
MATH 122: Matrixology (Linear Algebra)
Solutions to Level Tetris (1984) , 10 of 10

University of Vermont, Fall 2016

1. (Q 4, 6.5) Show that the function f(x1, x2) = x2
1 + 4x1x2 + 3x2

2 does not have a
minimum at (0, 0) even though it has positive coefficients.

Do this by rewriting f(x1, x2) as
[
x1 x2

]
A

[
x1

x2

]
and finding the pivots of A

and noting their signs (and explaining why the signs of the pivots matter).
Write f as a difference of squares and find a point (x1, x2) where f is negative.
Note of caution: All of this signs matching for pivots and eigenvalues falls apart if
we have to do row swaps in our reduction.
Solution:
First, we can rewrite our function as

[
x1 x2

]
f(x1, x2) =

[
x1 x2

]
A

[
x1

x2

]
=

[
1 2

2 3

] [
x1

x2

]
.

We need to do one step of row reduction to reveal the pivots:

A =

[
1 2

2 3

]
;

R2’= R2 -2 R1

[
1 2

0 −1

]
.

The pivots are 1 and -1 so we must have one positive and one negative eigenvalue:
f is therefore not positive definite.
Completing the square:

f(x1, x2) = x2
1+4x1x2+3x2

2 = (x1+2x2)
2−4x2

2+3x2
2 = 1 ·(x1+2x2)

2−1 ·(x2)
2.

Note the appearance of the pivots 1 and -1 in front of the squares. As we saw in
class, the LU factorization of symmetric matrices, A = LDLT, is behind all of
this.

□

2. (Q 9, 6.5) Find the 3 by 3 matrix A and its pivots, rank, eigenvalues, and
determinant:

[
x1 x2 x3

]  A

 x1

x2

x3

 = 4(x1 − x2 + 2x3)
2.
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Is this matrix positive definite, semi-positive definite, or neither?
Solution:
Expanding 4(x1 − x2 + 2x3)

2 we have

4x2
1 + 4x2

2 + 16x2
3 − 8x1x2 − 16x2x3 + 16x3x1

and this can be written as

[
x1 x2 x3

]  4 −4 8

−4 4 −8

8 −8 16

 x1

x2

x3

 .

We can now find the pivots of A (much easier than finding the eigenvalues): 4 −4 8

−4 4 −8

8 −8 16

 ;
R2’

= R2 -
-1 R1

 4 −4 8

0 0 0

8 −8 16

 ;
R3’

= R3 -
2 R1

 4 −4 8

0 0 0

0 0 0

 .

The pivots are 4, 0, 0 and our matrix is therefore semi-positive definite.
Some bonus sneaky grooviness: we can see straight away that A is a rank one
matrix:

A =

 2

−2

4

 [
2 − 2 4

]
= 24

 1/
√
6

−1/
√
6

2/
√
6

 [
1/
√
6 − 1/

√
6 2/

√
6
]
.

We now have A in its spectral decomposition form:

A =
n∑

i=1

λnv̂iv̂
T
i .

So the eigenvalues are 24, 0, and 0, which means that A is semi-positive definite.
Another way to see this: we know from the pivots that two of the eigenvalues are
0. Since the trace of A is the sum of the eigenvalues, we have that the trace of A
must be λ1 + 0 + 0 = λ1. Checking A, we have λ1 = 24.
The determinant of A is zilch since we have 0 eigenvalues.

□

3. (following set of questions based on Q 7, Section 6.7)
Singular Value Decomposition = Happiness.
Consider

A =

[
1 1 0

0 1 1

]
.
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(a) What are m, n, and r for this matrix?
(b) What are the dimensions of U, Σ, and V?
(c) Calculate ATA and AAT.

Solution:

(a) m = 2, n = 3, and r = 2.
(b) U is 2x2, Σ is 2x3, and V is 3x3.
(c)

ATA =

 1 0

1 1

0 1

[
1 1 0

0 1 1

]
=

 1 1 0

1 2 1

0 1 1


and

AAT =

[
1 1 0

0 1 1

] 1 0

1 1

0 1

 =

[
2 1

1 2

]
.

□

4. For the matrix A given above, find the eigenvalues and eigenvectors of ATA, and
thereby construct V and Σ.
See this tweet for some post-it based help:
https://twitter.com/matrixologyvox/status/593540446845947904
Solution:
Okay, we have to solve |A − λI| = 0. Using the ‘big formula’ and going across
the top row (to take advantage of the 0 in the (1,3) entry), we have:

0 =

∣∣∣∣∣∣
1− λ 1 0

1 2− λ 1

0 1 1− λ

∣∣∣∣∣∣ = (1− λ)

∣∣∣∣ 2− λ 1

1 1− λ

∣∣∣∣− 1

∣∣∣∣ 1 1

0 1− λ

∣∣∣∣
= (1− λ)[(2− λ)(1− λ)− (1)(1)]− (1)(1− λ)− (0)(1)

= −λ34λ2 − 3λ

= −λ(λ− 3)(λ− 1).

Our eigenvalues are λ1 = 3, λ2 = 1, and λ1 = 0. Ordering for largest to smallest
is important here.
We notice a couple of things: (1) The eigenvalues are all ≥ 0. This is good as
these are the squares of our singular values, the σi. (2) One eigenvalue is 0. This
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makes sense as the rank r = 2 which means that we have two non-zero singular
values.
Our singular values are the square roots of the eigenvalues:

σ1 =
√
3 and σ2 = 1.

Note that there are only two singular values as A is 2x3.
Next task: find the eigenvectors.

(a) For λ1 = 3, we solve (ATA − 3I)v⃗1 = 0⃗. −2 1 0

1 −1 1

0 1 −2

 v⃗1 = 0⃗.

You can do this be inspection, or by systematically finding the nullspace

vector, or however you please. By inspection: v⃗1 =

 1

2

1

. Normalizing, we

have v̂1 =
1√
6

 1

2

1

.

(b) For λ2 = 1, we solve (ATA − I)v⃗2 = 0⃗: 0 1 0

1 1 1

0 1 0

 v⃗2 = 0⃗.

By inspection: v⃗2 =

 1

0

−1

 and the normalized eigenvector is

v̂2 =
1√
2

 1

0

−1

.

(c) For λ3 = 0, solve (ATA − 0I)v⃗3 = 0⃗: 1 1 0

1 2 1

0 1 1

 v⃗3 = 0⃗.
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By inspection: v⃗3 =

 1

−1

1

 and the normalized eigenvector is

v̂3 =
1√
3

 1

−1

1

.

We can now write down V = [v̂1|v̂2|v̂3]:

V =


1√
6

1√
2

1√
3

2√
6

0 −1√
3

1√
6

−1√
2

1√
3

 .

And the Σ matrix is [ √
3 0 0

0 1 0

]
.

□

5. For the same A, now find the basis {ûi} using the essential connection
Av̂i = σiûi.
Construct U from the basis you find.
Again see this tweet for some post-it based help:
https://twitter.com/matrixologyvox/status/593540446845947904
Solution:
We multiply the v̂i for which σi > 0 by A to find the ûi. We’ll need to pull the σi

out to find the ûi. Recall that σ1 =
√
3 and σ2 = 1. First off:

Av̂1 =

[
1 1 0

0 1 1

]
1√
6

 1

2

1


=

1√
6

[
3

3

]
=

√
3

1√
3

1√
6

[
3

3

]
=

√
3

1

3
√
2

[
3

3

]
=

√
3

1√
2

[
1

1

]
= σ1û1.
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Notice how when we pull out σ1, we (almost magically) end up with a happy little
unit vector.
Second vector:

Av̂2 =

[
1 1 0

0 1 1

]
1√
2

 1

0

−1


=

1√
2

[
1

−1

]
= 1 · 1√

2

[
1

−1

]
= σ2û2.

Smashing. Note that ûT
1 û2 = 0 and we have an orthonormal basis for R2.

Finally,

U =

[
1√
2

1√
2

1√
2

−1√
2

]
.

□

6. Next find the {ûi} in a different way by finding the eigenvalues and eigenvectors of
AAT.
Solution:
Eigenvalues:

0 = |AAT − λI| =
[
2− λ 1

1 2− λ

]
= (2− λ)2 − 1

= (2− λ− 1)(2− λ+ 1)

= (1− λ)(3− λ),

where we have used the difference of perfect squares.
So λ1 = 3 and λ2 = 1 which again gives σ1 =

√
3 and σ2 = 1.

Eigenvector time (la-la-la-la) for λ1 = 3:

0⃗ = (AAT − λ1I)u⃗1

=

[
2 1

1 2

]
− 3I

=

[
−1 1

1 −1

]
.
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By inspection, we have û1 =
1√
2

[
1

1

]
.

Next,
0⃗ = (AAT − λ2I)u⃗2

=

[
2 1

1 2

]
− 1I

=

[
1 1

1 1

]
.

This gives û2 =
1√
2

[
1

−1

]
. Note that we could have chosen û2 =

1√
2

[
−1

1

]
,

the negative of the one we have above.
In fact, we always need to compute Av̂i to find out which direction ûi should take.
Beyond this, we don’t need to compute the ûi directly ever as once we have v⃗i we
need only multiply by A (as per the previous question). We found the u’s directly
here to (1) see that both ways give the same thing and (2) punish ourselves just a
little more.

□

7. (a) Put everything together and show that A = UΣVT.
(b) Draw the ‘big picture’ for this A showing which v̂i’s are mapped to which

ûi’s.
(c) Which basis vectors, if any, belong to the two nullspaces?

Solution:

(a)

UΣVT =

[
1√
2

1√
2

1√
2

−1√
2

] [ √
3 0 0

0 1 0

]
1√
6

2√
6

1√
6

1√
2

0 −1√
2

1√
3

−1√
3

1√
3



=

[ √
3√
2

1√
2

0
√
3√
2

−1√
2

0

]
1√
6

2√
6

1√
6

1√
2

0 −1√
2

1√
3

−1√
3

1√
3


=

[
1/2 + 1/2 1 + 0 1/2− 1/2

1/2− 1/2 1 + 0 1/2 + 1/2

]

=

[
1 1 0

0 1 1

]
.
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(b)

(c) Left nullspace is just {⃗0}.

A’s nullspace has dimension 1 and has the basis vector v̂3 = 1√
3

 1

−1

1

 .

□

8. Finally, for this same A, perform the following calculation:

σ1û1v̂
T
1 + σ2û2v̂

T
2 + . . .+ σrûrv̂

T
r

where r is the rank of A.
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You should obtain A...
Solution:

σ1û1v̂
T
1 +σ2û2v̂

T
2 =

√
3

1√
2

[
1

1

]
1√
6

[
1 2 1

]
+1

1√
2

[
1

−1

]
1√
2

[
1 0 − 1

]
=

1

2

[
1 2 1

1 2 1

]
+

1

2

[
1 0 −1

−1 0 1

]
=

1

2

[
2 2 0

0 2 2

]
=

[
1 1 0

0 1 1

]
= A.

□

9. Matlab question.
Verify the signs you found for the pivots of A in question 1 by using Matlab to
find A’s eigenvalues.
Solution:
Using Matlab, we find λ1 = −0.2361 and λ1 = 4.2361:

>> eig([ 1 2; 2 3])
ans =

-0.2361
4.2361

One positive and one negative, matching the signs of the pivots.
□

10. Matlab question.
Use Matlab to compute the SVD for the matrix A you explored in questions 3–8.
Solution:

>> [U,Sigma,V] = svd([ 1 1 0 ; 0 1 1])
U =
-0.7071 -0.7071
-0.7071 0.7071
Sigma =
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1.7321 0 0
0 1.0000 0
V =
-0.4082 -0.7071 0.5774
-0.8165 0.0000 -0.5774
-0.4082 0.7071 0.5774

□

11. (The bonus one pointer)
Where does the fearsome kiwi rank among among rattites and what’s unusual
about the kiwi egg?
Solution:
The kiwi is the smallest of all struthious birds.
A kiwi egg can weight up to 1/4 of the mother’s own weight, which is believed to
be the highest ratio of all birds.

□
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