history in 
mathematics. Spurred on by the modern work of B. 
Mandelbrot and others, as well as the relationships 
to chaotic dynamical systems, there has been con- 
siderable research in the general area of fractal 
geometry and its applications. Valuable references, 
at various levels of mathematical sophistication, 
include Mandelbrot (1982), Barnsley (1988), Peit- 
gen and Saupe (1988), Kaye (1989) and Edgar 
(1990). The presentation here follows those in Ru- 
.elle (1989), Baker and Gollub (1990) and Rasband 
(1990). Also, see Farmer, Ott and Yorke (1983), 
Guckenheimer (1984) and Takens (1985). 

The starting point is an attempt generalize no- 
tions of geometric "size" of sets lying in Rk, from 
the conventional ideas of "length" (k = 1), "area" 
and "arc length" (k = 2), and "volume" and 
"surface area" (k > 2), in cases in which the com- 
plexity of the sets of interest prohibits meaningful 
categorization by these familiar measures. (The sort 
of set to keep in mind is the Cantor set; this "large" 
set has Lebesgue measure zero.) The most readily 
understood class of measures involves the notion of 
trying to "cover" the set of interest, say A, lying in 
a compact subset of Rk, with k-dimensional boxes 
with sides of length e, small number. If k = 1 and 
A is simply an interval of length L, clearly the 
"number" of "boxes" used to cover the interval is 
approximately, ignoring integer part corrections, 
N(A, e) = L/E. For A, a k-dimensional cube with 
side L, we have that N(A, E) = (L/E)k. For such 
nice sets A, a little algebra suggests the usual 
interpretation of the dimension of A: 

log N(A, E) 
(3.2) ?-0 log (1/E) 

Different measures of dimension are based on this 
notion of "covering" A. [For general A, the limit 
in (3.2) may not exist.] For example, for an arbi- 
trary, compact set A lying entirely in Rk to be 
covered by k-dimensional cubes, define the 

(Kolmogorov) capacity of A as 

(3.3) dc = limsup 
l (A, ) 

A second measure of the size of a set is the Haus- 
dorff dimension, dH. Although in a sense it is 
mathematically more pleasing than versions of 
(3.3), it definition requires additional development 
and will be omitted. It should be noted that various 
authors defined dc (or one of its cousins) as the 
fractal dimension of A, while others, including 
Mandelbrot, define the fractal dimension to be dH. 
This is unfortunate because these measures can 
differ: in general, dH s dc. For the Cantor set in 
one dimension, dH= dc = log2/log3, suggesting 
that the set lies in some meaningful fraction, al- 
though of Lebesgue measure zero, of the unit inter- 
val. The fractal dimension of the Lorenz attractor 
introduced in Section 2 is about 2.04, suggesting 
that the attractor lies entirely in a manifold of R3, 
but not R2, and is a fractal. 

There are other measures of dimension in addi- 
tion to those mentioned above. Some of the meas- 
ures often studied in the chaos literature may be 
motivated by the suggestion that one relate the 
geometry of attractors, the structure of ergodic dis- 
tributions and the mathematical properties of 
chaos. To motivate the potential of such interrela- 
tionships, pretend we are faced with a problem in 
which a discrete time, chaotic and ergodic system 
evolves from one of two possible initial conditions. 
As we watch the evolution, we actually gain infor- 
mation about which initial condition was the true 
one, because sensitivity to initial conditions implies 
that the paths separate quickly, no matter how 
close the two candidates are. In this sense some 
authors claim that chaotic paths "create informa- 
tion" about initial conditions. [Berliner (1991) pre- 
sents an analogous argument in terms of statistical 
information.] Alternatively, sensitivity to initial 
conditions also suggests that we have decreasing 
information about the future of a dynamical system 
as time increases. Consider the following heuristic 
argument. Suppose that the compact phase space of 
a univariate dynamical system is discretized, at 
least for our observation of it, into J cells of equal 
and small size, say dx. Further, we will agree to 
summarize our uncertainty in the state of the sys- 
tem through a discrete distribution on the J cells. 
A familiar measure of our uncertainty about a 
random variable distributed according a probabil- 
ity distribution is the entropy function; for any 
distribution, P, on the J cells above, the entropy of 
P is Ent(P) = -iJ 1Pi log Pi, where Pi is the 
probability of the ith cell. Next, suppose that at a 
given point in time we know that the system lies in 
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a particular cell. The corresponding P has entropy 
zero. (Actually, a better argument would quantify 
our uncertainty in the-initial condition via a proba- 
bility distribution over the cell known to contain 
the system. That is, our entropy, as a measure of 
uncertainty, is virtually never zero. The basic idea 
can be conveyed without this correction.) At a large 
future time point, say t, chaos suggests that the 
process will be in one of approximately, ignoring 
integer part corrections, exp(Xt) cells, where X is 
the positive Liapunov exponent of the system [re- 
call (3.1)]. If a uniform distribution on these cells is 
appropriate, the resulting distribution has entropy 
approximately equal to Xt. Thus, entropy increases 
as the forecast time increases. Providing rigor for 
this argument is not easy; a key point is that the 
future distribution need not be uniform on the 
candidate cells, but rather should involve the ap- 
propriate ergodic distribution. Nevertheless, this 
intuition suggests that the asymptotic rate of 
change in entropy, represented by the information 
dimension, introduced below, provides information 
about the structure of the problem. Further, en- 
tropy or the information dimension, may, in some 
settings, be directly related to the Liapunov expo- 
nents of the system. The theory is incomplete, but 
discussion can be found in the references under the 
topic of the Kaplan-Yorke Conjecture. 

We now turn to descriptions of other measures 
and to problems of estimation of these measures of 
dimension. These two aspects are intimately re- 
lated in the sense that a given measure is often 
defined as the result of a given estimation proce- 
dure. The typical set-up is one in which "long" 
realizations of the system under study are avail- 
able, but the true attractor and corresponding er- 
godic distribution are unknown. This suggests 
problems of statistical estimation based on data. 
The standard methods are based on the assumption 
that the process is ergodic and that the data covers 
a sufficiently long time period to be representative 
of the ergodic distribution. For example, suppose 
we are to estimate a functional; say (, such as 
entropy, of the ergodic distribution, P. The first 
step is to partition the phase space of the system 
into J(E) "boxes," each of side E. Ignoring events 
on the boundaries of the boxes, define Pi(E) as the 
probability under the ergodic distribution of the ith 
box; let ^(E) represent the corresponding (multi- 
nomial) approximation to P. Assuming the attrac- 
tor lies in a compact set, it i's reasonable to assume 
that 

(3.4) (P) = lim (p(E)). 

To unify various measures discussed so far, the 
following class of rescaled, generalized Renyi infor- 

mation measures are considered: 

(3.5) lq(P) = lPi 
q - 1 6-o log e 

Note that q( ) is nonincreasing in q. For q = 1, a 
limiting argument yields the representation 

(3.6) 01(P) = -lim Ent (P()) 
6--+o log e 

which is known as the information dimension. 
[21(P) can also be related to Hausdorff dimension; 
see Ruelle (1989).] Furthermore, the capacity d, 
coincides with tO(P). The key notion of the rescal- 
ing involves consideration of the rates at which the 
attractor fills the appropriate space. In particular, 
note that, unlike (3.4), (3.2), (3.3), (3.5) and (3.6), 
respectively, all involve limits that are scaled by 
loge. For example, the information dimension is 
not equal to the entropy of P. Distributions with 
different entropies, but similar structure, can have 
the same information dimension. 

To estimate ,( P) from a finite set of data, con- 
sider a decreasing sequence of ej's. For each ej and 
corresponding partition of the phase space into J(ej) 
"boxes," we need to estimate all of the Pi. For a 
discrete time dynamical system, it is natural to 
estimate the 'i's by the corresponding proportions 
of the data in the boxes. Most procedures proceed 
by graphing log(Z!Ay) (5i(6j))q) versus logej and 
estimating q(P) by the slope of the least-squares 
linear fitted line through these points. This ap- 
proach seems to reasonable in principle, but some 
art is involved. In particular, Ej's which are too 
large will not capture the structure of the hypothe- 
sized attractor. Also, ej's which are too small lead 
to too many empty cells, resulting in a loss of 
structure. After all, the true dimension for a finite 
set of points of zero. 

In general, large values of q are useful in relat- 
ing geometric structure to probabilistic structure. 
An important example, known as the correlation 
dimension and due to Grassberger and Procaccia 
(1983), is given by 02(P). To motivate this dimen- 
sion define, for a given ergodic distribution, the 
function 

(3.7) Pr(IX- YI cr), 

for r > 0, and where X and Y are independent, 
identically distributed random variables generated 
from the ergodic distribution under study, provides 
some probabilistic information concerning the 
structure of this distribution. To empirically esti- 
mate (3.7) based on a set of data, { Yi}i=1,N' from a 
discrete ergodic distribution, Grassberger and Pro- 
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caccia (1983) consider the quantity 
1 

C(r) = 2Z.[IO,r]( I YiYiI) N ^,j 

where I represents the usual indicator function. 
The correlation dimension is defined as 

d HAL 
log C(r) 

GP = " 
log r 

In conclusion, most of the traditional procedures 
described in the literature strike me as what a 
statistician would describe as "nonparametric 
method of moments" procedures. Also, the effects of 
observation error, arising from various plausible 
error models, is not completely understood. For 
newer methods and further discussion along these 
lines, see Wolff (1990) and Smith (1992) in the 
"statistics literature" and Ellner (1988), M6ller et 
al. (1989) and Ramsey and Yuan (1989) in the 
"physics literature." 

3.2 Data Analysis: The Search for Structure 

To set the stage for the topics of this section, 
consider the following "experiment." Suppose I 
provided you with a data set { xnln= 1,1000 consisting 
of computer-generated iterates of the logistic map 
for a randomly chosen initial condition and with 
a = 4, but told you nothing about how the data was 
generated. As a data analyst, you might begin by 
looking at a simple time series plot of the data. As 
indicated earlier, the resulting time series plot 
would suggest that the data are indeed random. 
However, no reader -of this paper would be fooled 
into making such a conclusion. For example, if you 
considered fitting an autoregressive model to the 
data, you would probably first look at a scatterplot 
of xn+1 versus xn. Of course, this plot would look 
like a plot of the function y = 4x(1 - x). That is, 
by simply considering the "right way" to look at 
the data, the deterministic structure of the logistic 
map would simply appear despite the random ap- 
pearance of the original data. On-the other hand, if 
instead of the original data, I provided you with a 
time series of the corresponding symbolic dynamic 
of the data (i.e., { Ynln= 11000 where Yn = 1, if xn > 
0.5, and 0, otherwise), then there is nothing that 
you could do to find the now hidden deterministic 
structure of the underlying logistic map. 

Whereas this example falls far short of indicating 
the complexity associated With chaotic data analy- 
sis, it does suggest one of the fundamental ques- 
tions: What operations can we perform to chaotic 
data to "find" any underlying determinism? The 
second part of the example presents a warning 
concerning the "design of experiments" for chaotic 
data analysis: we must try to observe variables 

that can be informative about any underlying 
structure. 

3.2.1 Poincare Maps 

Suppose a particular continuous time dynamical 
system is under study with the intent of trying to 
understand some features of the dynamics. The 
particular system may be a known chaotic system 
being studied via computer experiments or an un- 
known system displaying complex, "random" be- 
havior being observed (without error!) in nature. 
Faced with complex behavior, perhaps in high di- 
mensions, we study a subset of the data carefully 
chosen to provide information about the underlying 
dynamics. Specifically, one defines a Poincare sur- 
face of section, as some manifold in the phase space, 
which the realization of the system strikes "trans- 
versally." We then consider the successive values 
of some subset of variables of the system each time 
the system passes through the section. 

The above suggestion is easily illustrated for the 
Lorenz system. We consider the Poincare section 
consisting of the two-dimensional plane, {( x, y, z): 
x = y}. Next, simply construct a "time series" 
{ .. ., x(r), x(r + 1). ... } of the values, in time 
order, of x each time the solution passes through 
the section. The fundamental point is that the new, 
lower dimensional series is a discrete time dynami- 
cal system, although on a different time scale from 
the original, that inherits important qualitative 
features from the original. Indeed, there actually 
exists a function, say f, such that the iterates of the 
new series may be represented as x(r + 1) = 
f(x(r)); f is known as a Poincare Map. The Poincare 
Map for our example is numerically suggested in 
Figure 9. To obtain this map, I simply recorded the 
values of x at each intersection of the system with 
the chosen section and then scatterplotted x(r + 1) 
against x(r). Although numerical errors are of 
course present, note that the points appear to fall 
on some function quite tightly. (The data for this 
figure are based on 20,000 iterates of the numerical 
solution, which resulted in 429 intersections.) To 
indicate the nature of the map, I also scatterplotted 
x(r + 2) against x(r) and x(r + 10) against x(r). 
The results are simply (numerical estimates of) the 
appropriate compositions of the Poincare Map. 

The value of the above type of analysis may be 
more than theoretical in suggesting interesting 
ideas for data analysis. For example, imagine ana- 
lyzing data from an unknown, yet chaotic-looking 
system. If we were fortunate enough to find a 
Poincare Map such as the above through data anal- 
ysis, we made great strides in understanding the 
system. In particular, some deterministic element 
of the system is identified. Further, in the Lorenz 
case, note that the Poincare Map is a noninvertible 
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FIG. 9. Poincare Map and its iterates. 

univariate map, as was the logistic map, thereby 
suggesting a source of the apparent chaotic behav- 
ior. Note that there appears to be some potential 
for limited predictions (also see Nese, 1989). If 
intersections of the system with the Poincare sec- 
tion are practically interesting in the context of the 
problem under study, the empirically obtained 
Poincare Map offers very precise predictions of suc- 
cessive values of some variable at points of inter- 
section. To amplify the predictive idea, consider a 
bivariate time series { . . ., (x(r), z(r)), . .. } in the 
Lorenz system example. A scatterplot of this series 
is given in Figure 10. Note the very "tight" rela- 
tionship between x and z on the Poincare section. 
This suggests that predictions of the value of z at 
an intersection time can be made given only the 
corresponding value of x. Finally, to enhance the 
value of either of these types of prediction, we 
might combine forecasts with data analytically ob- 
tained information concerning the waiting times, 
measured on the original time scale, until intersec- 
tions. A plot of the values of x at returns are 
plotted as a function of return number in Figure 
11. Histograms of the waiting times for the data 
used to obtain the Poincare Map are presented in 
Figure 12. 

3.2.2 Reconstruction by time delays 

The study of experimental time series data, in an 
attempt to understand important features of the 
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FIG. 10. Scatterplot of z versus x on the Poincare section. 

underlying, but unknown, dynamics driving the 
process of interest, offers challenges of interest to 
the statistician. In particular, one may not be able 
to observe all of the important dynamical variables; 
indeed, we may not even know which variables are 
important. A potential approach to data analysis in 
such cases is usually known as reconstruction by 
time delays. Primary originators of the main ideas 
are Packard, Crutchfield, Farmer and Shaw (1980), 
Takens (1981) and D. Ruelle (see Ruelle, 1989). 

To motivate the idea, consider a simple dynami- 
cal system with a two-dimensional phase space (see 
Section 2.1.4). The first coordinate of the system is 
some function over time, say x1(t). The other coor- 
dinate of the system is x2(t) = dx1(t)/dt. In such a 
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case, we quickly recognize that we can learn a 
great deal about the structure of the behavior of 
this process, in particular, characteristics of the 
phase space plot of x2(t) plotted against x1(t), even 
if we can only observe x1( ) at a discrete collection 
of time points. This is possible since, for small h, 
X2(t) [xl(t + h) - x1(t)1/h. Therefore, a large 
number of observations, close to each other tempo- 
rally, of the first coordinate of the system tell us 
about some characteristics of the entire system. A 
second example is based on the Henon map. Al- 
though the map is defined in (2.3) is in R2, (2.4) 
suggests -that all the dynamics of the process are 
contained in the single "x" coordinate if only we 
view the data appropriately. 

The basic idea extends to general systems. Con- 

sider a k-dimensional dynamical system x(t) evolv- 
ing in continuous time. Define a univariate system 
{ Y,} where the y process is given by Yt = h(x(t)) 
for a function h: Rk -+ R. A discrete, multivariate 
time series is now constructed by defining vectors 
vt as vt = (Yt, Yt+T ..*, Yt+(n-l)7) for some choice 
of r and n. The claim, based on the theory of 
Takens (1981), is that analysis of a sequence of say 

Nt 's ,at time t, t +, t +2 -...t +Nr, permits 
certain inferences, asymptotically, concerning the 
qualitative, especially geometric, behavior of the 
original system. Theoretical justification of this idea 
stems from the topological result known as Whit- 
ney's Embedding Theorem. Of course, there are 
assumptions under which the methodology works. 
The crucial one of these is that n ? 2 dH + 1, where 
dH is the Hausdorff dimension of the attractor of 
the original system. There are also interesting sta- 
tistical issues related to the use of time delays. In 
particular, reasonable choices for the design param- 
eters r, N, n (in practice, dH is unknown) and the 
embedding function h are needed for data analysis. 
It is typically the case that h is chosen to simply 
"pick off' one of the components of x. Depending 
on h and assuming N must have some reasonable 
bound, X- should be chosen to be large enough to 
overcome the very strong local "correlation" in the 
process, yet be small enough to capture the impor- 
tant dynamics of the process [see Liebert and 
Schuster (1989) for pertinent discussion]. The im- 
pact of the presence of various types of observation 
errors on analyses seems to be only partially under- 
stood. [See Abarbanel, Brown and Kadtke (1989) 
for some work in this direction.] Beyond the ref- 
erences already given, the reader may consult 
Broomhead and King (1986) and Rasband (1990) 
for further discussion. Nicolis and Prigogine (1989) 
discuss the implementation of the method in an 
example based on climate data. 

3.2.3 Other methodologies 

It seems quite natural to attempt to try to fit 
convenient, flexible functions to chaotic data. The 
goals are similar to those in nonparametric regres- 
sion [see Wahba (1990) for general discussion]. Such 
goals include data smoothing, interpolation be- 
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tween observation times and short-time prediction. 
The potential here is actually very large. I cannot 
do justice to the direction here, but offer the follow- 
ing references to the interested reader: Lumley 
(1970), Crutchfleld and McNamara (1987), Farmer 
and Sidorowich (1987), Casdagli (1989), and 
Kostelich and Yorke (1990). Furthermore, the 
reference by Nychka, McCaffrey, Ellner and Gal- 
lant (1990) is especially recommended to statisti- 
cians for its new results, as well as review in this 
direction. 

4. STATISTICAL ANALYSES FOR CHAOS 

4.1 Parametric Statistical Analysis for Chaotic 
Models 

Geweke (1989) and Berliner (1991) are the pri- 
mary references for this section. A natural class of 
models for which the statistician feels "at home" 
are based on the specification of a dynamical func- 
tion driving the system under study. Assume that 
the function is known up to a finite collection of 
parameters. Specifically, the dynamical system is 
assumed to be driven by the relationship 

(4.1) xt+1= f(xt; -0 

where f is specifled. The parameter - and the 
initial value xo may both be unknown. Further, 
assume that, at some time points, we observe the 
x-process with observation error. Depending on the 
model we use for the errors, we an construct a 
likelihood function based on data for the unknown 
quantities. Even in very simple examples, such as 
the logistic map observed with independent Gauss- 
ian errors, the resulting likelihood functions can be 
extremely complex, intractable objects. Berliner 
(1991) offers some heuristics concerning the behav- 
ior of such "chaotic likelihoods." For example, it is 
possible to relate chaos as measured via Liapunov 
exponents with Fisher information concerning un- 
known initial conditions. Chaotic processes ob- 
served with error produce statistical information 
concerning initial conditions. However, the value of 
this information for prediction is limited. Specifi- 
cally, if maximum likelihood estimates of initial 
conditions are sought, one is first faced with a very 
difflcult problem of finding such estimates. Even if 
one were able to obtain a good estimate of xo, 
sensitivity to initial conditions moderates the value 
of such estimates in the context of prediction. 

Berliner (1991) considers Bayesian forecasting 
based on models as suggested in the previous para- 
graph. Bayesian forecasting, in the presence of 
unknown initial conditions, is intimately related 
to ergodic theory via a phenomenon called statisti- 

cal regularity by Hopf. See Engel (1987) for a very 
valuable discussion. To quickly communicate the 
idea, recall the ergodic theory review of Section 
2.2.3 and the corresponding example of the logistic 
map with a = 4. In this case the arc-sine distri- 
bution is a continuous, ergodic distribution. 
Invariance implies that if xo is generated accord- 
ing to the arc-sine, then at every time t, xt also has 
an arc-sine distribution. However, some intuition 
suggested that xo need not actually be generated 
according to the ergodic distribution for ergodic 
behavior to manifest itself. Hopf's notion of statisti- 
cal regularity is a rigorous result along these lines. 
The result is that, under mild regularity condi- 
tions, including a continuous ergodic distribution, 
say P, if xo has any distribution that is absolutely 
continuous with respect to P, then as t tends to 
infinity, xt converges to distribution to P. That is, 
the initial distribution "washes out." (Note the 
natural correspondence between this notion and 
the concept of stationary, ergodic distributions in 
Markov processes.) The application to Bayesian 
forecasting is immediate. Under the appropriate 
conditions, if we compute a posterior distribution 
for unknown initial conditions and that posterior is 
abso- lutely continuous with respect to a continuous 
ergodic distribution, then our implied predictive 
distribution for xt as t grows must collapse to the 
ergodic distribution. This is a strong, statistical 
reflection of the notion of unpredictability of chaotic 
processes. The strength of the result is that there is 
nothing philosophical to debate before accepting 
implication to forecasting. The theorem says that 
under perfect conditions in which the prior is agreed 
to be known and correctly specified, and thus, 
Bayesian computations are uncontroversial appli- 
cations of probability theory, long-term predictions, 
more precise than those associated with a continu- 
ous ergodic distribution, of chaotic processes are 
impossible. 

4.2 Statistics and Dynamical Systems 

There is a huge literature devoted to statistical 
analyses for dynamical systems. Statisticians regu- 
larly consider the model with "system equation" 

(4.2) xt+1 = f(xt; ') + zt, 

where { zt} is itself a stochastic process, and "ob- 
servation equation" for the observable y 

(4.3) Yt = h( xt) + et, 

where h is some function and e represents meas- 
urement error. The inclusion of z in (4.2) is sug- 
gested as a natural, more realistic version of (4.1), 
which allows some notion of error in the specifica- 
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tion of f, as well as the possibility of unknown 
environmental effects influencing the evolution of 
the process. Study of (4.2) and (4.3), especially 
when f (and h) is a linear function, has been 
popular for at least 30 years under the general 
topic of Kalman filtering. See Jazwinski (1970) and 
Meinhold and Singpurwalla (1983) for review. 
Study of generalizations of (4.2) [typically without 
(4.3)] that allow for dependence upon more time 
lags of the x process, but assume f to be linear and 
z to be white noise is a subset of classical time 
series analysis as in Box and Jenkins (1976). Also 
for discussion of related ideas involving state space 
modeling, see Aoki (1987). Key recent references 
on nonlinear time series include Kitagawa (1987) 
and Priestly (1988); also, see Gallant (1987). A key 
reference on Bayesian analyses of dynamic models 
is West and Harrison (1989). 

Few would argue with the claim that relatively 
little of the mainstream statistical time series liter- 
ature expressly deals with issues in chaos, such as 
the problems discussed in Section 3. [An important 
recent work that is, at least partially, motivated by 
notions of chaos is Tong (1990). This highly recom- 
mended book offers substantial review of chaos and 
related work in nonlinear time series.] However, 
chaotic data analysis should not be viewed as fun- 
damentally distinct from mainstream statistical 
time series analysis. Consider (4.2) and (4.3) with- 
out any error (z and e) terms. If the analyst as- 
sumes, as is customary, that (4.2) generates an 
ergodic process (i.e., past its transience period), the 
mathematics discussed in Section 2 imply that the 
data driven by (4.3) form a realization of a station- 
ary stochastic process. This conclusion applies to 
the original series as well as data based on any 
(measurable) h function. Thus, the inference base 
for data analytic procedures, such as the method of 
time delays or symbolic dynamics, is the same as in 
general stationary time series analysis. This com- 
mon foundation for chaologists and statisticians 
can hold in the presence of observation errors as 
well. Suppose that the et's are iid. In models with- 
out the z terms, if the x process is ergodic, (4.3) 
corresponds to a stationary process. More gener- 
ally, if (4.2) yields a Markov process that is station- 
ary and ergodic, (4.3) still yields a stationary 
stochastic process. 

5. DISCUSSION 

Two discussion points concerning chaos and 
statistics are considered here. First, what does the 
emergence of chaos suggest about statistical model- 
ing? Second, what can statisticians and probabilists 
bring to the practical study of chaos? 

5.1 Impact of Chaos on Statistics 

First, I suggest some philosophical implications 
of chaos for statistics. Section 2 contained discus- 
sion of two central points that relate mathemati- 
cal chaos to probability theory. These were (i) 
Poincare's notions relating uncertainty about as- 
pects of deterministic process to randomness, and 
(ii) the various relationships between ergodic the- 
ory, stochastic processes and chaos. The first point 
of discussion involves foundational impacts of these 
notions on statistical philosophy. For example, con- 
sider the "sacred cow" example of elementary 
statistics courses: the probabilistic structure of fair 
coin tossing. What is meant by "the probability of 
'heads' is 0.5?" The typical explanation revolves 
around the frequency interpretation of probability, 
but relies on some primitive notion of randomness 
on the part of students. [Many works of I. J. Good 
are very pertinent here; see Good (1983).] Of course, 
Bayesian teachers typically question the validity of 
the frequency definition and remark on the "sub- 
jective" assertion of the coin's fairness. However, 
one might raise the question of the existence of any 
randomness in this context. If we knew all the 
pertinent initial conditions for the coin toss, we 
could apply the laws of physics to determine the 
outcome of the toss [see Engel (1987) for precisely 
such computations; also, see Ford (1983)]. It can 
then be claimed that our use of notions of random- 
ness in coin tossing is really a reflection of uncer- 
tainties about initial conditions. 

Note that this discussion coincides with a portion 
of the Bayesian philosophy of statistics. In particu- 
lar, a key component of the Bayesian paradigm is 
the modeling of uncertain quantities as if they are 
random. Perhaps the moral of deterministic chaos 
and its modeling via probability can be exemplified 
with a simple challenge to the reader: can you come 
up with a physical model or a real statistics prob- 
lem that results in randomness that does not stem 
from some deterministic uncertainty? (The only 
"rule" in this mind game is that your cannot resort 
to quantum mechanics.) If the answer is no, or at 
least not without a great deal of work, then per- 
haps we are led to one of the common answers 
given by Bayesians to B. Efron's question, "Why 
isn't everyone a Bayesian?" (Efron, 1986). The 
''answer" is that the question is vacuous: everyone 
is a Bayesian. (Of course, I am referring to model- 
ing. I am aware that not everyone applies Bayes' 
Theorem in reaching conclusions.) My point is that 
frequentist statisticians may find it even more diffi- 
cult to adhere to their traditional view of statistics. 
Specifically, the notion of a fine distinction between 
random and unknown, but deterministic, quanti- 
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ties seems untenable in practice. A further problem 
for the frequentist involves the notion of "repeata- 
ble and identical" experiments. Most statisticians 
would agree to the nonexistence, at least at a 
very pure level, of such experiments due to ever- 
changing environmental effects. Beyond environ- 
mental effects, however, chaos suggests that be- 
cause one could never truly claim identical settings 
for even controllable factors and, since even slight 
errors may have great influence, repeatable and 
identical experiments are not possible. This prob- 
lem deprives the frequentist any foundation for 
inference. 

These points also bear on discussions within the 
Bayesian community. Specifically, I refer to the 
subjective versus objective or necessarian contro- 
versy. The notions of ergodic distributions, statisti- 
cal regularity and Poincare's method of arbitrary 
functions all contain relevant messages in this re- 
gard. [Engel (1987) includes an excellent review of 
the method of arbitrary functions.] Consider the 
following remarks of Von Plato (1983): 

It will be interesting to see what kind of an 
escape from the recently established rigorous 
results in ergodic theory the subjectivist school 
on the foundations of probability theory will 
take. 
It has been traditional to think that de- 
terministic systems allow only subjectively 
interpretable probabilities. There is however a 
different tradition, in which the 'stable 
frequency phenomena of nature' (to use an 
expression of Hopf)are accounted for by objec- 
tively interpreted probabilities, despite the 
view that these phenomena are supposed to be 
governed by laws of nature of the classical sort. 

I claim that the "escape" alluded to by Von Plato is 
unnecessary. There is nothing to escape from. As 
Savage (1973) explains: 

Personal probability works well in science 
wherever probability seems at all relevant; in 
particular, the personalistic position does no 
violence to any genuine objectivity of science; 
and finally, the personalistic position does not 
neglect any appropriate role of frequency or of 
symmetry in the application of probability. 

The final phrase of this quote implies that no sub- 
jectivist would claim that fundamental knowledge, 
such as contained in ergodic properties, concerning 
a system under study should be ignored. Indeed, 
ergodic distributions and other "objectivist" sug- 
gestions are natural candidates for benchmark 
analyses and starting points upon which to build 

subjectivist models. However, no scientist should 
wish to be restricted in the incorporation of addi- 
tional, case-specific information. Also, I question 
the practical importance of the notion of "objec- 
tively interpreted probabilities," since one must 
first subjectively decide that the laws under which 
such probabilities are derived actually apply and 
are complete in a given setting. 

Beyond philosophy, statisticians should be inter- 
ested in chaos in light of the numerous opportuni- 
ties for potential research contributions. Also, I 
believe that the techniques, such as reviewed in 
Section 3, being developed to deal with chaos should 
be considered a part of mainstream statistical time 
series methods. As chaos becomes more popular, 
such techniques will be useful and "expected" by 
our colleagues, in day-to-day statistical consulting 
and collaborative research. Finally, many of the 
notions and modeling strategies associated with 
chaos may prove useful in other statistical prob- 
lems. As an example, it is interesting to speculate 
on the value of ideas about spatially distributed 
chaotic processes in statistical imaging problems. 
For an introduction to "spatio-temporal chaos," see 
Crutchfield and Kaneko (1987) and Crutchfield 
(1988). 

5.2 Impact of Statistics on the Analysis of Chaos 

One possible avenue for scientific inquiry in vari- 
ous settings revolves around the question of decid- 
ing whether or not a particular phenomenon or 
data set is deterministic, yet chaotic, or random. 
(For example, see Berge, Pomeau and Vidal, 1984; 
Brock, 1986; Bartlett, 1990; and Sugihara and May, 
1990.) It is important to first decide if such a 
question makes sense. I have already asked whether 
or not "ordinary" randomness is simply a result of 
uncertainty in the presence of determinism. Re- 
gardless of the foundational answer, statisticians 
should be able to make operational contributions 
along these lines. Note that such issues are chal- 
lenging, because deterministic, chaotic models and 
stochastic models typically both can be made to fit 
data. (Again, I refer in part to the relationship 
between ergodic, chaotic systems and stationary 
stochastic processes.) Specifically, recall the gen- 
eral structure suggested by (4.2) and (4.3). When f 
is chaotic and z is omitted from (4.2), the interpre- 
tation of the model xt+1 = f(xt; 77) as deterministic 
seems to be irrelevant in terms of prediction, since 
meaningful predictions must still be statistical. Al- 
ternatively, the inclusion of z in (4.2) need not be 
based on an assertion that the phenomenon under 
study is innately random, but rather that f, al- 
though of some value, is not capable of capturing 
all the deterministic aspects of the process. Impor- 
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tant contributions from statisticians revolve around 
the construction of probabilistic/statistical predic- 
tions and estimates of interesting quantities. The 
performance and flexibility of statistically correct 
prediction procedures should form powerful criteria 
for choosing among alternative models. For general 
discussions and references concerning statistical 
modeling, see Cox (1990), Hill (1990) and Lehmann 
(1990). 

There is also a need for carefully designed experi- 
ments in the context of chaotic phenomena. This 
avenue of research may be particularly interesting 
and challenging to both statisticians and proba- 
bilists, in that at least some of the basis of infer- 
ence involves ergodic theory. 

To summarize, I believe that statisticians and 
probabilists can make important contributions in 
the area of chaos. First, in view of the universally 
accepted view that long-term, precise prediction of 
the path of a chaotic process is impossible, useful 
conclusions or predictions must be statistical in 
nature. For example, one may be able to assess 
probabilities for interesting events, or subsets of 
the phase space of the dynamical system under 
study. The computation of such estimates must 
typically account for uncertainties in initial condi- 
tions, model specification, unknown parameters and 
the implications of ergodic theory. Second, assess- 
ing the effects of one dynamical system that serves 
as an input to a second system of interest is a 
natural statistical problem (see Tong, 1990, page 
429). All of these points are important for active 
analyses of dynamical systems when the goals of 
analysis include prediction and "control" (see Ott, 
Grebogi and Yorke, 1990, and Sinha, Ramaswamy 
and Subba Rao, 1990, for relevant discussion of 
control problems). When conclusions are sought in 
practical problems based on data and uncertainty 
modeling, the analyses are exactly the business of 
statisticians and probabilists. 
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