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Sentiment-aware intelligent systems are essential to a wide array of applications including mar-
keting, political campaigns, recommender systems, behavioral economics, social psychology, and
national security. These sentiment-aware intelligent systems are driven by language models which
broadly fall into two paradigms: 1. Lexicon-based and 2. Contextual. Although recent contextual
models are increasingly dominant, we still see demand for lexicon-based models because of their
interpretability and ease of use. For example, lexicon-based models allow researchers to readily
determine which words and phrases contribute most to a change in measured sentiment. A chal-
lenge for any lexicon-based approach is that the lexicon needs to be routinely expanded with new
words and expressions. Crowdsourcing annotations for semantic dictionaries may be an expensive
and time-consuming task. Here, we propose two models for predicting sentiment scores to aug-
ment semantic lexicons at a relatively low cost using word embeddings and transfer learning. Our
first model establishes a baseline employing a simple and shallow neural network initialized with
pre-trained word embeddings using a non-contextual approach. Our second model improves upon
our baseline, featuring a deep Transformer-based network that brings to bear word definitions to
estimate their lexical polarity. Our evaluation shows that both models are able to score new words
with a similar accuracy to reviewers from Amazon Mechanical Turk, but at a fraction of the cost.
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I. INTRODUCTION

In computational linguistics and natural language pro-
cessing (NLP), sentiment analysis involves extracting
emotion and opinion from text data. There is an
increasing demand for sentiment-aware intelligent sys-
tems. Indeed, the growth of sentiment-aware frameworks
in online services can be seen across a vast, multidisci-
plinary set of applications [1–3].

With the modern volume of text data—which has
long rendered human annotation infeasible—automated
sentiment analysis is used, for example, by business-
es in evaluating customer feedback to make informed
decisions regarding product development and risk man-
agement [4, 5]. Combined with recommender systems,
sentiment analysis has also been used with the intent
to improve consumer experience through aggregated
and curated feedback from other consumers, particu-
larly in retail [6–8], e-commerce [9, 10], and entertain-
ment [11, 12].

Beyond applications in industry, sentiment analysis
has been widely applied in academic research, particular-
ly in the social and political sciences [13]. Public opin-
ion, e.g., support for or opposition to policies, can be
potentially gauged from online political discourse, giving
policymakers an important window into public aware-
ness and attitude [14, 15]. Sentiment analysis tools have
shown mixed results in forecasting elections [16] and
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monitoring inflammatory discourse on social media, with
vital relevance to national security [17]. Sentiment anal-
ysis has also been used in the public health domain [18–
20], with recent studies analyzing social media discourse
surrounding mental health [21, 22], disaster response and
emergency management [23].

The growing number of applications of sentiment-
aware systems has led the NLP community in the past
decade to develop end-to-end models to examine short-
and medium-length text documents [24, 25], particularly
for social media [26–28].

Some researchers have considered the many social and
political implications of using AI for sentiment detec-
tion across media [29, 30]. Recent studies highlight some
of the implicit hazards of crowdsourcing text data [31],
especially in light of the latest advances in NLP and
emerging ethical concerns [32, 33]. Identifying potential
racial and gender disparity in NLP models is essential to
develop better models [34].

Sentiment analysis tools can be classified into two
broad groups depending on their definition of sentiment
and their model for its estimation. The probability of
belonging to a discrete class (e.g., positive, negative) is
a common way of defining sentiment for a given piece
of text. When edge cases are frequent, adding a neu-
tral class has been reported to improve overall perfor-
mance [35]. However, sometimes a cardinal measure is
desired, requiring a spectrum of sentiment scores rather
than a sentiment class [36]. This more nuanced senti-
ment scoring paradigm has been widely adopted for e-
commerce, movies, and restaurant reviews [37].

Sentiment analysis models largely derive from two
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major paradigms: 1. Lexicon-based models and 2. Con-
textual models. Lexicon-based models compute senti-
ment scores based on sentiment dictionaries typically
constructed by human annotators [38–40]. Contextu-
al models, on the other hand, extrapolate semantics by
converting words to vectors in an embedding space, and
learning from large-scale annotated datasets to predict
sentiment based on co-occurrence relationships between
words [24–27, 41]. Contextual models have the advan-
tage in differentiating multiple meanings, as in the case
of “The dog is lying on the beach” vs. “I never said
that—you are lying”, while lexicon-based models usually
have a single score for each word, regardless of usage.
Despite the flexibility of contextual models, they suf-
fer from reduced interpretability, as the high-dimensional
latent space in which they are embedded renders expla-
nation difficult. The ease of use and transparent com-
prehension of lexicon-based models help explain their
continued popularity [17, 38, 39]. For example, while
the linguistic mechanisms leading to change in sentiment
may be hard to explain with word embeddings, one can
straightforwardly use lexicon scores to reveal the words
contributing to shifted sentiment [42–44].

A major challenge for the simpler and more inter-
pretable lexicon-based models is the time and financial
investment associated with maintaining them. Lexicon
dictionaries must be updated regularly to mitigate the
out-of-vocabulary (OOV) problem—words and phrases
that were either not considered or did not exist when
the dictionaries were originally constructed [45]. While
researchers show general sentiment trends are observable
unless the lexicon dictionary does not have enough words,
having a versatile dictionary with specialized and rarely
used words improves the signal [43, 46]. Notably, lan-
guage is an evolving sociotechnical phenomenon. New
words and phrases are created constantly, especially on
social media [47]. Words occasionally substitute others
or drift in meaning over time. For example, the word
‘covid’ grew to be the most narratively trending n-gram
in reference to the global Coronavirus outbreak during
Feburary and March 2020 [48].

In this work, we propose an automated framework
extending sentiment for semantic lexicons to OOV words,
reducing the need for crowdsourcing scores from human
annotators, a process that can be time-consuming and
expensive. Although our framework can be used in a
more general sense, we focus on predicting happiness
scores based on the labMT dataset [39]. This dataset
was constructed from human ratings of the “happiness”
of words on a continuous scale, averaging scores from
multiple annotators for more than 10,000 words. We
discuss this dataset in detail in Sec. III A. In Sec. II,
we discuss recent developments using deep learning in
NLP, and how they relate to our work. We introduce
two models, demonstrating accuracy on par with human
performance (see Sec. III for technical details). We first
introduce a baseline model—a neural network initialized
with pre-trained word embeddings—to gauge happiness

scores. Second, we present a deep Transformer-based
model that uses word definitions to estimate their lexical
polarity. We will refer to our models as the ‘Token’ and
‘Dictionary’ models, respectively. We present our results
and model evaluation in Sec. IV, highlighting how the
models perform compared with reviewers from Amazon’s
Mechanical Turk. Finally, we highlight key limitations of
our approach, and outline some potential future develop-
ments in concluding remarks.

II. RELATED WORK

Word embeddings are abstract numerical representa-
tions of the relationships between words, derived from
statistics on individual corpora, and encoding language
patterns so that concepts with similar semantics have
similar representations [49]. Researchers have shown that
efficient representations of words can both express mean-
ings and preserve context [50–53]. While there are many
ways to construct word embedding models (e.g., matrix
factorization), we often use the term to refer to a specific
class of word embeddings that are learnable via neural
networks.

Word2Vec is one of the key breakthroughs in NLP,
introducing an efficient way for learning word embed-
dings from a given text corpus [54, 55]. At its core,
it builds off of a simple idea borrowed from linguistics
and formally known as the ‘distributional hypothesis’—
words that are semantically similar are also used in simi-
lar ways, and likely to appear with similar context words
[56].

Starting from a fixed vocabulary, we can learn a vec-
tor representation for each word via a shallow network
with a single hidden layer trained in one of two fash-
ions [54, 55]. Both approaches formalize the task as a
unsupervised prediction problem, whereby an embedding
is learned jointly with a network that is trained to either
predict an anchor word given the words around it (i.e.,
continuous bag-of-words (CBOW)), or by predicting con-
text words for an anchor word (i.e., skip-gram (SG)) [54].
Both approaches, however, are limited to local context
bounded by the size of the context window. Global Vec-
tors (GloVe) addresses that problem by capturing corpus
global statistics with a word co-occurrence probability
matrix [57].

While Word2Vec and GloVe offer substantial improve-
ments over previous methods, they both fail to encode
unfamiliar words—tokens that were not processed in the
training corpora. FastText refines word embeddings by
supplementing the learned embedding matrix with sub-
words to overcome the challenge of OOV tokens [58, 59].
This is achieved by training the network with character-
level n-grams (n ∈ {3, 4, 5, 6}), then taking the sum of
all subwords to construct a vector representation for any
given word. Although the idea behind FastText is rather
simple, it presents an elegant solution to account for rare
words, allowing the model to learn more general word
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representations.

A major shortcoming of the earlier models is their
inability to capture contextual descriptions of words as
they all produce a fixed vector representation for each
word. In building context-aware models, researchers
often use fundamental building blocks such as recurrent
neural networks (RNN) [60]—particularly long short-
term memory (LSTM) [61]—that are designed to pro-
cess sequential data. Many methods have provided incre-
mental improvements over time [62–64]. ELMo is one of
the key milestones towards efficient contextualized mod-
els, using deep bi-directional LSTM language representa-
tions [65].

In late 2017, the advent of Transformers [66] rapid-
ly changed the landscape in the NLP community.
The encoder-decoder framework, powered by attention
blocks, enables faster processing of the input sequence
while also preserving context [66]. Recent adaptations of
the building blocks of Transformers continue to break
records, improving the state-of-the-art across all NLP
benchmarks with recent applications to computer vision
and pattern recognition [67].

Exploiting the versatile nature of Transformers, we
observe the emergence of a new family of language mod-
els widely known as “self-supervised” including as bidi-
rectional encoders (e.g., BERT) [68], and left-to-right
decoders (e.g., GPT) [69]. Self-supervised language mod-
els are pre-trained by masking random tokens in the unla-
beled input data and training the model to predict these
tokens. Researchers leverage recent subword tokenization
techniques, such as WordPiece [70], SentencePiece [71],
and Byte Pair Encoding (BPE) [72], to overcome the
challenge of rare and OOV words. Subtle contextual-
ized representations of words can be learned by predict-
ing whether sentence B follows sentence A [68]. Pre-
trained language models can then be fine-tuned using
labeled data for downstream NLP tasks, such as NER,
question answering, text summarization, and sentiment
analysis [68, 69].

Recent advances in NLP continue to improve the
language facility of Transformer-based models. The
introduction of XLNet [73] is another remarkable
breakthrough that combines the bidirectionality of
BERT [68] and the autoregressive pre-training scheme
from Transformer-XL [74]. While the current trend of
making ever-larger and deeper language models shows
an impressive track record, it is arguably unfruitful to
maintain unreasonably large models that only giant cor-
porations can afford to use due to hardware limita-
tions [75]. Vitally, less expensive language models need
to be both computationally efficient and exhibit perfor-
mance on par with larger models. Addressing that chal-
lenge, researchers proposed clever techniques of leverag-
ing knowledge distillation [76] to train smaller and faster
models (e.g, DistilBERT [77]). Similarly, efficient param-
eterization strategies via sharing weights across layers
can also reduce the size of the model while maintain-
ing state-of-the-art results (e.g., ALBERT [78]). Build-

ing on the recent models discussed above, we develop
a framework for augmenting semantic dictionaries using
word embeddings and transfer learning. Our tool reduces
the need for crowdsourcing scores from human annota-
tors while still providing similar, and often better, results
compared with random reviewers from Amazon Mechan-
ical Turk at a fraction of the cost.

III. DATA AND METHODS

We propose two models for predicting happiness scores
for the labMT lexicon [39]—a general-purpose sentiment
dictionary used to measure happiness in text corpora (see
Sec. III A for more details).

Our first model is a neural network initialized with
pre-trained FastText word embeddings. The model uses
fixed word representations to gauge the happiness score
for a given expression, enabling us to augment the labMT
dataset at a low cost. For simplicity, we will refer to this
model as the Token model.

Bridging the link between lexicon-based and contextu-
alized models, we also propose a deep Transformer-based
model that uses word definitions to estimate their hap-
piness scores—namely, the Dictionary model. The con-
textualized nature of the input data allows our model to
accurately estimate the expressed happiness score for a
given word based on its lexical meaning.

We implement our models using Tensorflow [79] and
Transformers [80]. See Sec. III B and Sec. III C for further
technical details of our Token and Dictionary models,
respectively. Our source code, along with pre-trained
models, are publicly available via our GitLab repository
(https://gitlab.com/compstorylab/sentiment-analysis).

A. Data

In this study, we use the labMT dataset as an exam-
ple semantic dictionary to test and evaluate our mod-
els [39]. The labMT lexicon contains roughly ten thou-
sand unique words—combining the five thousand most
frequently used words from New York Times articles,
Google Books, Twitter messages, and music lyrics [39].
It is a lexicon designed to gauge changes in the happiness
(i.e., valence or hedonic tone) of text corpora. Happiness
is defined on a continuous scale h ∈ {1 → 9}, where
1 bounds the most negative (sad) side of the spectrum,
and 9 is the most positive (happy). Ratings for each word
are crowdsourced via Amazon Mechanical Turk (AMT),
taking the average score havg from 50 reviewers to set a
happiness score for any given word. For example, the
words ‘suicide’, ‘terrorist’, and ‘coronavirus’ have the
lowest happiness scores, while the words ‘laughter’, ‘hap-
piness’, and ‘love’ have the highest scores. Function and
stop words along with numbers and names tend to have
neutral scores (havg ≈ 5), such as ‘the’, ‘fourth’, ’where’,
and ‘per’.

https://gitlab.com/compstorylab/sentiment-analysis
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The labMT dataset also powers the Hedonometer, an
instrument quantifying daily happiness on Twitter [42].
Over the past few years, the labMT dictionary was
updated to include new words that were not found in
the original survey (e.g, terms related to the COVID19
pandemic [48]).

We are particularly interested in this dataset because
it also provides the standard deviation of human ratings
for each word, which we use to evaluate our models. In
this work, we propose two models to estimate havg using
word embeddings, and thus provide an automated tool to
augment the labMT dataset both reliably and efficiently.

In Fig. 1, we display a 2D histogram of the human
rated happiness scores in the labMT dataset. The figure
highlights the degree of uncertainty in human ratings of
the emotional valence of words. For example, the word
‘the’ has an average happiness score of havg = 4.98, with
standard deviation of σ = 0.91, while the word ‘haha-
ha’ has a happier score with havg = 7.94 and σ = 1.56.
Some words also have a relatively large standard devi-
ation such as ‘church’ (havg = 5.48, σ = 1.85), and
‘cigarettes’ (havg = 3.31, σ = 2.6).

While the majority of words are neutral, with a score
between 4 and 6, we still observe a human positivity bias
in the English language [39, 81]. On average, the stan-
dard deviation of human ratings is 1.38. In our evaluation
(Sec. IV), we show how our models perform relative to
the uncertainty observed in human ratings.

B. Token Model

Our first model uses a neural network that learns to
map words from the labMT lexicon to their correspond-
ing sentiment scores. While still being able to learn a
non-linear mapping between the words and their happi-
ness scores, the model only considers the individual words
as input—enriching its internal utility function with sub-
word representations to estimate the happiness score.

The input word is first processed into a token
embedding—sequentially breaking each word into its
equivalent character-level n-grams whereby n ∈ {3, 4, 5}
(see Fig. 2 for an illustration). English words have an
average length of 5 characters [82, 83], which would yield
5 unique character-level n-grams given our tokenization
scheme. While we did try shorter and longer sequences,
we fix the length of the input sequence to a size of 50
and pad shorter sequences to ensure a universal input
size. We choose a longer sequence length to allow us to
encode longer n-grams and rare words.

We then pass the token embeddings to a 300-
dimensional embedding layer. We initialize the embed-
ding layer with weights trained with subword information
on Common Crawl and Wikipedia using FastText [59].
In particular, we use weights from a pre-trained model
using CBOW with character-level n-grams of length 5
and a window size of 5 and 10 (https://fasttext.cc/docs/
en/english-vectors.html).
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FIG. 1. Emotional valence of words and uncertainty
in human ratings of lexical polarity. A 2D histogram
of happiness havg and standard deviation of human ratings
for each word in the labMT dataset. Happiness is defined
on a continuous scale from 1 to 9, where 1 is the least hap-
py and 9 is the most. Words with a score between 4 and 6
are considered neutral. While the vast majority of words are
neutral, there is a positive bias in human language [39]. The
average standard deviation of human ratings for estimating
the emotional valence of words in the labMT dataset is 1.38.

The output of the embedding layer is pooled down and
passed to a sequence of three dense layers of decreasing
sizes: 128, 64, and 32, respectively. We use a rectified lin-
ear activation function (ReLU) for all dense layers. We
also add a dropout layer after each dense layer, with a
50% dropout rate to encode stochasticity into the model
as a simple estimate of uncertainty and standard devia-
tion of the network’s predictions [84].

We experimented with a few different layout configu-
rations, finding that making the network either wider or
deeper has minimal effect on the network performance.
Therefore, we choose to keep our model rather simple
with roughly 10 million trainable parameters. The out-
put of the last dense layer is finally passed over to a single
output layer with a linear activation function to regress a
sentiment score between 1 and 9. See Fig. 3 for a simple
diagram of the model architecture.

C. Dictionary Model

Historically, lexicon-based models have only consid-
ered simple statistical methods to estimate the emotional
valance of words. Here, we try to bridge the connection
between the conventional techniques among the commu-

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
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Any of a group of RNA viruses that cause a variety of respiratory, 
gastrointestinal, and neurological diseases in humans and other animals.

`Coronavirus`Input

Definition

Token
Embeddings

Dictionary
Embeddings

any of a group of rna viruses

neurological

that cause a

variety of respiratory gas ##tro ##int ##estinal and

diseases in humans and other animals

corona ##virus

PAD PADPAD

cor oro ron ona nav avi vir iru ruscoronavirus coro oron rona onav navi

avir viru irus coron orona ronav onavi navir aviru virus PAD PAD

FIG. 2. Input sequence embeddings. We use two encoding schemes to prepare input sequences for our models: token
embeddings (blue) and dictionary embeddings (orange) for our Token and Dictionary models, respectively. Given an input
word (e.g., ‘coronavirus’), we first break the input token into character-level n-grams (n ∈ {3, 4, 5}). The resulting sequence
of n-grams along with the original word at the beginning of the embeddings are used in our Token model. Sequences shorter
than a specified length are appended with PAD, a padding token ensuring a universal input size. For our Dictionary model, we
first look up a dictionary definition for the given input. We then process the input word along with its definition into subwords
using WordPiece [70]. Uncommon and novel words are broken into subwords, with double hashtags indicating that the given
token is not a full word.

Token
Embeddings

(50)

Dictionary
Embeddings

(50)

Inputs Inputs

FastText (300) DistilBERT (768)

Token
Model

Dictionary
Model

LinearLinear

Dense (128)

Dropout (.5)

Dense (32)

Dropout (.5)

Dense (32)

Dropout (.5)

Dense (64)

Dropout (.5)
Dense (64)

Dropout (.5)

Dense (128)

Dropout (.5)

FIG. 3. Model architectures. Our first model is a
neural network initialized with pre-trained word embeddings
to estimate happiness scores. Our second model, is a deep
Transformer-based model that uses word definitions to esti-
mate their sentiment scores. See Sec. III B and Sec. III C for
further technical details of each model, respectively. Note
the Token model is considerably smaller with roughly 10 mil-
lion trainable parameters compared with the Dictionary mod-
el that has a little over 66 million parameters.

nity and recent advances in NLP.

For our second model, we use a contextualized
Transformer-based language model to estimate the sen-
timent score for a given word based on its dictionary
definition. While still predicting scores for individual
words, we now do so by augmenting each word with its
expressed meaning(s) from a general dictionary. Given
an input word, we look up its definition via a free online
dictionary API available at https://dictionaryapi.dev.

The average length of definitions for the words found
in labMT is roughly 38 words. We choose a maximum
definition length of 50 words—which covers the 75th per-
centile of that distribution—to ensure that words with
multiple definitions are adequately represented. While
increasing the sequence length beyond 50 did not improve
our accuracy, it increases the model complexity slowing
our training and inference time substantially. Therefore,
we fix the length of word definitions to a maximum of 50
words. We pad shorter sequences, and truncate words 51
and beyond to ensure a fixed input size.

We estimate the sentiment of each labMT word as fol-
lows. The word, along with its definition, is processed
into dictionary embeddings by breaking each word into
subwords based on their frequency of usage using Word-
Piece [70]. This is a widely adopted tokenization tech-
nique that breaks uncommon and novel words into sub-
words, which reduces the vocabulary size of language
models and enables them to handle OOV tokens. Oth-
er tokenization models will give similar results [71]. We
only use the word as input to our model for terms without
definitions.

In principle, the dictionary embeddings can be passed
to a vanilla Transformer model (e.g., BERT [68],

https://dictionaryapi.dev
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FIG. 4. Learning curves for the Token model (left), and Dictionary model (right). We train our models using
5-fold cross-validation, with a maximum of 500 epochs per fold. The left panel shows the learning curves for the Token model
(see Sec. III B), while the right panel shows the Dictionary model (see Sec. III C). We display our average mean absolute error
(MAE) as well as standard deviation across all folds for training (grey) and validation (blue).
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FIG. 5. Ensemble learning and k-fold cross-validation.
Using an 80/20 split for training/validation, we train our
models for a maximum of 500 epochs per fold for a total of
5 folds. We use the model trained from each fold to build an
ensemble because the average performance of an ensemble is
less biased and better than the individual models.

XLNet [73]). However, we prefer more manageable
models (i.e., smaller and faster) due to their efficiency
while maintaining state-of-the-art results. We tried both
ALBERT [78] and DistilBERT [77]. Both models have
equivalent performance on our task. The output of the
model’s pooling layer is passed to a sequence of three
dense layers of decreasing sizes with dropout applied after

each layer—similar to our approach in the Token model.
Finally, the output of the last dense layer is projected
down to a single output value that servers as the senti-
ment score prediction.

The Token model is considerably lighter in terms of
memory usage, and faster in terms of training and infer-
ence time than the Dictionary model. Our current con-
figuration of the Token model results in roughly 10 mil-
lion trainable parameters compared with the Dictionary
model that has over 66 million parameters.

IV. RESULTS AND DISCUSSION

A. Ensemble learning and k-fold cross-validation

Given that our dataset is relatively small, we use k-fold
cross-validation rather than a fixed testing subset to set
an upper limit on our margin of error and mitigate any
risk of overfitting [85, 86]. Using 80/20 split for train-
ing/validation, we train models for a maximum of 500
epochs per fold for a total of 5 folds. While there are
many gradient descent optimization algorithms, we use
Adam [87] as a popular and well-established optimizer,
keeping its default configuration and setting our initial
learning rate to 0.001. In Fig. 4, we display learning
curves, showing that both models have converged suc-
cessfully.

Ensemble learning is a widely known and adopted fam-
ily of methods in which the average performance of an
ensemble is shown to be both less biased and better than
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FIG. 6. Error distributions for the Token model. We display mean absolute errors for predictions using the Token
model on all words in labMT. We arrange the happiness scores into three groups: negative (havg ∈ [1, 4), orange), neutral
(havg ∈ [4, 6], grey), and positive (havg ∈ (6, 9], green). Most words have an MAE less than 1 with the exception of a few
outliers. We see a relatively higher MAE for negative and positive terms compared to neutral expressions.

the individual models [85, 88]. Capitalizing on our 5-fold
cross-validation strategy, we use the model trained from
each fold to build an ensemble (see Fig. 5). To get a
happiness score for a given word, we aggregate over 100
predictions per model and report the average and stan-
dard deviation of predictions from all models as our final
prediction for a given ensemble.

B. Comparing predictions to human ratings

While both strategies tested here perform well—
namely using character-level n-grams and word
definitions— the Dictionary model outperforms the
Token model. Our evaluation shows the Token model
has an average cross-validation MAE of 0.64 ± 0.01,
trailing behind the Dictionary model which has an
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FIG. 7. Error distributions for the Dictionary model. We display mean absolute errors for predictions using the
Dictionary model on all words in labMT. Again, we categorize the happiness scores into three groups: negative (havg ∈ [1, 4),
orange), neutral (havg ∈ [4, 6], grey), and positive (havg ∈ (6, 9], green). Similar to the Token model, most words have an MAE
less than 1 with the exception of a few outliers. While the Dictionary model outperforms the Token model, we still observe a
higher MAE for negative and positive terms compared to neutral expressions.

average cross-validation MAE of 0.50± 0.01.

As discussed, the cross-validation defines an upper lim-
it on margin of error for predicting happiness scores in
the labMT dictionary. We further examine the error dis-
tributions to investigate if the models have a bias towards
high or low happiness scores.

We rerun our models on all words recorded in the

labMT dataset. In Figs. 6 and 7, we display a break-
down of our MAE distributions for the Token and Dictio-
nary models, respectively. We categorize the happiness
scores into three groups: negative (havg ∈ [1, 4)), neutral
(havg ∈ [4, 6]), and positive (havg ∈ (6, 9]). While the dis-
tributions show our models operate well on all words, par-
ticularly neutral expressions, we note a relatively high-
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FIG. 8. Token model: Top-50 words with the highest mean absolute error. Model predictions are shown in blue
and the crowdsourced annotations are displayed in grey. While still maintaining relatively low MAE, most of our predictions
are conservative—marginally underestimating words with extremely high happiness scores, and overestimating words with low
happiness scores.
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FIG. 9. Dictionary model: Top-50 words with the highest mean absolute error. Model predictions are shown in
blue and the crowdsourced annotations are displayed in grey. Note, the vast majority of words with relatively high MAE also
have high standard deviations of AMT ratings. Words that have multiple definitions will have a neutral score (e.g., lying). A
neutral happiness score is also often predicted for words because we are unable to obtain good definitions for them to use as
input. Although we have definitions for most words in our dataset, we still have a little over 1500 words with missing definitions.
Most of these words are names (e.g., ‘Burke’), and slang (e.g., ‘xmas’, and ‘ta’).
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er MAE for negative words, whereby our predictions to
these terms are more positive than the annotations.

We further compare our predictions to the ground-
truth ratings, examining the degree to which the mod-
els either overshoot or undershoot the happiness scores
crowdsourced via AMT. Words in the labMT lexicon
were scored by taking the average happiness score of
distinct evaluations from 50 different individuals (see
Table S2 [39]). Since the variance of human ratings
and our model MAEs are on the same scale, we can use
the observed average variance of the ratings (1.17) as a
baseline to assess rater confidence in the reported scores.
Comparing our models to that baseline, we note that all
models offer consistent predictions with similar expecta-
tions to a random and reliable reviewer from AMT. See
Table I for further statistical details.

In Figs. 8 and 9, we display the top-50 words with
the highest mean absolute error for the Token and Dic-
tionary models, respectively. While the models always
predict the right emotional attitude outlining each word
based on its lexical polarity, they bias toward neutral by
undershooting scores for happy words, and overshooting
scores for sad expressions.

One possible explanation of this systematic behavior
is the lack of words with extreme happiness scores in
the labMT lexicon. It is possible to train models with a
smaller but balanced subset of the dataset to overcome
that challenge. Doing so, however, would reduce the size
of training/validation samples substantially. Still, our
margin of error is relatively low compared to human rat-
ings. Future investigations may test and improve the
models by examining larger sentiment lexicons.

Another key factor that plays a big role in our predic-
tion error is obtaining good word definitions, or the lack
thereof, to use as input for our Dictionary model. Sur-
prisingly, outsourcing definitions from online dictionaries
for a large set of words is rather challenging, especially
if you opt-out of reliable but paid services. In our work,
we choose not to use an urban dictionary or any services
with paid APIs. We use a free online dictionary API that
is available at https://dictionaryapi.dev.

While we do have definitions for most words in our
dataset, a total of 1518 words have missing definitions.
Most of these words are names, abbreviations, and slang
terms (e.g., ‘xams’, ‘foto’, ‘nvm’, and ‘lmao’). Words
with multiple definitions can also cancel each other’s
score (e.g., ‘lying’).

Notably, the vast majority of words with high MAE
also have high AMT standard deviations. To further
investigate prediction accuracy, we examine the overlap
between the predictions and human ratings. In par-
ticular, we compute the intersection over union (IOU)
between the predicted happiness score h′avg±σ′, and the
corresponding value from the annotated ratings havg±σ.

The Token model underestimates the happiness score
for ‘win’—the only word with a prediction that falls out-
side the range of human annotated happiness scores. The
remaining predicted happiness scores fall well within the

range of scores crowdsourced via AMT. Similarly, the
Dictionary model slightly underestimates the happiness
scores for ‘mamma’ while overestimating the scores for
‘lying’, and ‘coronavirus’.

V. CONCLUDING REMARKS

As the growing demand for sentiment-aware intelligent
systems increases, we will continue to see improvements
to both lexicon-based models and contextual language
models. While contextualized models are suitable for a
wide set of applications, lexicon-based models are used
by computational linguistics, journalists, and data scien-
tists who are interested in studying how individual words
contribute to sentiment trends.

Lexicon based sentiment dictionaries, however, have
to be updated periodically to support new words and
expressions that were not considered when the dictionar-
ies were assembled. In this paper, we proposed two mod-
els for predicting sentiment scores to augment semantic
dictionaries using word embeddings and transfer learn-
ing. Our first model establishes a baseline using a neural
network initialized with pre-trained word embeddings,
while our second model features a deep Transformer-
based network that brings into play word definitions to
estimate their lexical polarity. Our results and evaluation
of both models demonstrate human-level performance on
a state-of-the-art human annotated list of words.

Although both models can predict scores for novel
words, we acknowledge a few shortcomings. Our Token
model relies on subword information to estimate a hap-
piness score for any given word. For example, using sub-
words for ‘coronavirus’ yields a good estimate given that
it contains ‘virus’. By contrast, parsing character-level
n-grams for other words (e.g., ‘covid’) may not reveal
any further information. We can overcome that hurdle
by using the word definition as input to our Dictionary
model to gauge its happiness score. Words, however,
often have different meanings based on context. Finding
good definitions may be challenging, especially for slang,
informal expressions, and abbreviations. We recommend
using the Dictionary model whenever it is possible to
outsource a good definition of the word.

A natural next step would be to develop similar mod-
els for other languages, for example by building a model
for each language, or a multilingual model. Fortunate-
ly, FastText [59] provides pre-trained word embeddings
for over 100 languages. Therefore, it is easy to upgrade
the Token model to support other languages. Updating
the Dictionary model is also a straightforward task by
simply adopting a multilingual Transformer-based mod-
el pre-trained with several languages (e.g., Multilingual
BERT [68]).

Another vast space of improvements would be to adopt
our proposed strategies to develop prediction models for
other semantic dictionaries. Researchers can further fine-
tune these models to predict other sentiment scores. For

https://dictionaryapi.dev
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All words Out-of-sample All words

STDEV Variance MAE MAE MAE MAE

Human
Ratings

Human
Ratings

Token
Model

Dictionary
Model

Token
Model

Dictionary
Model

Average 1.38 1.17 0.64 0.50 0.16 0.14

25th Percentile 1.18 1.09 0.63 0.49 0.05 0.05

50th Percentile 1.36 1.17 0.64 0.50 0.12 0.10

75th Percentile 1.56 1.25 0.65 0.51 0.22 0.19

85th Percentile 1.69 1.30 0.65 0.51 0.30 0.25

95th Percentile 1.90 1.38 0.66 0.52 0.48 0.40

TABLE I. We report summary statistics comparing our models to the annotated ratings reported in labMT. Each word in the
labMT lexicon is scored by 50 distinct individuals and the final happiness score is derived by taking the average score of these
evaluations [39]. We report the standard deviation and variance of the ratings as a baseline to assess the human’s confidence
in the reported scores. Comparing our predictions with the annotations crowdsourced via AMT, our MAEs are on par with
the variance observe in the human annotated labMT scores.

example, the happiness scores in the labMT [39] dataset
are closely aligned with the valence scores in the NRC-
VAD lexicon [89]. We envision future work develop-
ing similar models to predict other semantic differen-
tials such as arousal and dominance [89], EPA [90], and
SocialSent [91].

More importantly, researchers would need to fine-tune
the models using annotated scores for words and expres-
sions in other languages. We caution against translating
words and using the same English scores because most
words do not have a one-to-one mapping into other lan-
guages, and are often used to express different meanings
by the native speakers of any given language [39]. Our
primary goal is to provide an easy and robust method to
augment semantic dictionaries to empower researchers to

maintain and expand them at a relatively low cost using
today’s state-of-the-art NLP methods.
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