Introduction

Matrixology (Linear Algebra)—Episode 1/24
 MATH 122, Fall, 2016

Exciting Admin
Importance
Usages
Key problems

Prof. Peter Dodds

Dept. of Mathematics \& Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Three ways of looking.

Colbert on
Equations
References

I 0
$N\left(A^{\top}\right)$

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Zh
UNIVERSITY UVERMONT

These slides are brought to you by:

Episode 1/24:
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

10 $N\left(A^{\top}\right)$ A U VERMONT
$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Outline

Episode 1/24: Introduction

Exciting Admin
Exciting Admin
Importance
Usages
Importance

Usages

Key problems

Three ways of looking...
Colbert on Equations

References

Basics:

- Instructor: Prof. Peter Dodds
- Lecture room and meeting times:

Perkins 107,
Tuesday and Thursday, 10:05 am to 11:20 am

- Office: Farrell Hall, second floor, Trinity Campus
- E-mail: peter.dodds@uvm.edu
- Course website: http://www.uvm.edu/ pdodds/teaching/courses/2016-08UVM-122주
- Textbook: "Introduction to Linear Algebra" (3rd or 4th or 5th edition) by Gilbert Strang (published by Wellesley-Cambridge Press).
$\left\lvert\, \begin{aligned} & 0 \\ & 6\end{aligned}\right.$

Our Textbook of Excellence:

Introduction to

LINEAR ALGEBRA

GILBERT STRANG

3rd Edition ∇

4th Edition ∇

Unhelpful \square

Episode 1/24:
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

- "Introduction to Linear Algebra" by Gil Strang ${ }^{-1}$;
- Textbook website:
http://math.mit.edu/linearalgebra/ $\sqrt{\top}$
- MIT Open Courseware site for 18.06 (=Linear Algebra):
http://ocw.mit.edu/...linear-algebra-spring-2010/C

10
$N\left(A^{\top}\right)$

,I' VERMONT

Yesness:

Money quote from George Cobb's review of

Do you want a book written by a mathematician with a lifetime experience using linear algebra to understand important, authentic, applied problems, a former president of the Society for Industrial and Applied Mathematics, ...

Importance

- George Cobb: Robert L. Rooke Professor of Mathematics and Statistics, Mount Holyoke College
- Full review here [ả̉ [amazon]

Yesness:

Money quote from George Cobb's review of Strang's book:

Do you want a book written by a mathematician with a lifetime experience using linear algebra to understand important, authentic, applied problems, a former president of the Society for Industrial and Applied Mathematics, ...
or do you want a book shaped mainly by the [a]esthetics of pure mathematicians with only a weak, theoretical connection to how linear algebra is used in the natural and social sciences?

- George Cobb: Robert L. Rooke Professor of Mathematics and Statistics, Mount Holyoke College
- Full review hereés [amazon]

Gil Strang, Exalted Friend of the Matrix:

- Professor of Mathematics at MIT since 1962.

These are 121 cupcakes with my favorite $-1,2,-1$ matrix. It was the day before Thanksgiving and two days before my birthday. A happy surprise.

- Many awards including MAA Haimo Award ${ }^{\circ}$ ' for Distinguished College or University Teaching of Mathematics
- Rhodes Scholar.
- Legend. madnesses here[?.
- (Strang's Wikipedia page is here [’.

Exciting Admin

Usages
Key problems
Three ways of looking..

Colbert on
Equations
References

importance

1
UNIVERSTIY v/ VERMONT

Admin:

Potential paper products:

1. Outline

Exciting Admin

Importance
Usages
Key problems
Three ways of looking..

Colbert on
Equations
References
$\left[\begin{array}{l}\text { IT } \\ \mathcal{N}\left(A^{\top}\right)\end{array}\right]$

つの^ 8 of 45

Admin:

Episode 1/24:
Introduction

Potential paper products:

1. Outline

Papers to read:

1. "The Fundamental Theorem of Linear Algebra" ${ }^{[2]}$
2. "Too Much Calculus" [3]

Admin:

Episode 1/24:
Introduction

Potential paper products:

1. Outline

Papers to read:

1. "The Fundamental Theorem of Linear Algebra" ${ }^{[2]}$
2. "Too Much Calculus" [3]

Office hours:

- 10:00 to 11:55 am Wednesdays, Farrell Hall, second floor, Trinity Campus

I 0
$N\left(A^{\top}\right)$ UVERMONT

Team Matrixology

Episode 1/24:
Introduction

We may try out Slack:

- Place for discussions about all things PoCS including assignments and projects.

I 0
$\mathcal{N}\left(A^{+}\right)$

つa^ 9 of 45

Team Matrixology

Episode 1/24:
Introduction

We may try out Slack:

- Place for discussions about all things PoCS including assignments and projects.
- Once invited, please sign up here: http://team-matrixology.slack.com

I 0
$\mathcal{N}\left(A^{\top}\right)$

UNDIVERSITY UVERMONT
$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

Team Matrixology

We may try out Slack:

- Place for discussions about all things PoCS including assignments and projects.
- Once invited, please sign up here: http://team-matrixology.slack.com
- Very good: Install Slack app on laptops, tablets, phone.

I 0
$\mathcal{N}\left(A^{+}\right)$

UNIVERSITY UVERMONT
$\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$

Team Matrixology

We may try out Slack:

- Place for discussions about all things PoCS including assignments and projects.
- Once invited, please sign up here: http://team-matrixology.slack.com
- Very good: Install Slack app on laptops, tablets, phone.
- Everyone will behave wonderfully.

Grading breakdown:

1. Levels (40\%)

- Ten one-week assignments.
- Lowest assignment score will be dropped.
- The last assignment cannot be dropped!
- Each assignment will have a random bonus point question which has nothing to do with linear algebra.

Grading breakdown:

1. Levels (40\%)

- Ten one-week assignments.
- Lowest assignment score will be dropped.
- The last assignment cannot be dropped!
- Each assignment will have a random bonus point question which has nothing to do with linear algebra.

2. Challenge Levels (30\%)

- Three 75 minutes tests distributed throughout the course, all of equal weighting.
$\left|{ }_{6}^{\circ}\right|$

Grading breakdown:

1. Levels (40\%)

- Ten one-week assignments.
- Lowest assignment score will be dropped.
- The last assignment cannot be dropped!
- Each assignment will have a random bonus point question which has nothing to do with linear algebra.

2. Challenge Levels (30\%)

- Three 75 minutes tests distributed throughout the course, all of equal weighting.

3. Final Boss Level (20\%)

- \leq Three hours of joyful celebration.
- Thursday, December 15, 1:30 pm to 4:15 pm, in Perkins 107.

Grading breakdown:

Episode 1/24:
Introduction

Exciting Admin
Importance
4. Mini-levels (10\%)

- Most meeting times will end with a 10 to 15 minute mini-level.
- There will be around 20 mini-levels.

Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

10
$N\left(A^{\top}\right)$

咅 ${ }^{2 m \mathrm{~m}}$ UNIVERSITY - VERMONT

Grading breakdown:

4. Mini-levels (10\%)

- Most meeting times will end with a 10 to 15 minute mini-level.
- There will be around 20 mini-levels.

5. Homework (0\%)—Problems assigned online from the textbook. Doing these exercises will be most beneficial and will increase happiness.

Usages
Key problems
Three ways of looking.

Colbert on
Equations
References y VErmont

Grading breakdown:

4. Mini-levels (10\%)

- Most meeting times will end with a 10 to 15 minute mini-level.
- There will be around 20 mini-levels.

5. Homework (0\%)—Problems assigned online from the textbook. Doing these exercises will be most beneficial and will increase happiness.
6. General existence-it is extremely desirable that students attend class, and class presence will be taken into account if a grade is borderline. VERMONT

Questions are worth 3 points according to the following scale:

- 3 = correct or very nearly so.
- 2 = acceptable but needs some revisions.
- 1 = needs major revisions.
- 0 = way off.

Key problems
Three ways of looking.

Colbert on
Equations
References

10
$N\left(A^{\top}\right)$
$\frac{1}{\text { d }}$ Zim UNIVERSIIY of VERMONT

っのल 12 of 45

Schedule: The course will mainly cover chapters 2 through 6 of the textbook. (You should know all about Chapter 1.)

Week \# (dates)	Tuesday	Thursday
$1(8 / 30$ and 9/01)	$\mathbf{A} \vec{x}=\vec{b}$	$\mathbf{A} \vec{x}=\vec{b}+$ Level 1
$2(9 / 06$ and 9/08)	$\mathbf{A} \vec{x}=\vec{b}$	$\mathbf{A} \vec{x}=\vec{b}+$ Level 2
3 (9/13 and 9/15)	$\mathbf{A} \vec{x}=\vec{b}$	$\mathbf{A} \vec{x}=\vec{b}+$ Level 3
$4(9 / 20$ and 9/22)	$\mathbf{A} \vec{x}=\vec{b}$ and review	Challenge Level 1
5 (9/27 and 9/29)	Big picture	Big picture + Level 4
$6(10 / 04$ and 10/06)	Big picture	Big picture + Level 5
$7(10 / 11$ and 10/13)	Big picture	Big picture + Level 6
$8(10 / 18$ and 10/20)	Big picture	Challenge Level 2
$9(10 / 25$ and 10/27)	Normal equation	Gram-Schmidt Process +
		Level 7
$10(11 / 01$ and 11/03)	Eigenstuff	Eigenstuff + Level 8
$11(11 / 08$ and 11/10)	Determinants	Determinants + Level 9
$12(11 / 15$ and 11/17)	Eigenstuff	textitChallenge Level 3
$13(11 / 22$ and 11/24)	Thanksgiving	Thanksgiving
$14(11 / 29$ and 12/01)	Positive Definite Matrices	SVD
	+ Level 10	
$15(12 / 06)$	SVD	-

1. Classes run from Tuesday, August 30 to Tuesday, December 6.
2. Add/Drop, Audit, Pass/No Pass deadline-Monday, September 12.
3. Last day to withdraw-Monday, October 31 (Sadness!).
4. Reading and Exam period-Saturday, December 10 to Friday, December 16.

More stuff:

Do check your zoo account for updates regarding the course.

Academic assistance: Anyone who requires assistance in any way (as per the ACCESS program or due to athletic endeavors), please see or contact me as soon as possible.

More stuff:

Episode 1/24:
Introduction

Being good people:

1. In class there will be no electronic gadgetry, no cell phones, no beeping, no text messaging, etc. You really just need your brain, some paper, and a writing implement here (okay, and Matlab).

More stuff:

Being good people:

1. In class there will be no electronic gadgetry, no cell phones, no beeping, no text messaging, etc. You really just need your brain, some paper, and a writing implement here (okay, and Matlab).
2. Second, I encourage you to email me questions, ideas, comments, etc., about the class but request that you please do so in a respectful fashion.

Importance
Usages
Key problems
Three ways of
looking.
Colbert on
Equations
References
$|0|$

More stuff:

Being good people:

1. In class there will be no electronic gadgetry, no cell phones, no beeping, no text messaging, etc. You really just need your brain, some paper, and a writing implement here (okay, and Matlab).
2. Second, I encourage you to email me questions, ideas, comments, etc., about the class but request that you please do so in a respectful fashion.
3. Finally, as in all UVM classes, Academic honesty will be expected and departures will be dealt with appropriately. See http://www.uvm.edu/cses/for guidelines.

Importance
Usages
Key problems
Three ways of
looking..
Colbert on
Equations
References

Even more stuff:

Late policy: Unless in the case of an emergency (a real
Importance one) or if an absence has been predeclared and a make-up version sorted out, assignments that are not turned in on time or tests that are not attended will be given 0\%.

Computing: Approximately 2 out of 10 questions per assignment will be Matlab based.

Note: for assignment problems, written details of calculations will be required. VERMONT

Why are we doing this?

Episode 1/24:
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of looking...

Colbert on
Equations
References

Big deal: Linear Algebra is a body of mathematics that deals with discrete problems.

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

18
$N\left(A^{\top}\right)$

Why are we doing this?
Big deal: Linear Algebra is a body of mathematics that deals with discrete problems.

Many things are discrete:

Episode 1/24:
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

Big deal：Linear Algebra is a body of mathematics that deals with discrete problems．

Many things are discrete：

－Information（0＇s \＆1＇s，letters，words）

Why are we doing this?

Episode 1/24:
Introduction
Big deal: Linear Algebra is a body of mathematics that deals with discrete problems.

Many things are discrete:

- Information (0's \& 1's, letters, words)
- People (sociology)

Why are we doing this?

Episode 1/24:
Big deal: Linear Algebra is a body of mathematics that deals with discrete problems.

Many things are discrete:

- Information (0's \& 1's, letters, words)
- People (sociology)
- Networks (the Web, people again, food webs, ...)

18
$N\left(A^{\top}\right)$

UNIVERSTIY

Why are we doing this？

Episode 1／24：
Big deal：Linear Algebra is a body of mathematics that deals with discrete problems．

Many things are discrete：

－Information（0＇s \＆1＇s，letters，words）
－People（sociology）
－Networks（the Web，people again，food webs，．．．）
－Sounds（musical notes）

Why are we doing this?

Episode 1/24:
Big deal: Linear Algebra is a body of mathematics that deals with discrete problems.

Many things are discrete:

- Information (0's \& 1's, letters, words)
- People (sociology)
- Networks (the Web, people again, food webs, ...)
- Sounds (musical notes)

Even more:

If real data is continuous, we almost always discretize it
(0's and 1's)

Why are we doing this?

Episode 1/24:
Introduction
Linear Algebra is used in many fields to solve problems:

- Biology
- Engineering
- Computer Science
- Physics
- Ecology
- Economics
- Science of the Sociotechnocene

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

Big example:
Google's Pagerank[

10
$N\left(A^{\top}\right)$

UNIVERSITY IVERMONT

Why are we doing this?

Linear Algebra is used in many fields to solve problems:

- Engineering
- Computer Science
- Physics
- Biology
- Ecology
- Economics
- Science of the Sociotechnocene

Episode 1/24:
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

Some truth:

Big example:
Google's Pagerank[${ }^{3}$

- Linear Algebra is as important as Calculus...

18
$N\left(A^{\top}\right)$

Why are we doing this?

Linear Algebra is used in many fields to solve problems:

- Engineering
- Computer Science
- Physics
- Biology
- Ecology
- Economics
- Science of the Sociotechnocene

Episode 1/24:
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

Some truth:

Big example:
Google's Pagerank [J

- Linear Algebra is as important as Calculus...
- Calculus \equiv the blue pill...

10
$N\left(A^{\top}\right)$

Why are we doing this?

Episode 1/24:
Introduction

tronery chtauliscriss

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References
$\left[\begin{array}{l}18 \\ \mathcal{N}\left(A^{\top}\right)\end{array}\right]$

A
UNIVERSTIT A. IV VERMONT
$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

๑ด^ 19 of 45

You are now choosing the red pill:

The red pill...

...or the blue pill?

Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

The Truth:

Episode 1/24:

Exciting Admin
Importance

Usages
Key problems
Three ways of looking..

Colbert on
Equations
References

- Calculus is the Serpent's Mathematics.

The Platypus of Truth:

- Platypuses are masters of Linear Algebra.

Colbert on
Equations
References
$\left[\begin{array}{l}1 \mathrm{I} P \\ \mathrm{~N}\left(\mathrm{~A}^{\top}\right)\end{array}\right]$

The Actual Truth:

Matrices as gadgets:

Episode 1/24:
Introduction

A matrix A transforms a vector \vec{x} into a new vector \vec{x}^{\prime} through matrix multiplication (whatever that is):

$$
\vec{x}^{\prime}=A \vec{x}
$$

Matrices as gadgets:

Episode 1/24:
Introduction

A matrix A transforms a vector \vec{x} into a new vector \vec{x}^{\prime} through matrix multiplication (whatever that is):

$$
\vec{x}^{\prime}=A \vec{x}
$$

We can use matrices to:

Exciting Admin
Importance
Usages
Key problems
Three ways of looking..

Colbert on
Equations
References

10
$N\left(A^{\top}\right)$

Matrices as gadgets:

Episode 1/24:
Introduction

A matrix A transforms a vector \vec{x} into a new vector \vec{x}^{\prime} through matrix multiplication (whatever that is):

$$
\vec{x}^{\prime}=A \vec{x}
$$

We can use matrices to:

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

- Grow vectors

10
$N\left(A^{\top}\right)$

Matrices as gadgets:

Episode 1/24:
Introduction

A matrix A transforms a vector \vec{x} into a new vector \vec{x}^{\prime} through matrix multiplication (whatever that is):

$$
\vec{x}^{\prime}=A \vec{x}
$$

We can use matrices to:

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

- Grow vectors
- Shrink vectors

Matrices as gadgets:

Episode 1/24:
Introduction

A matrix A transforms a vector \vec{x} into a new vector \vec{x}^{\prime} through matrix multiplication (whatever that is):

$$
\vec{x}^{\prime}=A \vec{x}
$$

We can use matrices to:

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

- Grow vectors
- Shrink vectors
- Rotate vectors
$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

๑a@ 24 of 45

Matrices as gadgets:

Episode 1/24:
Introduction

A matrix A transforms a vector \vec{x} into a new vector \vec{x}^{\prime} through matrix multiplication (whatever that is):

$$
\vec{x}^{\prime}=A \vec{x}
$$

We can use matrices to:

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

- Grow vectors
- Shrink vectors
- Rotate vectors
- Flip vectors

I 0
$N\left(A^{\top}\right)$

A matrix A transforms a vector \vec{x} into a new vector \vec{x}^{\prime} through matrix multiplication (whatever that is):

$$
\vec{x}^{\prime}=A \vec{x}
$$

We can use matrices to:

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

- Grow vectors
- Shrink vectors
- Rotate vectors
- Flip vectors
- Do all these things in different directions

A matrix A transforms a vector \vec{x} into a new vector \vec{x}^{\prime} through matrix multiplication (whatever that is):

$$
\vec{x}^{\prime}=A \vec{x}
$$

We can use matrices to:

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

- Grow vectors
- Shrink vectors
- Rotate vectors
- Flip vectors
- Do all these things in different directions
- Reveal the true ur-dystopian reality.
$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

Digital photographs are matrices:

Episode 1/24:
Introduction

Exciting Admin
Importance

Usages

Key problems
Three ways of looking.

Colbert on
Equations
References
$\left[\begin{array}{l}\text { IT } \\ \mathcal{N}\left(A^{\top}\right)\end{array}\right]$

I
UNMVERSITY
$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

Digital photographs are matrices:

Exciting Admin
Importance

Usages

Key problems
Three ways of looking.

Colbert on
Equations
References
$\left[\begin{array}{l}\text { IT } \\ \mathcal{N}\left(A^{\top}\right)\end{array}\right]$
Usually three matrices: RGB color model \lessdot ?

A
ZUNIVERSTIY of VERMONT

のac 25 of 45

Image approximation (80×60) by Scottish

 $\operatorname{tartan}[$:Episode 1/24: Introduction

Exciting Admin
Importance
Usages
Key problems

$$
A=\sum_{i=1}^{1} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking.

Colbert on
Equations
References

10
$N\left(A^{\top}\right)$

A UN UNERSITY

Image approximation (80×60) by Scottish

Episode 1/24: Introduction $\operatorname{tartan}[$:

Exciting Admin

Importance

Usages

Key problems

$$
A=\sum_{i=1}^{2} \sigma_{i} \hat{u}_{i} \widehat{v}_{i}^{T}
$$

Three ways of looking.

Colbert on
Equations
References
$\left[\begin{array}{l}19 \\ N_{(A)}\end{array}\right]$

Image approximation (80×60) by Scottish

Episode 1/24: Introduction $\operatorname{tartan}[$:

Exciting Admin
Importance

Usages

Key problems

$$
A=\sum_{i=1}^{3} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking..

Colbert on
Equations
References
$\underset{N\left(A^{\prime}\right)}{19}$

I
Zwn OVERMONT

Image approximation (80×60) by Scottish

 $\operatorname{tartan}[$:$$
A=\sum_{i=1}^{4} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking.

Colbert on
Equations
References
$\underset{N(A)}{10} 1$

I
UNIVERSTIY

Image approximation (80×60) by Scottish

 $\operatorname{tartan}[$:
Usages

Key problems

$$
A=\sum_{i=1}^{5} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking..

Colbert on
Equations
References
$\left.\begin{array}{l}10 \\ \mathcal{N}_{(A)}\end{array}\right]$

A
Zwn a VERMONT

Image approximation (80×60) by Scottish

 $\operatorname{tartan}[$:
Usages

Key problems

$$
A=\sum_{i=1}^{6} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking.

Colbert on
Equations

Image approximation (80×60) by Scottish

 $\operatorname{tartan}[$:$$
A=\sum_{i=1}^{7} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking..

Colbert on
Equations

References

I 0
$N\left(A^{\top}\right)$

A
ZWin

Image approximation (80×60) by Scottish

 $\operatorname{tartan}[$:
Usages

Key problems

$$
A=\sum_{i=1}^{8} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking.

Colbert on
Equations

Image approximation (80×60) by Scottish

 $\operatorname{tartan}[$:
Usages

Key problems

$$
A=\sum_{i=1}^{9} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking.

Colbert on
Equations

Image approximation (80×60) by Scottish

 $\operatorname{tartan}[$:
Usages

Key problems

$$
A=\sum_{i=1}^{10} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking.

Colbert on
Equations

Image approximation (80×60) by Scottish

Episode 1/24: Introduction $\operatorname{tartan}[$:

Exciting Admin
Importance
Usages
Key problems

$$
A=\sum_{i=1}^{20} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking..

Colbert on
Equations

Zhn
UNIVERSITY

Image approximation (80×60) by Scottish

 $\operatorname{tartan}[$:$$
A=\sum_{i=1}^{30} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking..

Colbert on
Equations

References

$\underset{N\left(A^{\prime}\right)}{19}$

H
UNIVERSITY

Image approximation (80×60) by Scottish

 $\operatorname{tartan}[$:
Usages

Key problems

$$
A=\sum_{i=1}^{40} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking.

Colbert on
Equations

References

$\underset{N\left(A^{\prime}\right)}{19}$

A
UNIVERSITY

Image approximation (80×60) by Scottish

 $\operatorname{tartan}[$:$$
A=\sum_{i=1}^{50} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking..

Colbert on
Equations

References

$\left.\begin{array}{l}\text { I } 9 \\ \mathcal{N}\left(A^{\top}\right)\end{array}\right]$

1
Zwn UVERMONT

Image approximation (80×60) by Scottish

 $\operatorname{tartan}[$:$$
A=\sum_{i=1}^{60} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{T}
$$

Three ways of looking..

Colbert on
Equations

References

I 0
$N\left(A^{\top}\right)$

A
UNIVERSITY

Best fit line (least squares):

Episode 1/24:

- Linear algebra does this beautifully;
- Calculus version is clunky.
- From "Re-examination of the '3/4' law of metabolism" [1] Dodds, Rothman, and Weitz, Journal of Theoretical Biology, 209, 9-27, 2001

Exciting Admin
Importance
Usages
Key problems
Three ways of looking..

Colbert on

Best fit line (least squares):

Episode 1/24:

- Linear algebra does this beautifully;
- Calculus version is clunky. And evil.
- From "Re-examination of the ' $3 / 4$ ' law of metabolism" ${ }^{[1]}$ Dodds, Rothman, and Weitz, Journal of Theoretical Biology, 209, 9-27, 2001

Exciting Admin
Importance
Usages
Key problems
Three ways of looking..

Colbert on
Equations
References

I 8
$N\left(A^{\top}\right)$ のаल 27 of 45

The many delights of Eigenthings:

Using Linear Algebra we'll somehow connect:

- Fibonacci Numbers,
- Golden Ratio,
- Spirals,
- Sunflowers, pine cones,
- Harvard Square.

Exciting Admin

Importance

Usages
Key problems
Three ways of looking..

Colbert on
Equations
References

10
$N\left(A^{\top}\right)$

UNIVERSITY UVERMONT

http://www.pimpartworks.com/artwork/randomsteveo/Wax-On-Wax-Off

- It's all connected. "More later."

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on Equations

References

I

Three key problems of Linear Algebra

Episode 1/24: Introduction

1. Given a matrix A and a vector \vec{b}, find \vec{x} such that

$$
A \vec{x}=\vec{b}
$$

Key problems
Three ways of looking.

Colbert on
Equations
References

Three key problems of Linear Algebra

Episode 1/24:
Introduction

1. Given a matrix A and a vector \vec{b}, find \vec{x} such that

$$
A \vec{x}=\vec{b} .
$$

2. Eigenvalue problem: Given A, find λ and \vec{v} such that

$$
A \vec{v}=\lambda \vec{v} .
$$

Exciting Admin
Importance
Usages
Key problems
Three ways of looking..

Colbert on
Equations
References

Three key problems of Linear Algebra

Episode 1／24：
Introduction

1．Given a matrix A and a vector \vec{b} ，find \vec{x} such that

$$
A \vec{x}=\vec{b} .
$$

2．Eigenvalue problem：Given A ，find λ and \vec{v} such that

$$
A \vec{v}=\lambda \vec{v} .
$$

3．Coupled linear differential equations：

$$
\frac{\mathrm{d}}{\mathrm{~d} t} y(t)=A y(t)
$$

Exciting Admin
Importance
Usages
Key problems
Three ways of looking．．

Colbert on
Equations
References

Our focus willbe largely on．\＃1．party on +2 ．

Three key problems of Linear Algebra

Episode 1/24:
Introduction

1. Given a matrix A and a vector \vec{b}, find \vec{x} such that

$$
A \vec{x}=\vec{b} .
$$

2. Eigenvalue problem: Given A, find λ and \vec{v} such that

$$
A \vec{v}=\lambda \vec{v} .
$$

3. Coupled linear differential equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} y(t)=A y(t)
$$

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

- Our focus will be largely on \#1, partly on \#2.

Major course objective:

Episode 1/24:
Introduction
To deeply understand the equation $A \vec{x}=\vec{b}$, the Fundamental Theorem of Linear Algebra, and the following picture:

Exciting Admin Importance

Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

Major course objective:

Episode 1/24:
Introduction
To deeply understand the equation $A \vec{x}=\vec{b}$, the Fundamental Theorem of Linear Algebra, and the following picture:

Exciting Admin Importance

Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

What is going on here? We have 24 episodes to find out...

UNIVERSTIY v/ VERMONT

The fourfold ways of $\mathbf{A} \vec{x}=\vec{b}$:

Episode 1/24:
Introduction

case	example R	big picture	\# solutions
$\begin{aligned} m & =r \\ n & =r \end{aligned}$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$	$.$	1 always
$m=r$, $n>r$	$\left[\begin{array}{lll}1 & 0 & 0_{1} \\ 0 & 1 & 0_{2}\end{array}\right]$		- always
$\begin{gathered} m>r \\ n=r \end{gathered}$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$		0 or 1
$m>r$, $n>r$	$\left[\begin{array}{ccc}1 & 0 & ®_{1} \\ 0 & 1 & 0_{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$		0 or ∞

Exciting Admin Importance Usages

Key problems
Three ways of looking..

Colbert on
Equations
References

Our new BFF: $A \vec{x}=\vec{b}$

Episode 1/24:
Introduction
Broadly speaking, $A \vec{x}=\vec{b}$ translates as follows:

Exciting Admin
Importance
Usages
Key problems
Three ways of looking...

Colbert on
Equations
References

Our new BFF: $A \vec{x}=\vec{b}$

Episode 1/24:
Introduction
Broadly speaking, $A \vec{x}=\vec{b}$ translates as follows:

- \vec{b} represents reality (e.g., music, structure)

Exciting Admin
Importance
Usages
Key problems
Three ways of looking..

Colbert on
Equations
References

Our new BFF: $A \vec{x}=\vec{b}$

Episode 1/24:
Introduction
Broadly speaking, $A \vec{x}=\vec{b}$ translates as follows:

- \vec{b} represents reality (e.g., music, structure)
- A contains building blocks (e.g., notes, shapes)

Exciting Admin
Importance
Usages
Key problems
Three ways of looking..

Colbert on
Equations
References

Our new BFF: $A \vec{x}=\vec{b}$

Episode 1/24:
Introduction
Broadly speaking, $A \vec{x}=\vec{b}$ translates as follows:

- \vec{b} represents reality (e.g., music, structure)
- A contains building blocks (e.g., notes, shapes)
- \vec{x} specifies how we combine our building blocks to make \vec{b} (as best we can).

Exciting Admin

Importance
Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

Our new BFF：$A \vec{x}=\vec{b}$

Episode 1／24：
Introduction
Broadly speaking，$A \vec{x}=\vec{b}$ translates as follows：
－\vec{b} represents reality（e．g．，music，structure）
－A contains building blocks（e．g．，notes，shapes）
－\vec{x} specifies how we combine our building blocks to make \vec{b}（as best we can）．

Exciting Admin
Importance
Usages
Key problems
Three ways of looking．

Colbert on
Equations
References

How can we disentangle an orchestra＇s sound？

Broadly speaking, $A \vec{x}=\vec{b}$ translates as follows:

- \vec{b} represents reality (e.g., music, structure)
- A contains building blocks (e.g., notes, shapes)
- \vec{x} specifies how we combine our building blocks to make \vec{b} (as best we can).

How can we disentangle an orchestra's sound?

- Radiolab[̄]'s amazing piece: A 4-Track Mind ©

Our new BFF: $A \vec{x}=\vec{b}$

Broadly speaking, $A \vec{x}=\vec{b}$ translates as follows:

- \vec{b} represents reality (e.g., music, structure)
- A contains building blocks (e.g., notes, shapes)
- \vec{x} specifies how we combine our building blocks to make \vec{b} (as best we can).

Episode 1/24:

Exciting Admin
Importance
Usages
Key problems
Three ways of looking...

Colbert on
Equations
References
How can we disentangle an orchestra's sound?

- Radiolab[$^{\text {'s }}$ amazing piece: A 4-Track Mind ©

What about pictures, waves, signals, ...?

Is this your left nullspace?:

Episode 1/24:
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on Equations

References

Linear Algebra compliments/putdowns:

Episode 1/24:
Introduction

- Wow, you have such a tiny/huge [delete as applicable] left nullspace!

Linear Algebra compliments/putdowns:

Episode 1/24:
Introduction

- Wow, you have such a tiny/huge [delete as applicable] left nullspace!

Key problems
Three ways of looking.

Colbert on
Equations
References

- See also: The Dunning-Kruger effect. | |
| --- |

Our friend $A \vec{x}=\vec{b}$

Episode 1/24:
Introduction

What does knowing \vec{x} give us?

Exciting Admin
Importance
Usages
Key problems
Three ways of looking...

Colbert on
Equations
References
Compress information See how ve ran alter info rmation (filtering) Find a system's simplest representation Find a system's most important elements See how to adiust a svstem in a principled w ay

Our friend $A \vec{x}=\vec{b}$

Episode 1/24:
Introduction

Exciting Admin
Importance

What does knowing \vec{x} give us?

If we can represent reality as a superposition (or combination or sum) of simple elements, we can do many things:

Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

Our friend $A \vec{x}=\vec{b}$

Episode 1/24:

What does knowing \vec{x} give us?

If we can represent reality as a superposition (or combination or sum) of simple elements, we can do many things:

- Compress information

Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

Our friend $A \vec{x}=\vec{b}$

Episode 1/24:

Exciting Admin
Importance

What does knowing \vec{x} give us?

If we can represent reality as a superposition (or combination or sum) of simple elements, we can do many things:

- Compress information
- See how we can alter information (filtering)

Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

Find a system's simplest representation Find a system's most important elements See how to adjust a system in a principled wa

Our friend $A \vec{x}=\vec{b}$

Episode 1/24:

Exciting Admin
Importance

What does knowing \vec{x} give us?

If we can represent reality as a superposition (or combination or sum) of simple elements, we can do many things:

- Compress information
- See how we can alter information (filtering)
- Find a system's simplest representation

Our friend $A \vec{x}=\vec{b}$

What does knowing \vec{x} give us?

If we can represent reality as a superposition (or combination or sum) of simple elements, we can do many things:

- Compress information
- See how we can alter information (filtering)
- Find a system's simplest representation
- Find a system's most important elements

Usages
Key problems
Three ways of looking.

Colbert on
Equations
References

Our friend $A \vec{x}=\vec{b}$

What does knowing \vec{x} give us?

If we can represent reality as a superposition (or combination or sum) of simple elements, we can do many things:

- Compress information
- See how we can alter information (filtering)
- Find a system's simplest representation
- Find a system's most important elements
- See how to adjust a system in a principled way

Usages
Key problems
Three ways of
looking.
Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

- Way 1: The Row Picture
- Way 2: The Column Picture
- Way 3: The Matrix Picture

Key problems
Three ways of「ooking

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

- Way 1: The Row Picture
- Way 2: The Column Picture
- Way 3: The Matrix Picture

Example:

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

Exciting Admin
Importance
Usages
Key problems
Three ways of「ooking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24:
Introduction

- Way 1: The Row Picture
- Way 2: The Column Picture
- Way 3: The Matrix Picture

Example:

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

Exciting Admin
Importance
Usages
Key problems
Three ways of「ooking...

Colbert on
Equations
References

- Call this a 2 by 2 system of equations.
- 2 equations with 2 unknowns.

University UVERMONT

๑a^ 37 of 45

Three ways to understand $A \vec{x}=\vec{b}$:

- Way 1: The Row Picture
- Way 2: The Column Picture
- Way 3: The Matrix Picture

Exciting Admin
Importance
Usages
Key problems
Three ways of「ooking...
Example:

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

- Call this a 2 by 2 system of equations.
- 2 equations with 2 unknowns.
- Standard method of simultaneous equations: solve above by adding and subtracting multiples of equations to each other

UNIVERSITY of VERMONT

Three ways to understand $A \vec{x}=\vec{b}$:

- Way 1: The Row Picture
- Way 2: The Column Picture
- Way 3: The Matrix Picture

Exciting Admin
Importance
Usages
Key problems
Three ways of「ooking...
Example:

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

- Call this a 2 by 2 system of equations.
- 2 equations with 2 unknowns.
- Standard method of simultaneous equations: solve above by adding and subtracting multiples of equations to each other = Row Picture.

Three ways to understand $A \vec{x}=\vec{b}$ ：

Episode 1／24： Introduction

Row Picture－what we are doing：

(b) Finding the values of x_{1} and x_{2} for which both
equations are satisfied (true/happy)
A splendid and deep connection:
(a) Geometry - (b) Algebra

Exciting Admin

Importance

Usages
Key problems
Three ways of「ooking．．．

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

Row Picture-what we are doing:

- (a) Finding intersection of two lines
(b) Finding the values of x_{1} and x_{2} for which both equations are satisfied (true/happy) A snlendid and deen connertion: (a) Geometry - (b) Algebra

Exciting Admin

Importance

Usages
Key problems
Three ways of looking...

Colbert on
Equations
References

Row Picture-what we are doing:

- (a) Finding intersection of two lines
- (b) Finding the values of x_{1} and x_{2} for which both equations are satisfied (true/happy)

Exciting Admin

Importance

Usages
Key problems
Three ways of looking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24:
Introduction

Exciting Admin

Row Picture-what we are doing:

- (a) Finding intersection of two lines
- (b) Finding the values of x_{1} and x_{2} for which both equations are satisfied (true/happy)
- A splendid and deep connection:
(a) Geometry $\rightleftharpoons(b)$ Algebra

Importance
Usages
Key problems
Three ways of「ooking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:
Episode 1/24:
Introduction

Exciting Admin

Row Picture-what we are doing:

- (a) Finding intersection of two lines
- (b) Finding the values of x_{1} and x_{2} for which both equations are satisfied (true/happy)
- A splendid and deep connection:
(a) Geometry $\rightleftharpoons(b)$ Algebra

Three possible kinds of solution:

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24:
Introduction

Exciting Admin

Row Picture-what we are doing:

- (a) Finding intersection of two lines
- (b) Finding the values of x_{1} and x_{2} for which both equations are satisfied (true/happy)
- A splendid and deep connection:
(a) Geometry $\rightleftharpoons(b)$ Algebra

Three possible kinds of solution:

1. Lines intersect at one point

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24:
Introduction

Exciting Admin

Row Picture-what we are doing:

- (a) Finding intersection of two lines
- (b) Finding the values of x_{1} and x_{2} for which both equations are satisfied (true/happy)
- A splendid and deep connection:
(a) Geometry \rightleftharpoons (b) Algebra

Three possible kinds of solution:

1. Lines intersect at one point
2. Lines are parallel and disjoint

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24:
Introduction

Exciting Admin

Row Picture-what we are doing:

- (a) Finding intersection of two lines
- (b) Finding the values of x_{1} and x_{2} for which both equations are satisfied (true/happy)
- A splendid and deep connection:
(a) Geometry \rightleftharpoons (b) Algebra

Three possible kinds of solution:

1. Lines intersect at one point
2. Lines are parallel and disjoint
3. Lines are the same

Three ways to understand $A \vec{x}=\vec{b}$:

Row Picture-what we are doing:

- (a) Finding intersection of two lines
- (b) Finding the values of x_{1} and x_{2} for which both equations are satisfied (true/happy)
- A splendid and deep connection:
(a) Geometry \rightleftharpoons (b) Algebra

Three possible kinds of solution:

1. Lines intersect at one point -One, unique solution
2. Lines are parallel and disjoint
3. Lines are the same

Row Picture-what we are doing:

- (a) Finding intersection of two lines
- (b) Finding the values of x_{1} and x_{2} for which both equations are satisfied (true/happy)
- A splendid and deep connection:
(a) Geometry \rightleftharpoons (b) Algebra

Three possible kinds of solution:

1. Lines intersect at one point -One, unique solution
2. Lines are parallel and disjoint -No solutions
3. Lines are the same

Row Picture-what we are doing:

- (a) Finding intersection of two lines
- (b) Finding the values of x_{1} and x_{2} for which both equations are satisfied (true/happy)
- A splendid and deep connection:
(a) Geometry \rightleftharpoons (b) Algebra

Three possible kinds of solution:

1. Lines intersect at one point -One, unique solution
2. Lines are parallel and disjoint - No solutions
3. Lines are the same - Infinitely many solutions

Three ways to understand $A \vec{x}=\vec{b}$ ：

Episode 1／24：
Introduction
The column picture：

Exciting Admin
Importance
Usages
Key problems
Three ways of「ooking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

The column picture:

See

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

Exciting Admin
Importance
Usages
Key problems
Three ways of「ooking...

Colbert on
Equations
References

つa^ 39 of 45

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

The column picture:
See

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

as

$$
x_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

Exciting Admin
Importance
Usages
Key problems
Three ways of looking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

The column picture:

See

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

as

$$
x_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

Exciting Admin

Importance
Usages
Key problems
Three ways of looking...

Colbert on
Equations
References

General problem

$$
x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=\vec{b}
$$

- Column vectors are our 'building blocks'

Three ways to understand $A \vec{x}=\vec{b}$ ：

Episode 1／24：
Introduction

The column picture：

See

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

as

$$
x_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

Exciting Admin

Importance
Usages
Key problems
Three ways of「ooking

Colbert on
Equations
References

General problem

$$
x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=\vec{b}
$$

－Column vectors are our＇building blocks＇
－Key idea：try to＇reach＇\vec{b} by combining（summing） multiples of column vectors \vec{a}_{1} and \vec{a}_{2} ．

Three ways to understand $A \vec{x}=\vec{b}$ ：

Episode 1／24： Introduction

We love the column picture：

Exciting Admin
Importance
Usages
Key problems
Three ways of looking．．．

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

We love the column picture:
 - Intuitive.

Generalizes easily to many dimensions.

Exciting Admin
Importance
Usages
Key problems
Three ways of looking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

We love the column picture:

- Intuitive.
- Generalizes easily to many dimensions.

Exciting Admin

Importance

Usages
Key problems
Three ways of looking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

We love the column picture:

- Intuitive.
- Generalizes easily to many dimensions.

Three possible kinds of solution:

Exciting Admin

Importance
Usages
Key problems
Three ways of looking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$ ：

Episode 1／24：
Introduction

We love the column picture：

－Intuitive．
－Generalizes easily to many dimensions．

Three possible kinds of solution：

1．\vec{a}_{1} not parallel $\vec{a}_{2}: 1$ solution．

References
Exciting Admin
Importance
Usages
Key problems
Three ways of「ooking．．．

Colbert on
Equations

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24:
Introduction

We love the column picture:

- Intuitive.
- Generalizes easily to many dimensions.

Three possible kinds of solution:

Exciting Admin

Importance
Usages
Key problems
Three ways of「ooking

Colbert on
Equations

1. \vec{a}_{1} not parallel $\vec{a}_{2}: 1$ solution.
2. \vec{a}_{1} parallel to \vec{a}_{2} but not parallel to \vec{b} : No solutions.

Three ways to understand $A \vec{x}=\vec{b}$:

We love the column picture:

- Intuitive.
- Generalizes easily to many dimensions.

Three possible kinds of solution:

1. \vec{a}_{1} not parallel $\vec{a}_{2}: 1$ solution.
2. \vec{a}_{1} parallel to \vec{a}_{2} but not parallel to \vec{b} : No solutions.
3. \vec{a}_{1}, \vec{a}_{2}, and \vec{b} all parallel: infinitely many solutions.

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24:
Introduction

Exciting Admin
Importance

We love the column picture:

- Intuitive.
- Generalizes easily to many dimensions.

Three possible kinds of solution:
Key problems
Three ways of Fooking...

Colbert on
Equations

1. \vec{a}_{1} not parallel $\vec{a}_{2}: 1$ solution.
2. \vec{a}_{1} parallel to \vec{a}_{2} but not parallel to \vec{b} : No solutions.
3. \vec{a}_{1}, \vec{a}_{2}, and \vec{b} all parallel: infinitely many solutions.
(assuming neither \vec{a}_{1} or \vec{a}_{1} are $\overrightarrow{0}$)

References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

Exciting Admin
Importance
Usages

Difficulties:

Do we give up if $A \vec{x}=\vec{b}$ has no solution?
Key problems
Three ways of looking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24:
Introduction

Exciting Admin
Importance
Usages

Difficulties:

- Do we give up if $A \vec{x}=\vec{b}$ has no solution?
- No! We can still find the \vec{x} that gets us as close to \vec{b} as possible.

Key problems
Three ways of looking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24:
Introduction

Exciting Admin
Importance
Usages

Difficulties:

- Do we give up if $A \vec{x}=\vec{b}$ has no solution?
- No! We can still find the \vec{x} that gets us as close to \vec{b} as possible.

Key problems
Three ways of looking...

Colbert on
Equations
References

- Method of approximation-very important!

Three ways to understand $A \vec{x}=\vec{b}$ ：

Episode 1／24：
Introduction

Exciting Admin
Importance
Usages

Difficulties：

－Do we give up if $A \vec{x}=\vec{b}$ has no solution？
－No！We can still find the \vec{x} that gets us as close to \vec{b} as possible．
－Method of approximation－very important！
－We may not have the right building blocks but we can do our best．

Key problems
Three ways of「ooking

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

The Matrix Picture:

Exciting Admin
Importance
Usages
Key problems
Three ways of「ooking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

The Matrix Picture:

Now see

$$
x_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

Exciting Admin
Importance
Usages
Key problems
Three ways of「ooking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

The Matrix Picture:

Now see

$$
x_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

as

$$
A \vec{x}=\vec{b}:\left[\begin{array}{cc}
-1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

Exciting Admin
Importance
Usages
Key problems
Three ways of looking...

Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$:

Episode 1/24: Introduction

The Matrix Picture:

Now see

$$
x_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

as

$$
A \vec{x}=\vec{b}:\left[\begin{array}{cc}
-1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

Exciting Admin
Importance
Usages
Key problems
Three ways of looking...

Colbert on
Equations
References
A is now an operator:

- A transforms \vec{x} into \vec{b}.

A $\begin{aligned} & \text { Iz } \\ & \text { IMNIVERSITY } \\ & \text { UI }\end{aligned}$ vivermont

Three ways to understand $A \vec{x}=\vec{b}$ ：

The Matrix Picture：

Now see

$$
x_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

as

$$
A \vec{x}=\vec{b}:\left[\begin{array}{cc}
-1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

A is now an operator：

－A transforms \vec{x} into \vec{b} ．
－Roughly speaking，A does two things to \vec{x} ：
1．Rotation／Flipping
2．Dilation（stretching／contraction）

Episode 1／24：
Introduction

Exciting Admin

Importance
Usages
Key problems
Three ways of「ooking

Colbert on
Equations
References

The Matrix Picture

Episode 1／24： Introduction

Importance
Usages
Key problems
Three ways of「ooking．．．
Colbert on
Equations
References

Exciting Admin

Key idea in linear algebra：
 －Decomposition or factorization of matrices．

－

The Matrix Picture

Episode 1/24:

Exciting Admin
Importance
Usages
Key problems
Key idea in linear algebra:

- Decomposition or factorization of matrices.
- Matrices can often be written as products or sums of simpler matrices

The Matrix Picture

Episode 1/24:

Exciting Admin
Importance
Usages
Key problems

Key idea in linear algebra:

- Decomposition or factorization of matrices.

Three ways of looking...

Colbert on
Equations
References of simpler matrices

- $A=L U, A=Q R, A=U \Sigma V^{T}, A=\sum_{i} \lambda_{i} \vec{v} \vec{v}^{T}, \ldots$

More Truth about Mathematics:

Episode 1/24: Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of looking.

Colbert on
Ēquāātions
References

Zhn
UNIVERSITY of VERMONT

つの® 44 of 45

References I

[1] P. S. Dodds, D. H. Rothman, and J. S. Weitz.
Re-examination of the "3/4-law" of metabolism.
Journal of Theoretical Biology, 209:9-27, 2001. pdfé
[2] G. Strang.
The fundamental theorem of linear algebra.
Colbert on
Equations
References
The American Mathematical Monthly,
100(9):848-855, 1993. pdf[3
[3] G. Strang.
Too much calculus, 2002.
SIAM Linear Algebra Activity Group Newsletter. pdf[

