Matrixology (Linear Algebra)—Episode 1/24 MATH 122, Fall, 2016

Introduction

Prof. Peter Dodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Episode 1/24: Introduction

Exciting Admin

Importance

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

 $\begin{bmatrix} \mathbf{I} \heartsuit \\ \boldsymbol{N}(\mathbb{A}^{\mathsf{T}}) \end{bmatrix}$

These slides are brought to you by:

Sealie & Lambie Productions

Episode 1/24: Introduction

Exciting Admin Importance Usages Key problems

Three ways of looking...

Colbert on Equations

References

 $\begin{bmatrix} \mathbf{I} \heartsuit \\ \boldsymbol{\mathcal{N}}(\mathbb{A}^{\mathsf{T}}) \end{bmatrix}$

WINVERSITY S

20f45

Outline

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

 $\begin{bmatrix} \mathbf{I} \heartsuit \\ \boldsymbol{\mathcal{N}}(\mathbb{A}^{\mathsf{T}}) \end{bmatrix}$

200 3 of 45

Basics:

Episode 1/24: Introduction

Exciting Admin

mportance

Jsages

Key problems

Three ways of looking...

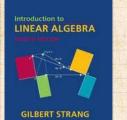
Colbert on Equations

References

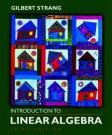
Instructor: Prof. Peter Dodds
 Lecture room and meeting times:

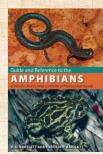
Perkins 107, Tuesday and Thursday, 10:05 am to 11:20 am

- Office: Farrell Hall, second floor, Trinity Campus
- E-mail: peter.dodds@uvm.edu
- Course website:


http://www.uvm.edu/ pdodds/teaching/courses/2016-08UVM-122

 Textbook: "Introduction to Linear Algebra" (3rd or 4th or 5th edition) by Gilbert Strang (published by Wellesley-Cambridge Press).




Our Textbook of Excellence:

4th Edition 🛛

3rd Edition

Unhelpful 🗆

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

- "Introduction to Linear Algebra" by Gil Strang C;
- Textbook website: http://math.mit.edu/linearalgebra/C
- MIT Open Courseware site for 18.06 (=Linear Algebra):

http://ocw.mit.edu/...linear-algebra-spring-2010/

Yesness:

Money quote from George Cobb's review of Strang's book:

Do you want a book written by a mathematician with a lifetime experience using linear algebra to understand important, authentic, applied problems, a former president of the Society for Industrial and Applied Mathematics, ...

or do you want a book shaped mainly by the [a]esthetics of pure mathematicians with only a weak, theoretical connection to how linear algebra is used in the natural and social sciences?

- George Cobb: Robert L. Rooke Professor of Mathematics and Statistics, Mount Holyoke College
- Full review here C [amazon]

Episode 1/24: Introduction

Exciting Admin

Importance

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

 $\begin{bmatrix} \mathbf{I} \heartsuit \\ \boldsymbol{\mathcal{N}}(\mathbb{A}^{\mathsf{T}}) \end{bmatrix}$

Gil Strang, Exalted Friend of the Matrix: Professor of Mathematics at MIT since 1962.

These are 121 cupcakes with my favorite -1, 2, -1 matrix. It was the day before Thanksgiving and two days before my birthday. A happy surprise.

 Many awards including MAA Haimo Award r for Distinguished College or University Teaching of Mathematics

Rhodes Scholar.Legend.

Episode 1/24: Introduction

Exciting Admin

mportance

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

More on Laplacian matrices, graphs, and other madnesses here .

▶ (Strang's Wikipedia page is here .

990 7 of 45

Admin:

Potential paper products:

1. Outline

Papers to read:

- 1. "The Fundamental Theorem of Linear Algebra" ^[2]
- 2. "Too Much Calculus" [3]

Office hours:

 10:00 to 11:55 am Wednesdays, Farrell Hall, second floor, Trinity Campus Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

 $\begin{bmatrix} \mathbf{I} \heartsuit \\ \mathbf{N}(\mathbb{A}^{\mathsf{T}}) \end{bmatrix}$

Team Matrixology We may try out Slack:

- Place for discussions about all things PoCS including assignments and projects.
- Once invited, please sign up here: http://team-matrixology.slack.com
- Very good: Install Slack app on laptops, tablets, phone.

slack

Everyone will behave wonderfully.

Episode 1/24: Introduction

Exciting Admin

Importance

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

I V N(AT)

Grading breakdown:

1. Levels (40%)

- Ten one-week assignments.
- Lowest assignment score will be dropped.
- The last assignment cannot be dropped!
- Each assignment will have a random bonus point question which has nothing to do with linear algebra.

2. Challenge Levels (30%)

Three 75 minutes tests distributed throughout the course, all of equal weighting.

3. Final Boss Level (20%)

- Structure Str
- Thursday, December 15, 1:30 pm to 4:15 pm, in Perkins 107.

Episode 1/24: Introduction

Exciting Admin

Importance

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

Grading breakdown:

4. Mini-levels (10%)

- Most meeting times will end with a 10 to 15 minute mini-level.
- There will be around 20 mini-levels.
- 5. Homework (0%)—Problems assigned online from the textbook. Doing these exercises will be most beneficial and will increase happiness.
- 6. General existence—it is extremely desirable that students attend class, and class presence will be taken into account if a grade is borderline.

Episode 1/24: Introduction

Exciting Admin

Importance

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

Questions are worth 3 points according to the following scale:

- 3 = correct or very nearly so.
- 2 = acceptable but needs some revisions.
- 1 = needs major revisions.
- 0 = way off.

Schedule: The course will mainly cover chapters 2 through 6 of the textbook. (You should know all about Chapter 1.)

Week # (dates)	Tuesday	Thursday			
1 (8/30 and 9/01)	$\mathbf{A}\vec{x} = \vec{b}$	$\mathbf{A}\vec{x} = \vec{b}$ + Level 1			
2 (9/06 and 9/08)	$\mathbf{A}\vec{x} = \vec{b}$	$\mathbf{A}\vec{x} = \vec{b}$ + Level 2			
3 (9/13 and 9/15)	$\mathbf{A}\vec{x} = \vec{b}$	$\mathbf{A}\vec{x} = \vec{b}$ + Level 3			
4 (9/20 and 9/22)	$\mathbf{A}\vec{x} = \vec{b}$ and review	Challenge Level 1			
5 (9/27 and 9/29)	Big picture	Big picture + Level 4			
6 (10/04 and 10/06)	Big picture	Big picture + Level 5			
7 (10/11 and 10/13)	Big picture	Big picture + Level 6			
8 (10/18 and 10/20)	Big picture	Challenge Level 2			
9 (10/25 and 10/27)	Normal equation	Gram-Schmidt Process +			
		Level 7			
10 (11/01 and 11/03)	Eigenstuff	Eigenstuff + Level 8			
11 (11/08 and 11/10)	Determinants	Determinants + Level 9			
12 (11/15 and 11/17)	Eigenstuff	textitChallenge Level 3			
13 (11/22 and 11/24)	Thanksgiving	Thanksgiving			
14 (11/29 and 12/01)	Positive Definite Matrices	SVD			
	+ Level 10				
15 (12/06)	SVD				

Important dates:

- 1. Classes run from Tuesday, August 30 to Tuesday, December 6.
- 2. Add/Drop, Audit, Pass/No Pass deadline—Monday, September 12.
- Last day to withdraw—Monday, October 31 (Sadness!).
- Reading and Exam period—Saturday, December 10 to Friday, December 16.

More stuff:

Do check your zoo account for updates regarding the course.

Academic assistance: Anyone who requires assistance in any way (as per the ACCESS program or due to athletic endeavors), please see or contact me as soon as possible. Episode 1/24: Introduction

Exciting Admin

Importance

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

 $\begin{bmatrix} \mathbf{I} \heartsuit \\ \boldsymbol{\mathcal{N}}(\mathbb{A}^{\mathsf{T}}) \end{bmatrix}$

More stuff:

Being good people:

- In class there will be no electronic gadgetry, no cell phones, no beeping, no text messaging, etc. You really just need your brain, some paper, and a writing implement here (okay, and Matlab).
- 2. Second, I encourage you to email me questions, ideas, comments, etc., about the class but request that you please do so in a respectful fashion.
- Finally, as in all UVM classes, Academic honesty will be expected and departures will be dealt with appropriately. See http://www.uvm.edu/cses/ for guidelines.

Episode 1/24: Introduction

Exciting Admin

Importance

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

 $\begin{bmatrix} \mathbf{I} \heartsuit \\ \mathbf{N}(\mathbb{A}^{\mathsf{T}}) \end{bmatrix}$

Even more stuff:

Late policy: Unless in the case of an emergency (a real one) or if an absence has been predeclared and a make-up version sorted out, assignments that are not turned in on time or tests that are not attended will be given 0%.

Computing: Approximately 2 out of 10 questions per assignment will be Matlab based.

Note: for assignment problems, written details of calculations will be required.

Episode 1/24: Introduction

Exciting Admin

Importance

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

 $\begin{bmatrix} \mathbf{I} \heartsuit \\ \mathbf{N}(\mathbb{A}^{\mathsf{T}}) \end{bmatrix}$

Why are we doing this? Big deal: Linear Algebra is a body of mathematics that deals with discrete problems.

Many things are discrete:

- Information (0's & 1's, letters, words)
- People (sociology)
- Networks (the Web, people again, food webs, ...)
- Sounds (musical notes)

Even more:

If real data is continuous, we almost always discretize it (0's and 1's) Episode 1/24: Introduction

Exciting Admin

Importance

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

 $I \heartsuit$ $N(A^{T})$

Why are we doing this? Linear Algebra is used in many fields to solve problems:

- Engineering
- Computer Science
- Physics

- Biology
- Ecology
- Economics
- Science of the Sociotechnocene

Exciting Admin

Importance

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

Big example: Google's Pagerank 🗹

Some truth:

- Linear Algebra is as important as Calculus...
- Calculus \equiv the blue pill...

Why are we doing this?

TOOK EVERY CALCULUS CLASS

EVERYTHING

DISCRETE

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

na @ 19 of 45

imgflip.com

You are now choosing the red pill:

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

... or the blue pill?

The red pill...

20 of 45

The Truth:

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

Calculus is the Serpent's Mathematics.

6

20 0 21 of 45

The Platypus of Truth:

Platypuses are masters of Linear Algebra.

Episode 1/24: Introduction

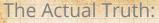
Exciting Admin

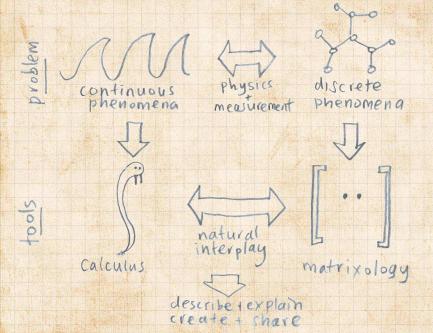
Importance

Usages

Key problems

Three ways of looking...


Colbert on Equations


References

 $\begin{bmatrix} \mathbf{I} \heartsuit \\ \mathcal{N}(\mathbb{A}^{\mathsf{T}}) \end{bmatrix}$

na @ 22 of 45

Matrices as gadgets:

A matrix A transforms a vector \vec{x} into a new vector \vec{x}' through matrix multiplication (whatever that is):

$$\vec{x}' = A \vec{x}$$

We can use matrices to:

- Grow vectors
- Shrink vectors
- Rotate vectors
- Flip vectors
- Do all these things in different directions
- Reveal the true ur-dystopian reality.

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

 $\begin{bmatrix} \mathbf{I} \heartsuit \\ \mathcal{N}(\mathbb{A}) \end{bmatrix}$

Digital photographs are matrices:

Episode 1/24: Introduction

Exciting Admin

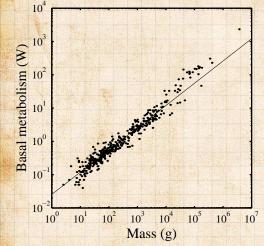
Usages

Key problems

Three ways of looking...

Colbert on Equations

References


Usually three matrices: RGB color model .

 $\begin{bmatrix} \mathbf{I} \heartsuit \\ \mathcal{N}(\mathbb{A}) \end{bmatrix}$

na @ 25 of 45

Best fit line (least squares):

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Linear

this

Calculus

algebra does

beautifully;

version is clunky.

And evil.

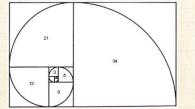
Key problems

Three ways of looking...

Colbert on Equations

References

From "Re-examination of the '3/4' law of metabolism" ^[1] Dodds, Rothman, and Weitz, Journal of Theoretical Biology, 209, 9–27, 2001


VERMONT

The many delights of Eigenthings:

Using Linear Algebra we'll somehow connect:

 Fibonacci Numbers,

- Golden Ratio,
- Spirals,
- Sunflowers, pine cones,

Harvard Square.

...

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

 $\begin{bmatrix} \mathbf{I} \heartsuit \\ \mathcal{N}(\mathbb{A}^{\mathsf{T}}) \end{bmatrix}$

28 of 45

This is a math course:

WAX OFF WAX ON

http://www.pimpartworks.com/artwork/randomsteveo/Wax-On-Wax-Off

It's all connected. "More later."

Episode 1/24: Introduction

Exciting Admin

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

Three key problems of Linear Algebra

1. Given a matrix A and a vector \vec{b} , find \vec{x} such that

 $A\vec{x} = \vec{b}.$

2. Eigenvalue problem: Given A, find λ and \vec{v} such that

$$A\vec{v} = \lambda\vec{v}.$$

3. Coupled linear differential equations:

$$\frac{\mathsf{d}}{\mathsf{d}t}y(t) = A\,y(t)$$

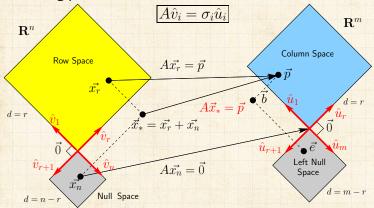
Our focus will be largely on #1, partly on #2.

Episode 1/24: Introduction

Exciting Admin

Key problems

Three ways of looking...


Colbert on Equations

References

Major course objective:

To deeply understand the equation $A\vec{x} = \vec{b}$, the Fundamental Theorem of Linear Algebra, and the following picture:

What is going on here? We have 24 episodes to find out...

Episode 1/24: Introduction

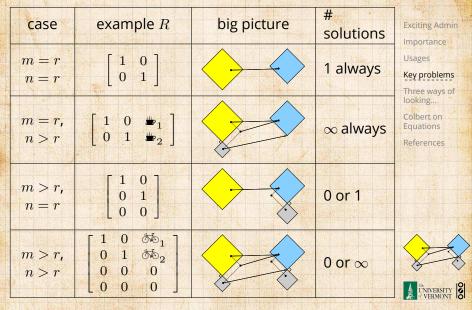
Exciting Admin

Usages

Key problems

Three ways of looking...

Colbert on Equations


References

うへへ 31 of 45

The fourfold ways of $\mathbf{A}\vec{x} = \vec{b}$:

Episode 1/24: Introduction

2 C 32 of 45

Our new BFF: $A\vec{x} = \vec{b}$ Broadly speaking, $A\vec{x} = \vec{b}$ translates as follows: • \vec{b} represents reality (e.g., music, structure) • A contains building blocks (e.g., notes, shapes)

▶ \vec{x} specifies how we combine our building blocks to make \vec{b} (as best we can).

How can we disentangle an orchestra's sound?

► Radiolab G's amazing piece: A 4-Track Mind G

What about pictures, waves, signals, ...?

Episode 1/24: Introduction

Exciting Admin

Key problems

Three ways of looking...

Colbert on Equations

References

VERMONT

Is this your left nullspace?:

及網文写で感が給しオ会観美イカ

BAN BUNBU ABU DUDER HAN BE MELE	● ME COLO ● ME A TONE A DE A LLA ROUND US N. ELECTRINITING A LLA ROUND US N.	ATTS THE MATRIXIT IS ALLARO HE MATRIX HELS THE ONE DREA	前の植 及街文写て 感ザ絵 しょ会観美イ 力振もレ 保の 文精なフェ	をに美と学師で技ず国出のシ島 数局表 ゴロンは超メ電力	■●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		▶ 保の 文精 剛の檜 及術文写て 感げ絵 しオ会観美イ 力凝もレ 保の	▼□□ 下□□ 四点 「○○」 「○○」 「○○」 「○○」 「□□ 「□□ □□」 「□□ □□」 □□ □□ □□」 □□ □□ □□」 □□ □□□ □	新山 しき エイドさてかきたき 州かられ YOU MA つれたんがいのたし れたり たちり なれんなられて てれこれ (学知出色の品) 加速す 100/11年 メ働 前の様 及戦文学で 低ゲ絵 しオ会戦美子 力限もし 保の 文精なフ	A C C C C C C C C C C C C C C C C C C C	■ N Y O U W A	13 みししみ そのしる ヨーレス ショート そそそ がな 文明な写て 感が能 しオ会戦美子 力服もし 保の 文明なフ ト社	キャイス・エー エミード ドルニード アード・マイス・エート アード・マイス・アー び枝子 頭出の くしん キマ ひわわり しち アード・マイン 発見 大智力 がけ そうかいしん いんかい しょう アード・マイン パード・マイン パード・マイン	Exciting Admin Importance Usages Key problems Three ways of looking Colbert on Equations References
	тнатлики жлих хол жата 8 О∰—К №Слих хол жата	CENORIA DE MILETRE MILERE MILERE	↑社開 をに美と 字印 び技す 国出のシ品 致暴ま ゴー	S YHE MAT	1911년 1월 1911년 1911년 1911년 1911년 1911	US ITTISTHERE WHEN YOU	の 文精なフ ト社明 をに美と 字印 び接す	大部方 비용 ITISTHERE 에버트레 가려 가려 IS	ト社明 をに美と 字印 び技す 国出のシ品 数 1 T Y NHAT IS YHE MAT T C H T E L E V I S I O N		E S	オート・ション マイト マート・シート		

Episode 1/24: Introduction

20 34 of 45

VERMONT

Linear Algebra compliments/putdowns:

Wow, you have such a tiny/huge [delete as applicable] left nullspace!

LEFT NULL SPACES

▶ See also: The Dunning-Kruger effect. C

Episode 1/24: Introduction

Exciting Admin Importance

USuges

Key problems

Three ways of looking...

Colbert on Equations

References

ク へ 35 of 45

Our friend $A\vec{x} = \vec{b}$

What does knowing \vec{x} give us?

If we can represent reality as a superposition (or combination or sum) of simple elements, we can do many things:

- Compress information
- See how we can alter information (filtering)
- Find a system's simplest representation
- Find a system's most important elements
- See how to adjust a system in a principled way

Episode 1/24: Introduction

Exciting Admin

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

2 a a 36 of 45

Way 1: The Row Picture
Way 2: The Column Picture
Way 3: The Matrix Picture

Example:

Call this a 2 by 2 system of equations.

2 equations with 2 unknowns.

Standard method of simultaneous equations: solve above by adding and subtracting multiples of equations to each other = Row Picture. Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

Row Picture—what we are doing:

- (a) Finding intersection of two lines
- (b) Finding the values of x₁ and x₂ for which both equations are satisfied (true/happy)
- A splendid and deep connection:
 (a) Geometry ⇒ (b) Algebra

Three possible kinds of solution:

- 1. Lines intersect at one point —One, unique solution
- 2. Lines are parallel and disjoint —No solutions
- 3. Lines are the same —Infinitely many solutions

Episode 1/24: Introduction

Exciting Admin

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

2 a a 38 of 45

The column picture:

See

as

$$x_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}.$$

General problem

$$x_1\vec{a}_1+x_2\vec{a}_2=\vec{b}$$

Column vectors are our 'building blocks'
 Key idea: try to 'reach' *b* by combining (summing) multiples of column vectors *a*₁ and *a*₂.

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

2 9 0 39 of 45

We love the column picture:

- Intuitive.
- Generalizes easily to many dimensions.

Three possible kinds of solution:

- 1. \vec{a}_1 not parallel \vec{a}_2 : 1 solution.
- 2. \vec{a}_1 parallel to \vec{a}_2 but not parallel to \vec{b} : No solutions.
- 3. \vec{a}_1 , \vec{a}_2 , and \vec{b} all parallel: infinitely many solutions.

(assuming neither \vec{a}_1 or \vec{a}_1 are $\vec{0}$)

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

29 C 40 of 45

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

Difficulties:

- Do we give up if $A\vec{x} = \vec{b}$ has no solution?
- No! We can still find the \vec{x} that gets us as close to \vec{b} as possible.
- Method of approximation—very important!
- We may not have the right building blocks but we can do our best.

The Matrix Picture:

Now see

$$x_{1} \begin{bmatrix} -1\\ 2 \end{bmatrix} + x_{2} \begin{bmatrix} 1\\ 1 \end{bmatrix} = \begin{bmatrix} 1\\ 4 \end{bmatrix}.$$
$$\vec{x}_{-} \vec{h}_{-} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \end{bmatrix} - \begin{bmatrix} 1 \end{bmatrix}$$

as

$$A\vec{x} = \vec{b} : \begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

A is now an operator:

- \blacktriangleright A transforms \vec{x} into \vec{b} .
- Roughly speaking, A does two things to \vec{x} :
 - 1. Rotation/Flipping
 - 2. Dilation (stretching/contraction)

Episode 1/24: Introduction

Exciting Admin

Key problems

Three ways of looking ...

Colbert on

References

The Matrix Picture

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

Key idea in linear algebra:

- Decomposition or factorization of matrices.
- Matrices can often be written as products or sums of simpler matrices

•
$$A = LU, A = QR, A = U\Sigma V^T, A = \sum_i \lambda_i \vec{v} \vec{v}^T, \dots$$

う へ へ 43 of 45

More Truth about Mathematics:

Episode 1/24: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

The Colbert Report on Math C (February 7, 2006)

200 44 of 45

References I

 P. S. Dodds, D. H. Rothman, and J. S. Weitz. Re-examination of the "3/4-law" of metabolism. Journal of Theoretical Biology, 209:9–27, 2001.
 pdf 2

[2] G. Strang. The fundamental theorem of linear algebra. The American Mathematical Monthly, 100(9):848–855, 1993. pdf

 [3] G. Strang. Too much calculus, 2002.
 SIAM Linear Algebra Activity Group Newsletter.
 pdf C Episode 1/24: Introduction

Exciting Admin

mportance

Jsages

Key problems

Three ways of looking...

Colbert on Equations

References

 $I \bigcirc$ $N(A^{T})$

20 A 45 of 45