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Wearable devices are rapidly improving our ability to observe health-related processes for extended
durations in an unintrusive manner. As part of the Lived Experiences Measured Using Rings Study
(LEMURS), we collected heart rate measurements using the Oura ring (Gen3) for over 25,000 sleep
periods and self-reported mental health indicators from roughly 600 first-year university students
in the United States during the fall semester of 2022. Using clustering techniques, we find that the
sleeping heart rate curves can be broadly separated into two categories that are mainly differentiated
by how far along the sleep period the lowest heart rate is reached. Sleep periods characterized by
a longer time to reach the lowest heart rate are also associated with shorter deep and REM sleep
and longer light sleep, but not a difference in total sleep duration. Aggregating sleep periods at
the individual level, we find that consistently reaching the lowest heart rate later during sleep is
a significant predictor of (1) self-reported impairment due to anxiety or depression, (2) a prior
mental health diagnosis, and (3) firsthand experience in traumatic events. This association is more
pronounced among females. Our results show that the shape of the sleeping heart rate curve, which
is only weakly correlated with descriptive statistics such as the average or the minimum heart rate,
is a viable but mostly overlooked metric that can help quantify the relationship between sleep and
mental health.

I. INTRODUCTION

Sleep is an important component of well-being, with
poor sleep leading to impaired function at the individual
and societal [1–5] levels. While some aspects of sleep can
be easily monitored, such as the time when an individual
goes to bed or wakes up, the unconscious nature of sleep
requires external monitoring for proper assessment [6].
Polysomnography has been the gold standard for sleep
monitoring, but it requires measurements to be made in
controlled conditions in a clinical setting, making it cost-
ly and inconvenient [7, 8]. In comparison, the growing
availability of consumer-grade wearable devices allows
individuals to monitor their sleep for extended periods
of time in a non-disruptive and more affordable manner
without the recall bias characteristic of self-reports [9].
Feedback from wearable devices is also available soon
after data collection, which aids in delivering and assess-
ing the effects of behavioral changes such as interven-

∗ mikaela.fudolig@uvm.edu

tions.

Sleep has mostly been assessed in terms of sleep dura-
tion, sleep efficiency, and the time spent in different sleep
stages [10, 11]. Heart rate variability (HRV) is also
of interest, particularly in studies on sleep apnea [12–
14], and time- and frequency-domain analysis techniques
are commonly used [15, 16]. Clustering techniques have
been applied on these metrics to find sleep phenotypes,
which are sleep patterns shared by a group of individ-
uals that may also share similar characteristics [17–20].
While most use descriptive statistics of these metrics in
the clustering algorithm, more recent work used features
extracted from the raw sleep-wake time series from more
than 100,000 individuals to infer sleep phenotypes related
to insomnia [21].

While it has long been known that heart rate gener-
ally decreases during sleep [22], the patterns of change
in the sleeping heart rate are not well-studied. Unlike
other sleep metrics such as sleep stages or heart rate
variability, heart rate is more reliably measured by con-
sumer wearable devices [23–27] using photoplethysmog-
raphy [28], especially when the participant is at rest [29].
A study on heart rate patterns during sleep may give us
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valuable insights and these findings may be more consis-
tent across different brands of wearable devices compared
to those obtained using other sleep metrics. Specifically,
we are interested in extracting sleep phenotypes based on
the raw heart rate time series, which gives more informa-
tion than just the mean or the minimum heart rate.

We would also like to see how these sleeping heart rate
patterns relate to mental health, another important com-
ponent of well-being. Mental health has been shown to
have a bidirectional relationship with sleep [5, 30, 31],
indicating that treating sleep disorders may also improve
mental health [32]. Most studies on mental health and
sleep focus on perceived sleep quality [33] and the com-
mon sleep metrics described above, such as sleep dura-
tion [34–37], heart rate variability [16, 38], or descrip-
tive statistics (mean or minimum) of the heart rate [39–
42]. Published studies on the relationship between the
shape of the heart rate curve and mental health have
focused on its periodicity in the context of daily circadi-
an rhythms [43–46] but not on how heart rate changes
during the sleep period itself.

The peak ages for the onset of several mental health
conditions, including disorders such as anxiety, depres-
sion, and trauma-related conditions, occur before age
25 [47], with around half of the cases manifesting by age
14 [48]. Young adulthood is a critical life stage in detect-
ing and treating mental health conditions and has been
the subject of several studies involving mental health [49–
52]. An ongoing study at a university in the northeast
United States (the Lived Experiences Measured Using
Rings Study, or LEMURS) [53–55] monitors the men-
tal and physical well-being of a cohort of college stu-
dents using surveys and the Oura ring (Gen3), a wear-
able sleep and activity tracker [23, 24]. The Oura ring
provides continuously monitored biometric data, includ-
ing heart rate, while the surveys regularly collect infor-
mation about participants’ mental health. These self-
reported mental health indicators include prior mental
health diagnoses, perceived impairment due to anxiety
and depression, traumatic events experienced, and stress
and anxiety levels. With around half of the study partic-
ipants having been diagnosed with a mental health con-
dition or having had firsthand experience in two or more
types of traumatic events [56], this dataset provides a
unique perspective on the relationship between mental
health and sleep for a population at risk.

Using data from the LEMURS study, we look at differ-
ent patterns of change in the heart rate over a sleep peri-
od and relate these to the reported mental health indica-
tors of the participants. As we are interested in how heart
rate changes across a sleep period, we look at a sleep peri-
od not in absolute time (i.e., hours of sleep) but as pro-
gressing from the beginning (0% of sleep completed) to
the end (100% of sleep completed). Similar to the system-
atic characterization of sleep phenotypes from sleep-wake
measurements using wearable devices [21], we perform
clustering algorithms on the heart rate time series to see if
these heart rate patterns can be grouped into categories.

Associations between these categories and clinically rel-
evant information, such as mental health outcomes were
then examined.

II. RESULTS

We processed heart rate (HR) measurements from
m = 20, 167 sleep periods of N = 599 participants using
piecewise aggregate approximation (PAA) [57–59], which
converts the time series from the different sleep periods
into equal lengths. After standardizing each time series,
we performed k-means clustering, which yields groups of
time series with similar shapes. Highly consistent cluster
labels were obtained across different centroid initializa-
tions or training subsets (each with a size of 10% of the
total number of sleep periods) for k = 2 clusters but
not for higher values of k (Figure 1). When using the
full dataset to train the clustering model, 99.96% of the
sleep periods had identical cluster assignments after per-
forming k-means 30 times, each with different centroid
initializations. Much lower values are obtained for high-
er values of k (Figures S2 and S3). This separation
into two groups was also evident from pairwise corre-
lation maps (Figure S4). We got similar results using
constrained dynamic time warping (cDTW) as the mea-
sure for k-means, indicating that allowing for slight scal-
ing and translation does not alter our conclusions (Fig-
ure S5).
Each cluster was then characterized by the properties

of the sleep period and the individual. We compared
the clusters using the other sleep period measurements
taken by the Oura ring that are not derived from the
PAA-processed heart rate time series. We then looked at
how the clusters relate to the participant’s demographic
information, weekly scores in the Perceived Stress Scale
(PSS) [60] and the 7-item Generalized Anxiety Disorder
Scale (GAD-7) [61], prior mental health diagnoses, pri-
or traumatic events experienced [56], and self-reported
effects of anxiety or depression on social or work life.
Further, we examined whether the cluster membership
of an individual’s sleep periods is a significant predictor
of an individual’s mental health indicators.

A. Cluster characteristics

To understand which aspects of sleep characterize
these two clusters, we used a logistic regression mod-
el with the cluster label as the response and the sleep
period measures recorded by the Oura ring as the pre-
dictors. We also compare the distributions of the sleep
period measures across the two clusters to examine prac-
tical significance.
The two clusters are most differentiated by how far

along the sleep period the lowest HR is measured. It
is the most relevant predictor in the regression model,
resulting in the lowest AIC and residual deviance when
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FIG. 1. Cluster consistency across different training
subsets and initializations. Each curve shows a cluster
centroid found for a given number of clusters k using a ran-
domized 10% subset of the data and a randomized centroid
initialization to run k-means. Highly consistent cluster cen-
troids are found for k = 2, but are not found for k = 3 and
higher (see Figure S1 for k > 3).

used as a lone predictor, and is the most highly correlated
with the cluster label. We can see this clearly in the dis-
tributions of this variable for the two clusters, as well as
from the shape of the cluster centroids (Figure 2a). The
time required to reach the lowest heart rate is only weak-
ly correlated with the average heart rate (Spearman’s
ρ = 0.1 for both the absolute time and the fraction of
the sleep period) and the lowest heart rate (Spearman’s
ρ = 0.03 for the absolute time and ρ = 0.05 for the frac-
tion of the sleep period). We denote the cluster with the
longer median time to reach the lowest heart rate as clus-
ter 1, and the other cluster as cluster 2, corresponding to
64% and 36% of the sleep periods examined, respectively.

The two clusters also differ in terms of sleep stage com-
position. Cluster 1 is associated with shorter durations
of deep (median percentage of the sleep period, 30% vs.
34%) and REM (20% vs. 22%) sleep and longer dura-
tions of light sleep (49% vs. 44%). There is no obvi-
ous difference in the distributions of the total sleep dura-
tion between the two clusters, which is confirmed by the
Mann-Whitney U test (p = 0.18, Figure 2e). Sleep peri-
ods in cluster 1 are also characterized by slightly longer
sleep latency, earlier bedtime start and earlier bedtime
end, higher average heart rate and lower average HRV.
As the average HRV is highly negatively correlated with
the average heart rate (Table S3), we do not include it in
the regression model. While the average respiratory rate
variability was statistically significant in the regression
model, we did not find this difference between the two
clusters to be practically significant. Differences in the
means and medians of the sleep metrics between the two
clusters are summarized in Table I.
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FIG. 2. Characterizing clusters of sleeping heart rate
curves. The two clusters found are most clearly differentiat-
ed by the time it takes to reach the lowest heart rate during
the sleep period (A) as compared to other sleep measures tak-
en by the Oura ring. This is consistent with the centroids of
the time series in each cluster (inset). The clusters also differ
in their sleep stage compositions (B–D) but not in the total
sleep duration (E). Smaller but statistically significant differ-
ences are also observed for the average heart rate and the
average HRV (F–G). Vertical lines indicate the medians for
each distribution.

B. Mental health and sleeping heart rate curves

Now that we have seen which aspects of sleep charac-
terize a cluster, we look at whether the cluster of a given
sleep period is related to the individual’s demographic
information and mental health indicators. As the stress
and anxiety scores were collected weekly while the Oura
sleep measures was collected nightly, we restrict our data
to individuals with at least 3 recorded sleep periods for
each week with a survey response. Further, we require
at least 10 recorded sleep periods for the duration of
the study. This yields m = 15, 073 sleep periods from
N = 505 participants.

We use a mixed-effects logistic regression model with
the cluster label of a sleep period as the response and
the participant ID as a random effect. Adding the week
number as either a random or a fixed effect, or excluding
it entirely, resulted in similar coefficients and p-values for
the other predictors. For this reason, we omit the week
number in our final models.

The following predictors were considered for the fixed
effects, with the composition among the participants giv-
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TABLE I. Mean and median sleep measures for each cluster

mean median
sleep measure / cluster 1 2 1 2

lowest HR time offset (% of sleep period) 65 35 66 34

% of sleep period in deep sleep 31 34 30 34

% of sleep period in REM sleep 20 22 20 22

% of sleep period in light sleep 49 45 49 44

total sleep duration (hrs) 7.49 7.46 7.48 7.43

sleep efficiency (%) 87.81 88.54 89 89

sleep latency (mins) 12.91 8.97 9 7

bedtime start (hrs from 12mn) 0.46 0.63 0.38 0.54

bedtime end (hrs from 12mn) 9.01 9.06 8.92 8.98

bedtime duration 8.54 8.44 8.52 8.43

average respiratory rate 15.64 15.5 15.5 15.38

average respiratory rate variation 3.35 3.36 3.25 3.25

average heart rate 63.94 62.22 63.59 61.8

average HRV 63.32 67.18 58 62

en in parentheses (Table S1): gender (68% female, 26%
male, 6% other genders), race (88% white, 12% non-
white), PSS scores, GAD-7 scores, existence of a prior
mental health diagnosis (45% with, 55% without), the
number of traumatic event categories experienced first-
hand [56] (28% with 0, 32% with 1, 40% with ≥ 2),
and the existence of perceived effects of diagnosed anxi-
ety or depression on social or work activities (35% with,
65% without). We can interpret the latter as perceived
impairment due to anxiety or depression. With 96% of
those who reported a prior diagnosis reporting an anxiety
or depression diagnosis, the absence of perceived impair-
ment due to anxiety and depression is a good indicator
for the vast majority of participants that the diagnosed
condition has been controlled.

While the existence of a prior mental health diagno-
sis and perceived impairment due to anxiety or depres-
sion are very highly correlated (Spearman’s ρ=0.8) and
should not be used in the same model, we can test which
of these two predictors produces a better fit. PSS scores
and GAD-7 scores are also highly correlated (Spearman’s
ρ=0.7) so we only use one in any given model to deter-
mine the effect of stress or anxiety levels.

PSS scores, GAD-7 scores, and race are not statistical-
ly significant at α = 0.05, regardless of whether they are
used as lone predictors or used in conjunction with oth-
ers. Having a prior mental health diagnosis, perceived
impairment due to anxiety or depression, or firsthand
experience in 2 or more types of traumatic events are
highly significant (p ≤ 0.001) as lone predictors of the
sleep period cluster. Gender is not statistically signifi-
cant at α = 0.05 when used as a lone predictor or used
together with traumatic events experienced, but is sta-
tistically significant when used together with perceived
impairment or prior mental health diagnoses. Interac-
tion effects between gender and perceived impairment,
as well as gender and traumatic events experienced, were

not statistically significant when the main effects are also
included.

For the final model, we use perceived impairment, first-
hand experience in 2 or more types of traumatic events,
and gender as the fixed effects. Having a perceived
impairment was highly associated (p = 0.001) with being
in cluster 1, which is characterized by a longer time to
reach the lowest HR, as is having firsthand experience in
2 or more types of traumatic events (p = 0.013). Being
male is also associated with higher odds of being in clus-
ter 1 (p = 0.028).

As a post-hoc analysis, we also ran the regression mod-
els separately for males, females, and those who do not
identify as either gender. While “non-binary” is only one
of the gender categories presented in the survey outside
of “male” and “female”, for brevity, we will refer to all
these other categories as “non-binary”. Perceived impair-
ment is associated with increased odds of being in cluster
1 in sleep periods among females (p < 0.001), while the
number of types of traumatic events experienced first-
hand (whether < 2 or ≥ 2) is associated with increased
odds of being in cluster 1 in sleep periods among females
(p = 0.008) and non-binary individuals (p = 0.013).
Both variables are not statistically significant for males
(p = 0.622 and p = 0.309 for perceived impairment and
existence of traumatic events, respectively).

In addition, if we restrict the data to sleep periods
of those with or without perceived impairment, we find
that the odds of being in cluster 1 among those without
impairment are higher for males than for females. No
gender effect is seen among those with perceived impair-
ment. On the other hand, gender is only a significant
predictor for those with two or more types of traumatic
events, with non-binary individuals having sleep periods
of higher odds of being in cluster 1, but not for those who
experienced fewer than two. Detailed regression results
are given in Tables S5–S7.
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TABLE II. Impairment, trauma, and cluster consistency by gender. frac 1 is the fraction of sleep periods in cluster 1.

Imp indiv nights frac 1 Trau indiv nights frac 1

gender size pct size pct mean median size pct size pct mean median

f (68%) 0 212 61.6% 6584 62.9% 0.59 0.62 < 2 204 59.3% 6443 61.5% 0.60 0.62

1 132 38.4% 3885 37.1% 0.68 0.72 ≥ 2 140 40.7% 4026 38.5% 0.66 0.69

m (26%) 0 106 82.2% 3027 84.1% 0.66 0.68 < 2 83 64.3% 2359 65.5% 0.65 0.67

1 23 17.8% 574 16.0% 0.69 0.72 ≥ 2 46 35.7% 1242 34.5% 0.70 0.71

nb (6%) 0 11 34.4% 388 38.7% 0.57 0.66 < 2 18 56.3% 584 58.2% 0.60 0.65

1 21 65.6% 615 61.3% 0.74 0.76 ≥ 2 14 43.8% 419 41.8% 0.79 0.88

C. Predicting an individual’s mental health
indicator from sleep period cluster data

With the main predictors not related to any of the
weekly measures, we can aggregate our data at the indi-
vidual level and predict mental health indicators from
how often their sleep periods belong in a given cluster.
Using logistic regression, we find that having a higher
fraction of sleep periods in cluster 1 is associated with
higher odds of having perceived impairment due to anx-
iety or depression (p < 0.001), a prior mental health
diagnosis (p = 0.003), or firsthand experience in 2 or
more traumatic event categories (p = 0.001). It is a sta-
tistically significant predictor of being female (vs. non-
female, p = 0.045). Still, this fraction is not significant
in differentiating males and non-males (p = 0.115) or
non-binary individuals and those who are either male or
female (p = 0.31).

As gender is common demographic information to ask
in health-related apps, we check whether this aids in
predicting mental health indicators when used together
with the fraction of sleep periods in cluster 1. This frac-
tion and gender are statistically significant in predicting
perceived impairment and prior mental health diagnoses
(p < 0.01). However, in predicting firsthand experience
in 2 or more traumatic events, gender is not statistically
significant.

We also perform a post-hoc analysis to dig deeper into
the effect of gender. The fraction of sleep periods belong-
ing to cluster 1 is a statistically significant predictor for
perceived impairment due to anxiety or depression only
for females; for traumatic events, it is statistically signif-
icant only for females and non-binary individuals. In
these cases, more sleep periods in cluster 1 results in
higher odds of having an impairment or firsthand expe-
rience in two or more types of traumatic events. This
mirrors our earlier post-hoc analysis in predicting the
sleep period cluster based on the individual’s character-
istics. One can get an intuition of the regression results
from the composition of our data as given in Table II
and Figure S7. Detailed regression results are given in
Tables S8–S9.

III. DISCUSSION

Using measurements taken from first-year university
students using the Oura sleep tracker, we study patterns
in how the heart rate changes over a sleep period and how
this relates to the individual’s mental health indicators.
We find two broad categories of sleeping heart rate curves
mainly differentiated by when the lowest heart rate is
attained. Sleep periods where the lowest heart rate is
reached later are also characterized by shorter deep and
REM sleep and longer light sleep; no significant differ-
ence between the two categories was found in total sleep
duration. Sleep periods belonging to individuals who self-
report impairment due to anxiety or depression, or those
who have experienced firsthand two or more named cat-
egories of traumatic events [56], are more likely to attain
the lowest heart rate later in sleep. In contrast, weekly
stress and anxiety levels, as measured through the PSS
or GAD-7 scores, are not associated with sleeping heart
rate changes. [54].

We find differences across genders in how perceived
impairment and traumatic events are associated with the
sleep period cluster. Specifically, while the sleep periods
of females differ between those with perceived impair-
ment or firsthand experience in two or more types of
traumatic events and those without, this does not apply
to the sleep periods of males. Sleep periods of non-binary
individuals differ between those with firsthand experience
of two or more traumatic events and those with fewer.
Still, there is no significant difference between those with
perceived impairment and those without.

As the sleeping heart rate curve pattern only depends
on the properties of the individual in our data, we also
look at reversing the prediction task, i.e., whether the
sleeping heart rate curve can be used to predict the men-
tal health state of the participant. The fraction of sleep
periods of a participant in a given pattern is a signifi-
cant predictor for the existence of perceived impairment
due to anxiety or depression or a prior mental health
diagnosis, as well as the number of traumatic event cat-
egories experienced firsthand. These further support the
relationship we found earlier between sleeping heart rate
patterns and mental health.

We also observe a gender effect consistent with what
we found in the models predicting sleep period clusters.
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The fraction of sleep periods in a given pattern is signif-
icant in predicting perceived impairment due to anxiety
or depression only for females. It is also significant only
among females and non-binary individuals for predicting
whether the number of types of traumatic events experi-
enced firsthand is two or higher.

While studies tend to aggregate heart measurements
into a single statistic, in particular the average and the
minimum, these are only weakly correlated with the pat-
tern of change in the sleeping heart rate. Our results
show that not only do we find different patterns in how
the heart rate changes during sleep, but also that these
patterns are related to mental health, indicating that the
shape of the heart rate curve is a viable but underex-
plored sleep metric.

To our knowledge, the only other study on the shapes
of sleeping heart rate curves was performed by Oura [62].
They found four shapes, contrasting with the two broad
categories for which we found strong support. While the
methodology and analysis in this study were not released,
we were able to reproduce these four shapes by setting
k = 4 in the k-means algorithm and taking the cluster
centroids (Figure S3). However, for our dataset, setting
k = 4 results in less consistent cluster labels with dif-
ferent training subsets or initializations, unlike the case
of k = 2. Our analysis points to a spectrum of shapes,
including the four shapes that Oura found, that can be
broadly categorized into two groups. It is worth noting
that Oura’s analysis reflects several orders of magnitude
more individuals, with far broader demographic varia-
tion.

The existence of two robust clusters suggests that
there may be sleep phenotypes in relation to the sleeping
heart rate. Sleep phenotypes have recently been inferred
using clustering techniques on large-scale accelerometer
sleep/wake time series data [21], particularly focusing on
insomnia. Sleep patterns have also been identified for
other mental health diagnoses [63–65]. With the major-
ity of the mental health diagnoses in our sample being
anxiety or depression, our findings also point to links
between these disorders and how heart rate changes dur-
ing sleep.

The relationship between mental health, particularly
anxiety, depression, and trauma, and the consistency in
sleeping heart rate curve patterns is of interest, particu-
larly since the heart rate curves are most correlated to the
time to reach the lowest heart rate in sleep, a sleep mea-
sure that is not commonly used. One possible mechanism
could be by directly affecting the nervous system. For
example, some mental health disorders, such as anxiety,
have been known to affect neurotransmitters [66, 67] and
brain regions [68] that regulate sleep. Anxiety disorders
are also associated with amygdala hyperactivity [69, 70],
which in turn is linked to heart rate variability [71]. How-
ever, mental health disorders are also associated with
habits that affect sleep, such as food intake [72, 73].
Adding other wearable devices, such as glucose monitors
for monitoring food intake, to sleep studies [74, 75] is a

promising direction to test these hypotheses.

We also observe interesting gender differences in how
the sleeping heart rate curve relates to mental health.
While females have different sleeping heart rate curve
shapes depending on whether they have anxiety, depres-
sion, or past trauma, this is not observed among males.
Previous studies [76] have mainly shown that females
sleep for longer and have longer deep sleep but also
report poorer sleep quality [77–79]. Regardless, there are
conflicting results [80], possibly due to different study
designs. With regard to the sleeping heart rate curve, we
find that males, whether or not they had mental health
disorders or trauma, have higher odds of having sleep-
ing heart rate curves that correspond to a longer time to
reach the lowest heart rate. On the other hand, females
who do not have mental health diagnoses or firsthand
experience in 2 or more types of traumatic events are
associated with sleep periods where the lowest heart rate
is attained earlier at night. Given that in this same
dataset, females have longer sleep duration, albeit simi-
lar deep sleep, than males (Table S10), the sleeping heart
rate curve provides different information from just the
total sleep duration or deep sleep alone. We also note
that our sample is highly homogeneous in age, which is
not the case in most research on gender differences in
sleep.

While several studies show that stress and anxiety lev-
els affect sleep [40, 81–83], our data shows that weekly
PSS and GAD-7 scores are not statistically significant in
predicting the sleeping heart rate curve pattern. This
may be due to a difference in temporal resolution: sleep
periods are monitored nightly, while the stress and anxi-
ety levels are only obtained from a weekly self-report [54].
We are implementing more frequent surveys in future
studies to ascertain whether daily fluctuations in stress
or anxiety relate to sleeping heart rate patterns.

We are interested in studying university students as
they are a population at risk for which mental health
interventions are highly relevant and more easily imple-
mentable [53–55]. Our sample has a high proportion
(45%) of students with a prior mental health diagnosis,
96% of whom reporting an anxiety or depression diagno-
sis. This is in agreement with the estimated prevalence
of anxiety among university students [84].

The selection of this narrow demographic is advanta-
geous in several ways, particularly in preventing study
dropouts and administering interventions. However, this
also limits the generalizability of our results to other age
groups. Our sample was also relatively racially homo-
geneous, which may explain the insignificance of race in
our results. While sleep disorders are not uncommon
among university students [85, 86], certain sleep orders,
such as sleep apnea, are more common in older popula-
tions [87]. Further, stressors also change over different life
stages [88]. Thus, we expect that certain sleep patterns
do not manifest in the age group studied. We hope to
address these limitations by expanding our recruitment
to include a more diverse set of individuals in future work.
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IV. METHODS

A. Data

Sleep data was obtained from 603 participants in
Project LEMURS, who, at the time of the study,
were first-year students in a university in the United
States [53–55]. These participants were asked to wear
the Oura ring (Gen3) during sleep for a period of 8
weeks (Oct–Dec 2022). We look at the heart rate time
series measured by the ring at 5-minute intervals from the
start of the detected sleep period. Naps are excluded by
considering only sleep periods marked by Oura as “long
sleep.” While there is mostly only one such sleep period
per participant per night, we exclude 368 sleep periods
considered as “long sleep” for the same participant and
for the same night. This brings the number of time series
to 25,800.

To make the heart rate time series comparable for sleep
periods of different durations, we use piecewise aggregate
approximation (PAA) [58, 59] and divide a time series
into n = 30 equally-sized segments. For each segment,
we take the mean of the heart rate measurements in that
segment as its representative value. This yields a PAA-
processed time series of length n = 30 regardless of the
length of the raw time series. The number of segments
was based heuristically on the distribution of the length
of the raw heart rate time series across all sleep periods
(Figure S6): with a median of 102 data points per sleep
period, n = 30 roughly corresponds to 15 minutes of sleep
per segment. Using n = 30 also allows us to include even
the shortest sleep period (39 data points, or roughly 3.25
hours of sleep).

As movement during sleep results in poorer heart rate
estimates [29], the Oura ring does not provide HR mea-
surements when there is significant movement. This cre-
ates missing values in the raw time series. When using
PAA, we take the means for each segment, disregarding
any missing values in that segment. If all the entries in a
given segment are missing, then the corresponding PAA
mean of that segment is also considered missing. PAA
computations were made with a modified version of the
Python package pyts [89] that disregards missing data
when computing the mean. Sleep periods where there
is at least one segment with a missing PAA value are
disregarded. This reduces the number of sleep periods
examined to m = 20, 167 belonging to N = 599 indi-
viduals. The 5,629 disregarded sleep periods, excluding
four sleep periods with no heart rate data, span a similar
range of sleep period lengths (Figure S6) and are from
587 individuals, indicating that disregarding time series
with missing PAA values does not sufficiently discrimi-
nate against a few users or sleep period durations.

Participants in the LEMURS study completed base-
line surveys at the start of the study (Table S1). The
survey asks whether the participant has had a prior diag-
nosis of the following common mental health conditions
as part of a standardized health screening questionnaire

for a range of physical and mental health conditions [90]:
anxiety, depression, attention-deficit/hyperactivity disor-
der (ADHD), alcoholism, psychosis, delusions, anorex-
ia or bulimia, post-traumatic stress disorder (PTSD),
obsessive-compulsive disorder (OCD), bipolar disorder
(BPD), panic attacks, and emotional disorder. If the par-
ticipant reports an anxiety or depression diagnosis, they
are asked whether their condition affects their social or
work activities in any way. It also asks participants to
report traumatic events experienced named in the Life
Events Checklist [56]. We specifically look at the num-
ber of categories of named traumatic events experienced
firsthand by the participant (0, 1, or ≥ 2).
In addition to these questions, the survey also asks for

the gender and race of the participant. The students
all entered the university in the same academic year and
were required to be within 18-24 years of age to be part
of the study. 96% of the students reported birth years
between 2002 and 2004. The participants answered the
PSS and GAD-7 questionnaires at the end of each week.

B. Clustering the time series

We perform k-means clustering [91] on the m = 20, 167
heart rate time series processed with PAA and then stan-
dardized, each of length n = 30. The k-means algorithm
is a popular method for time series clustering [92, 93]
due to its performance and simplicity. The Python pack-
age tslearn [94] was used for implementation. The
Euclidean distance is a good choice to measure distances,
as we are interested in the general shape of the heart rate
curve and when certain points, such as the lowest heart
rate, are achieved during the sleep period.
To determine the optimum number of clusters k, we use

consistency metrics. First, we use 30 randomly selected
subsets of the data (10% of the total size) to train the
model. For each training subset, we perform k-means
with 30 different centroid initializations and assign the
rest of the data points to a given cluster based on the
trained model. This results in 900 different k-means
runs for each value of k. If the clustering is robust,
the time series must be clustered similarly for different
runs, resulting in the convergence of the cluster centroids
across the different randomizations.

Because k-means assigns cluster labels arbitrarily, we
have to ensure that the same cluster labels refer to similar
cluster centroids for each run. Once we establish that the
cluster centroids are consistent across different random-
izations, we standardize the cluster centroids obtained
by training the k-means model on the entire dataset for
30 different initializations. We perform another round
of k-means on these centroids, resulting in what we call
“metaclusters.” The cluster centroids assigned to the
same metacluster will be assigned the same cluster label,
and this cluster label will be transmitted back to the raw
heart rate time series. Thus, each raw heart rate time
series will have 30 cluster labels, and the mode of these
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will be the final cluster label assignment for the time
series. We also record how often a time series is assigned
to the same cluster label.

We also used constrained dynamic time warping
(cDTW) using Sakoe-Chiba bands [95, 96] of widths
w = 3 and w = 6 (note that our time series is of length
n = 30) to explore the effects of slight scaling or trans-
lation. As the cluster centroids obtained are similar for
both cDTW and Euclidean distance (Figure S5), we focus
on the results obtained using the Euclidean distance.

C. Understanding the clusters

Aside from the heart rate time series, the Oura ring
also collects other sleep measures, including the sleep
period start and end times, the estimated durations of
each sleep stage (light, REM, and deep sleep) as well as
the time spent awake during the sleep period, the average
and lowest heart rates, the time when the lowest heart
rate is obtained, sleep latency, average respiratory rate,
average respiratory rate variation, and heart rate vari-
ability. We use generalized linear models to gain insight
into the sleep measures that differentiate the clusters.
Because the clusters were obtained solely from the shapes
of the heart rate curves, we do not add random effects.
Regression models were performed with pymer4 [97] and
confirmed using the glm model in R. After perform-
ing regression models using each measure separately, we
combine the sleep measures in a single model and use
stepAIC of the MASS library to perform stepwise regres-
sion. We then check for practical significance by exam-
ining the distributions and descriptive statistics of each
sleep measure for the clusters found.

D. Relating clusters to mental health

For each sleep period, we take the cluster label as the
outcome variable and the survey responses of the indi-
vidual as the predictors. Specifically, we look at the
individual’s baseline survey responses on prior mental
health diagnoses, traumatic events experienced, gender,

and race, as well as the individual’s weekly responses
resulting in their PSS and GAD-7 scores. For those who
reported anxiety and depression diagnoses, we also have
information on whether the participants think their con-
dition affects their social or work activities in any way.
This can be interpreted as perceived impairment due to
anxiety or depression.
As several periods correspond to the same individual

and the same week, we use a linear mixed-effects mod-
el to account for these groupings. Since the PSS and
GAD-7 scores are obtained weekly while the sleep data
is obtained nightly, we only include weeks where a given
participant answered the weekly survey and had at least
three (3) recorded sleep periods. We also require that
this restriction yields at least ten (10) sleep periods for
a given participant. These ensure that the weight of a
given sleep period to the weekly PSS score is not artifi-
cially high and that enough data points are available for
the fraction of sleep periods in a given cluster for each
individual to be a reasonable measure. This results in
a dataset with 15,073 sleep periods from N = 505 par-
ticipants. Linear mixed-effects models, with the partici-
pant ID and the week number treated as random effects,
were implemented using the Python package pymer4 [97],
which interfaces with the glmer [98] and lmerTest [99]
packages in R. We note that the participant IDs were
treated as categorical variables while the week numbers
were treated as integers ranging from 0 to 7.
As the last part of our analysis, we predict mental

health indicators at the individual level, in particular,
perceived impairment due to anxiety or depression, the
presence of a prior mental health diagnosis, and the num-
ber of traumatic event categories experienced firsthand
from the fraction of sleep periods in a given cluster.
We use logistic regression implemented using the Python
package pymer4.
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