Lecture 2 (Chapter 2)

Linear Algebra, Course 124A, Fall, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Ch. 2: Lec. 2 Basics:

Outline Importance

nportance

Key problems

Three ways of

Colbert on Equations

References

Instructor: Prof. Peter Dodds

▶ Lecture room and meeting times: Living and Learning, Tuesday and Thursday, 1:00 pm to 2:15 pm

- ▶ Office: 203 Lord House, 16 Colchester Avenue
- ► E-mail: pdodds@uvm.edu
- ► Course website:

http://www.uvm.edu/~pdodds/teaching/ courses/2009-08UVM-124/

► Textbook: "Introduction to Linear Algebra" (4th ed.) by Gilbert Strang; Wellesley-Cambridge Press.

Outline
Importance
Usages
Key problems
Three ways of looking...
Colbert on Equations
References

Ch. 2: Lec. 2

Admin:

Paper products:

- 1. Outline
- 2. "The Fundamental Theorem of Linear Algebra" [1]
- 3. "Too Much Calculus" [2]

Office hours:

➤ Tuesday: 2:30 pm to 4:30 pm Thursday: 11:30 am to 12:30 pm Rm 203, Math Building

Ch. 2: Lec. 2

Frame 1/29

母 り00

Outline

Importance

, ,

looking...

Colbert on

References

Grading breakdown:

1. Assignments (40%)

- Ten one-week assignments.
- Lowest assignment score will be dropped.
- The last assignment cannot be dropped!
- Each assignment will have a random bonus point question which has nothing to do with linear algebra.
- 2. Midterm exams (35%)
 - ► Three 75 minutes tests distributed throughout the course, all of equal weighting.
- 3. Final exam (24%)
 - ≤ Three hours of joyful celebration.
 - ▶ December 17, 8:00 am to 11:00 am; held in Lafayette

• • •

Frame 3/29

Colbert on Equations

Outline

Ch. 2: Lec. 2

Poforonoso

References

Frame 4/29

Grading breakdown:

- 1. Homework (0%)—Problems assigned online from the textbook. Doing these exercises will be most beneficial and will increase happiness.
- 2. General attendance (1%)—it is extremely desirable that students attend class, and class presence will be taken into account if a grade is borderline.

Ch. 2: Lec. 2 Outline Importance Usages Key problems Three ways of looking... Colbert on Equations References

How grading works:

Questions are worth 3 points according to the following scale:

- ▶ 3 = correct or very nearly so.
- 2 = acceptable but needs some revisions.
- 1 = needs major revisions.
- ▶ 0 = way off.

Ch. 2: Lec. 2 Outline Importance Usages Key problems Three ways of looking... Colbert on Equations References Frame 6/29 ♣ ♦ ♀ ♀

Schedule:

The course will mainly cover chapters 2 through 6 of the textbook. (You should know all about Chapter 1.)

Week # (dates)	Tuesday	Thursday
1 (9/1, 9/3)	Lecture	Lecture ➤ A1
2 (9/8, 9/10)	Lecture	Lecture ➤ A2
3 (9/15, 9/17)	Lecture	Lecture ➤ A3
4 (9/22, 9/24)	Lecture	Test 1
5 (9/29, 10/1)	Lecture	Lecture ➤ A4
6 (10/6, 10/8)	Lecture	Lecture ➤ A5
7 (10/13, 10/15)	Lecture	Lecture ➤ A6
8 (10/20, 10/22)	Lecture	Test 2
9 (10/27, 10/29)	Lecture	Lecture ➤ A7
10 (11/3, 11/5)	Lecture	Lecture ➤ A8
11 (11/10, 11/12)	Lecture	Lecture ➤ A9
12 (11/17, 11/19)	Lecture	Test 3
13 (11/24, 11/26)	Thanksgiving	Thanksgiving
14 (12/1, 12/3)	Lecture	Lecture ➤ A10
15 (12/8, 12/10)	Lecture	Lecture

Ch. 2: Lec. 2

雪 かくで

Outline

importanc

Kev problems

Three ways o looking...

Colbert on Equations

References

Frame 7/29

雪 かくで

Important dates:

- Classes run from Monday, January 12 to Wednesday, April 29.
- 2. Add/Drop, Audit, Pass/No Pass deadline—Monday, January 26.
- 3. Last day to withdraw—Friday, March 30.
- 4. Reading and exam period—Thursday, April 30th to Friday, May 8.

Ch. 2: Lec. 2

Colbert on Equations

References

Frame 8/29

More stuff:

Do check your zoo account for updates regarding the course.

Academic assistance: Anyone who requires assistance in any way (as per the ACCESS program or due to athletic endeavors), please see or contact me as soon as possible.

Ch. 2: Lec. 2

Outline

mportance

Usayes

Three ways of

Colbert on

Poforono

Frame 9/2<u>9</u>

More stuff:

Being good people:

- 1. In class there will be no electronic gadgetry, no cell phones, no beeping, no text messaging, etc. You really just need your brain, some paper, and a writing implement here (okay, and Matlab or similar).
- 2. Second, I encourage you to email me questions, ideas, comments, etc., about the class but request that you please do so in a respectful fashion.
- 3. Finally, as in all UVM classes, Academic honesty will be expected and departures will be dealt with appropriately. See http://www.uvm.edu/cses/for guidelines.

Ch. 2: Lec. 2

Outline

mportance

Key problems

Three ways of

Colbert on

References

Frame 10/29

More stuff:

Late policy: Unless in the case of an emergency (a real one) or if an absence has been predeclared and a make-up version sorted out, assignments that are not turned in on time or tests that are not attended will be given 0%.

Computing: Students are encouraged to use Matlab or something similar to check their work.

Note: for assignment problems, written details of calculations will be required.

Ch. 2: Lec. 2

Outline

Important

Jages

Three ways of

Colbert on Equations

References

Grading:

A+	97–100	B+	87–89	C+	77–79	D+	67–69
	93-96						
A-	90–92	B-	80-82	C-	70-72	D-	60-62

Ch. 2: Lec. 2

Outline

mportance

Jsages

Key problems

hree ways of

Colbert on Equations

References

Frame 12/29

回 りへで

Why are we doing this?

Linear Algebra is

a body of mathematics that deals with discrete problems.

Many things are discrete:

- ► Information (0's & 1's, letters, words)
- ► People (sociology)
- ▶ Networks (the Web, people again, food webs, ...)
- Sounds (musical notes)

Even more:

If real data is continuous, we almost always discretize it (0's and 1's)

Ch. 2: Lec. 2

Outline Importance

leanee

Key problems

Three ways of looking...

Colbert on Equations

Reference

Why are we doing this?

Linear Algebra is used in many fields to solve problems:

- Engineering
- Computer Science (Google's Pagerank)
- Physics
- Economics
- ▶ Biology
- Ecology

Linear Algebra is as important as calculus.

Ch. 2: Lec. 2

Outline Importance

Heanes

Key problems

Three ways of looking...

Colbert on

References

Frame 14/29

Ch. 2: Lec. 2

Outline

Key problems

Matrices as gadgets:

A transforms \vec{x} into \vec{x}' through multiplication

$$\vec{x}' = A\vec{x}$$

Can use matrices to:

- Grow vectors
- Shrink vectors
- Rotate vectors
- ► Flip vectors
- ▶ Do all these things to different directions

Ch. 2: Lec. 2

Frame 13/29

母 りへで

Outline

Usages

Key problems

Three ways o looking...

Colbert on Equations

References

Three key problems of Linear Algebra

1. Given a matrix A and a vector \vec{b} , find \vec{x} such that

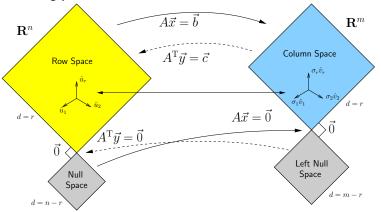
$$A\vec{x} = \vec{b}$$
.

2. Eigenvalue problem: Given A, find λ and \vec{v} such that

$$\mathbf{A}\vec{\mathbf{v}} = \lambda \vec{\mathbf{v}}.$$

3. Coupled linear differential equations:

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) = \mathbf{A}y(t)$$


➤ Our focus will be largely on #1, partly on #2.

 Frame 17/29

母 りくで

Major course objective:

To deeply understand the equation $A\vec{x} = \vec{b}$, the Fundamental Theorem of Linear Algebra, and the following picture:

What is going on here? We have 26 lectures to find out...

Ch. 2: Lec. 2

Outline Importance

Usages Key problems

Three ways o

Colbert on Equations

Reference

Frame 18/29

Our friend $A\vec{x} = \vec{b}$

Broadly speaking, $A\vec{x} = \vec{b}$ translates as follows:

- $ightharpoonup \vec{b}$ represents reality (e.g., music, structure)
- ▶ A contains building blocks (e.g., notes, shapes)
- $ightharpoonup \vec{x}$ specifies how we combine our building blocks to represent \vec{b} .

How can we disentangle an orchestra's sound?

What about pictures, waves, signals, ...?

Ch. 2: Lec. 2

Outline

...

Key problems

Three ways of looking...

Colbert on

References

Frame 19/29

Our friend $A\vec{x} = \vec{b}$

What does knowing \vec{x} give us?

If we can represent reality as a superposition (or combination) of simple elements, we can do many things:

- Compress information
- ► See how we can alter information
- ► Find a system's simplest representation
- ▶ Find a system's most important elements
- See how to adjust a system in a principled defined way

Ch. 2: Lec. 2

Outline

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

Frame 20/29

Three ways to understand $A\vec{x} = \vec{b}$:

► Way 1: The Row Picture

► Way 2: The Column Picture

▶ Way 3: The Matrix Picture

Example:

$$\begin{array}{rcl}
-x_1 & + & x_2 & = & 1 \\
2x_1 & + & x_2 & = & 4
\end{array}$$

- ► Call this a 2 by 2 system of equations.
- 2 equations with 2 unknowns.
- Standard method of solving by adding and subtracting multiples of equations from each other

= Row Picture

Ch. 2: Lec. 2

Outline

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

Frame 21/29

歩 かへの

Three ways to understand $A\vec{x} = \vec{b}$:

Row Picture—what we are doing:

- ▶ (a) Finding intersection of two lines
- ▶ (b) Finding the values of x_1 and x_2 for which both equations are satisfied (true/happy)
- ▶ A splendid and deep connection:
 - (a) Geometry = (b) Algebra

Three possible kinds of solution:

- 1. Lines intersect at one point —One, unique solution
- 2. Lines are parallel and disjoint —No solutions
- 3. Lines are the same —Infinitely many solutions

Ch. 2: Lec. 2

Outline

Importance Usages

Key problems

Three ways of looking...

Colbert on

Reference

Three ways to understand $A\vec{x} = \vec{b}$:

The column picture:

See

$$-x_1 + x_2 = 1$$

 $2x_1 + x_2 = 4$

as

$$x_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}.$$

General problem

$$x_1\vec{a}_1+x_2\vec{a}_2=\vec{b}$$

- Column vectors are 'building blocks'
- ► Key idea: try to 'reach' \vec{b} by combining multiples of column vectors \vec{a}_1 and \vec{a}_2 .

Ch. 2: Lec. 2

Outline

Importance

Key problems

Three ways of looking...

Colbert on

References

Frame 23/29

雪 り へ (C)

Ch. 2: Lec. 2

Outline

Three ways of

looking...

Equations

Three ways to understand $A\vec{x} = \vec{b}$:

We love the column picture:

- Intuitive.
- Generalizes easily to many dimensions.

Three possible kinds of solution:

- 1. $\vec{a}_1 \parallel \vec{a}_2$: 1 solution
- 2. $\vec{a}_1 \parallel \vec{a}_2 \parallel \vec{b}$: No solutions
- 3. $\vec{a}_1 \parallel \vec{a}_2 \parallel \vec{b}$: infinitely many solutions

Assuming neither \vec{a}_1 or \vec{a}_1 are $\vec{0}$.

Ch. 2: Lec. 2

Frame 22/29

母 り00

Outline

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

Three ways to understand $A\vec{x} = \vec{b}$:

Difficulties:

- ▶ Do we give up if $A\vec{x} = \vec{b}$ has no solution?
- No! We can still find the \vec{x} that gets us as close to \vec{b} as possible.
- Method of approximation—very important!
- We may not have the right building blocks but we can do our best.

Frame 24/29

₱ **少**९०

Frame 25/29

Three ways to understand $A\vec{x} = \vec{b}$:

The Matrix Picture:

Now see

$$X_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + X_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}.$$

as

$$A\vec{x} = \vec{b} : \begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

A is now an operator:

- ightharpoonup A transforms \vec{x} into \vec{b} .
- ▶ In general, A does two things to \vec{x} :
 - 1. Rotation
 - 2. Dilation (stretching/contraction)

The truth about mathematics

The Colbert Report on Math (February 7, 2006)

Ch. 2: Lec. 2

Outline

Three ways of looking...

The Matrix Picture

Key idea in linear algebra:

- Decomposition (or factorization) of matrices.
- Matrices can often be written as products or sums of simpler matrices
- \blacktriangleright A = LU, A = QR, $A = U\Sigma V^{T}$, $A = \sum_{i} \lambda_{i} \vec{v} \vec{v}^{T}$, ...

Frame 27/29

Ch. 2: Lec. 2

Outline

Equations

References

Ch. 2: Lec. 2

Outline

Three ways of

looking...

References

Ch. 2: Lec. 2

Frame 26/29

母 りへで

Outline

Colbert on Equations

References

References I

G. Strang.

The fundamental theorem of linear algebra.

The American Mathematical Monthly, 100(9):848-855, 1993. pdf (⊞)

G. Strang.

Too much calculus, 2002.

SIAM Linear Algebra Activity Group Newsletter. pdf (⊞)

Frame 28/29

Frame 29/29

