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Chimera states—the coexistence of synchrony and asynchrony in a nonlocally-coupled network of identical
oscillators—are often used as a model framework for epileptic seizures. Here, we explore the dynamics
of chimera states in a network of modified Hindmarsh-Rose neurons, configured to reflect the graph of
the mesoscale mouse connectome. Our model produces superficially epileptiform activity converging on
persistent chimera states in a large region of a two-parameter space governing connections (a) between
subcortices within a cortex and (b) between cortices. Our findings contribute to a growing body of literature
suggesting mathematical models can qualitatively reproduce epileptic seizure dynamics.

I. INTRODUCTION

A. Chimera States

The science and mathematics of synchronization are
among history’s most well-studied areas of research.
One of the earliest well-documented appearances of syn-
chrony in unexpected places was observed in 1665 by
Dutch physicist Christiaan Huygens, the inventor of the
pendulum clock. Huygens noticed that two clocks hung
from the same beam would eventually synchronize with
each other. He supposed that this was due to minus-
cule energy transfers between the two clocks through
the wooden beam. His hypothesis was proven nearly
350 years later, demonstrating that even the simplest-
seeming synchronization behavior may result from com-
plex dynamics [1].

This behavior extends to larger systems than two
clocks. A classic demonstration in many classes on the
mathematics of synchronization depicts the same phe-
nomenon with more oscillators [2]. One places a plat-
form on top of a set of rollers, along with at least two
metronomes on that platform (see Fig. 1 for a drawing).
When the metronomes are started with the same fre-
quency but out of phase with each other, over time their
phases drift until they synchronize.

FIG. 1. The classic demonstration of Huygens synchroniza-
tion. When the metronomes are set running, they eventually
synchronize due to the light coupling provided by the plat-
form’s ability to roll.

One example of more complex behavior arising from

similar mechanisms is the coexistence of synchrony and
asynchrony within a system of identical coupled oscil-
lators, a phenomenon known as a chimera state [3 and
4]. The existence of these chimera states is surprising,
as they represent asymmetry within symmetric systems.
The first time this behavior was observed was in a ring of
nonlocally coupled oscillators [3]. While global coupling
is an all-to-all interaction and local coupling is a nearest-
neighbor interaction, nonlocal coupling is a mixture of
the two. The model is expressible in one dimension as

∂

∂t
A(x, t) = (1 + iω0)A− (1 + ib)|A|2A

+K(1 + ia)[Z(x, t)−A(x, t)], (1)

where

Z(x, t) =
∫
G(x− x′)A(x′, t) dx′,

and

G(y) = κ

2 e
−k|y|x

Eq. 1 reduces to the phase equation

∂

∂t
φ(x, t) = ω −

∫
G(x− x′)×

sin(φ(x, t)− φ(x′, t) + α) dx′ , (2)

where

tan(α) = b− a
1 + ab

. (3)

We numerically simulated the Kuramoto system using a
discrete approximation, and it quickly fell into a chimera
state (Fig. 2).

Chimera states have subsequently been found in sim-
pler systems still. One of the simplest is the Abrams
model which consists of two populations of identical os-
cillators with a stronger coupling strength within the
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FIG. 2. The results of our simulation of a Kuramoto oscillator, as described in Eq. 2. We ran a 4th-order Runge-Kutta solver
(dt = 0.01, tmax = 1000) on a system of 512 oscillators. A. The entire time series of the simulation. The behavior represented
there is quite complex, with several distinct qualitative changes to the patterns in the system. However, in-depth analysis of
this system is beyond the purview of this work. B. A snapshot of the state of the system at t = 120. Note the juxtaposition
of asynchronous (0.25 . x . 1) and synchronous (0 . x . 0.25) oscillators.

populations than between them [5]. The equation de-
scribing this system is given by

dθσi
dt = ω +

2∑
σ′=1

Kσσ′

Nσ′

Nσ′∑
j=1

sin
(
θσ
′

j − θσi − α
)
, (4)

where

K =
[
µ ν
ν µ

]
and σ ∈ {1, 2}.

In this model, µ represents the intra-population
strength, and ν represents the inter-population strength,
with µ > ν. Time can be scaled such that µ + ν = 1.
If µ − ν is not too large, and α is not too much less
than π

2 , then this system can produce chimera states.
Fig. 3 shows a simulation of the Abrams model on two
populations of 128 oscillators.

An analogous system has recently been analyzed in the
physical world [6]. Two swinging platforms were coupled
together with springs of variable spring constant κ, and
15 metronomes—all tuned to the same frequency—were
placed on each platform. The metronomes on the same
platform are coupled through the motion of the swing,
which heavily influences the motion of the metronomes,
represented in the Abrams model by µ. The metronomes
on opposite platforms are coupled through the springs,
which is a much weaker interaction, represented in the
Abrams model by ν. For a wide range of values of κ, all
of the metronomes on one platform would synchronize,
while the metronomes on other platform would remain
asynchronous.

While chimera states may present themselves obvi-
ously when observed in a plot or the physical world,
they can be harder to pin down analytically. In order
to do so, we will investigate a system of M communities
of nonlocally-coupled oscillators, and we sample their
phases at times t ∈ [1, . . . , T ]. A useful pair of mea-
sures for detecting the presence of a chimera state are

the chimera-like index χ and the metastability index m
[7 and 8]. To develop these two measures, we start with
the order parameter r(t) =

∣∣∣〈eiφk(t)〉
k∈C

∣∣∣, where φk is
the phase of oscillator k, and 〈f〉k∈C is the average of
f over all k in community C. The order parameter r
indicates the instantaneous synchrony of a community
(how similar the phases of the oscillators are to the oth-
ers in C), and not its overall coherence (how similar the
trajectories of the oscillators are). From this, we define
the two measures:

χ = 7× 〈σchi〉T , (5)
m = 12× 〈σmet〉C , (6)

where

σchi(t) = 1
M − 1

∑
c∈C

(rc(t)− 〈rc〉C)2
, (7)

and

σmet(c) = 1
T − 1

∑
t≤T

(rc(t)− 〈rc〉T )2
. (8)

To put this into words, the chimera-like index χ is the
average over time of the variance of the order parameter
across communities, while the metastability index m is
the average across communities of the variance of the
order parameter within a given community over time,.

The normalization constants follow from the indices’
maximum possible values [7]. If a community spends
equal time in a maximally chimeric state and a mini-
mally chimeric state, then its chimera-like index will be
at its maximum1: χmax = 1

7 . If a community c spends

1 While it is possible for half of a system’s communities to be syn-
chronous and the other half asynchronous for all times (resulting
in a chimera-like index of 2

7 ), this is transient due to the effects
of metastability [7]. Therefore, we will ignore this case.
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FIG. 3. A simulation of the Abrams model for two populations of 128 oscillators. We employed a 4th-order Runge-Kutta
solver (dt = 0.01, tmax = 1000). A. Time series of the simulation for t ∈ (800, 1000). B. Snapshot at t ≈ 800.

equal time in all stages of synchronization (i.e., the phase
parameter of c is uniformly distributed), then σmet(c) is
at its maximum, which is the variance of the uniform
distribution: mmax = 1

12 .

B. Seizures

Chimera states have been observed in many other sys-
tems, whether they be purely mathematical, biological,
electrical, or mechanical [3, 4, 6–14]. One of the most
common ways that chimera states are talked about is in
regards to seizures.

1. Neuroanatomy and Neurophysiology

Since the brain is an electrochemical device, its func-
tion and disorders are often best talked about from an
electrical standpoint [15]. Neurons are cells which are
specialized for communication (see Fig. 4 for a diagram).
They receive input signals through synapses at the ends

FIG. 4. A diagram of the anatomy of a neuron. Taken from
[16] on a CC BY 4.0 license.

of their dendrites, branches in their large tree of inputs.
The trunk of the dendritic tree is the soma, the cell body.

If the sum signal entering the soma from all of the den-
drites is sufficient, the neuron fires, sending a signal to
its outputs.

When a neuron fires, it sends an electrochemical signal
down its axon—its long stem—to the output synapses at
its axon terminals. This signal is known as an action po-
tential. The action potential is discrete; a neuron sends
the same signal any time its input threshold is surpassed,
no matter how far above the threshold the input is. It is
the propagation along the axon of a potential difference
across the cell membrane of the neuron. This poten-
tial difference is created by different concentrations of
various ions in and out of the cell, controlled by pumps
(which push Na+ out of the cell and draw K+ into it)
and gates (which allow the ion concentrations to equili-
brate). It is important to note that processes involving
Na+ are faster than those involving K+. Each location
along the axon goes through the following six stages, in
total taking approximately 1 ms:

Equilibrium: No current flows through the membrane,
which has a potential of −75 mV across it2.

Depolarization: The potential difference propagating
from upstream in the axon activates ion channel
gates, allowing Na+ to flow into the axon, coun-
tered by the K+ flowing out.

Amplification: Because the K+ processes are slower
than the Na+ processes, if the incoming signal is
strong enough, the influx of Na+ is too fast for the
outflow of K+ to compensate. This results in a
positive feedback loop, wherein the Na+ flowing in
increases the membrane potential, which increases
the rate at which Na+ flows into the neuron, which
continues to feed itself.

2 All potentials hold the extracellular matrix at 0 V. In other
words, the interior of the cell is at a lower potential than the
exterior.

https://creativecommons.org/licenses/by/4.0/
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Repolarization: When the Na+ channels are fully
open, the K+ channels are finally able to compen-
sate for the influx.

Hyper-polarization: The Na+ channels close, and the
slower K+ channels remain open. This causes more
K+ to flow out of the cell than Na+ flowed in,
dropping the potential below its equilibrium state.

Refractory Period: The Na+ channels are briefly un-
able to open, which means that neurons need a
brief time to “recharge” after an action potential.

All of these processes are summarized in the Hodgkin-
Huxley model3 describing the membrane potential U :

CmU̇ + pAK+ ḡAK+(U − EK+)
+ pANa+ ḡANa+(U − ENa+) + gl(U − El) = Im (9)

where

ṅ = αn(1− n)βnn,
ṁ = αm(1−m)βmm,
ḣ = αh(1− h)βhh,

and
pAK+ = n4,

pANa+ = m3h.
(10)

where gi is the conductance of the membrane to ion i,
pAi is the proportion of i-gates which are open (devel-
oped from a Markov model with transition rates α and
β), Ei is the equilibrium potential of ion i, Cm is the
capacitance of the membrane, and Im is an external cur-
rent (the tuned input parameter). This model is highly
accurate, and won its developers a Nobel Prize in Physi-
ology or Medicine. Many bifurcation analyses have been
performed on these equations, and they are well under-
stood [17].

However, the Hodgkin-Huxley model is not particu-
larly useful for large-scale brain simulation. Given that
most behavior of the brain is emergent4, it is important
to understand neurons’ interactions. As is often the case
with emergent phenomena, it is wildly impractical to
simulate the collective behavior of a brain by simulat-
ing its constituent neurons. Since the human brain has
approximately 1011 neurons with 1014 synapses, direct
simulation is too computationally intensive. To better
understand the dynamics of large portions of the brain,
many researchers have turned to the techniques of ther-
mal and statistical physics [18], resulting in neural en-
semble models and neural mass models as two popular
approaches to studying brain behavior.

Neural ensemble models treat patches of the brain as
a collective group, taking into account neurons’ mean
activity, as well as their variance. They assume that the
firings of the neurons within a group are sufficiently un-
correlated to result in a Gaussian distribution of firing
rates. This means that the behavior of the ensemble

3 A full derivation of this model can be found in [17].
4 One of the classic ways to explain emergence is asking, “Where

is the thought in a neuron?”

is linear, even though the behavior of the constituent
neurons is highly nonlinear. One can then use a Fokker-
Planck equation to describe the collective dynamics of
the population. The main benefit to these models is that
they are well-studied in fields like solid-state physics.
However, recent work has shown that the assumption
of Gaussian firing rates is not accurate [18]. Firing rates
do tend to fall into well-behaved distributions, but not
ones that lend themselves to already-developed tools.

For higher coherence within populations (i.e., a non-
Gaussian distribution of firing rates), researchers tend to
use neural mass models. They assume that nearby neu-
rons in the brain are sufficiently synchronized to model
groups of them as a single neuron, with some modifica-
tions. Instead of the discrete action potential of a single
neuron, neural mass models often have a sigmoidal ac-
tivation function. Researchers also simplify the dynam-
ics of the Hodgkin-Huxley model to divide the neural
mass’s constituent neurons into two subpopulations: an
excitatory pool (corresponding to the Na+ channels in
the Hodgkin-Huxley model) and an inhibitory pool (cor-
responding to the K+ channels in the Hodgkin-Huxley
model).

An example of a neural mass model is the extremely
simple Wilson-Cowan model [19]:

τxẋ = −x+ S(Cxxx+ Cxyy + Cxzz + P ), (11)
τy ẏ = −y + S(Cyxx+ Cyyy + Cyzz +Q), (12)

and

τz ż = −z + S(Czxx+ Czyy + Czzz +R). (13)

Here, x represents an excitatory process (like the flow
of Na+), and y and z represent inhibitory processes
(like the flow of K+). The time constants τi deter-
mine the rates of the dynamics of the three processes.
It is worth noting that chaotic dynamics can occur when
multiple different time scales are present [18]. The cou-
pling strengths Cij represent the connectivity between
the three processes, with Cix ≥ 0 (making x excitatory)
and Ci{y,z} ≤ 0 (making y inhibitory). P , Q, and R rep-
resent the excitability threshold, or the constant external
inputs to each process (similar to Im in Eq. 9). The sig-
moidal activation function S(x) = 1

1+e−a(x−θ) represents
the mass effect of the population of neurons being mod-
eled. This system provides an excellent toy model which
reflects meso-scale dynamics accurately, relative to its
simplicity.

These two models do an accurate job of represent-
ing the behavior of small parts of the brain. However,
it is not reasonable to carry the assumptions of un- or
highly-correlated activity to the large-scale activity of
whole-brain dynamics. To make these models more ac-
curately depict the overall behavior of the brain as a
whole, researchers turn to two main techniques: neural
field models and neural mass networks. The first treats
the brain as a continuous sheet of cortex, within which
activity obeys wave equations. The second represents
the brain as a discrete graph of cortices, or a network of
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coupled oscillators. The network used for the coupling of
the oscillators is determined by the brain’s connectivity
matrix, or connectome. An example of a neural mass
network model is the modified Hindmarsh-Rose model
[Eqs. 24, 25 and 27], which we discuss later.

One of the benefits of a neural mass network model
is that its outputs are similar to those of an electroen-
cephalograph, or EEG. The EEG is a device used to
record the electrical activity of the brain. Electrodes are
placed in specific areas on the scalp, and then changes
in voltage are measured from neural masses beneath the
skull. Much of the signal is distorted and attenuated
by the bone and tissue between the brain and the elec-
trodes, which act like resistors and capacitors. This
means that, while the membrane voltage of the neuron
changes by millivolts, the EEG reads a signal in the mi-
crovolt scale [20]. The EEG also has relatively low spa-
tial and temporal resolution (16 electrodes for the whole
brain, and a sampling rate of 33 ms). However, when
properly treated, neural mass models make for effective
predictors of the output from EEGs [21 and 22]. This
is useful, as EEGs are the main tool used to detect and
categorize seizures.

2. Seizure Ætiology

For centuries, and across many cultures, seizures were
viewed as holy and mystical events, and those with
epilepsy were in many cases believed to be shamans [20
and 23]. Seizures are often accompanied by strange vi-
sions, sounds, or smells (called auras), and sometimes
manifest themselves physically in extreme ways. Exter-
nal symptoms can include convulsions of the limbs or the
entire body, or a seeming trance. In societies that are
unfamiliar with the root causes of seizures, this can be
a terrifying and awe-inspiring sight to behold.

In more recent years, researchers have come to define
seizures as abnormal, excessive, or overly-synchronized
neural activity [20 and 24]. It is important to distin-
guish between seizures and epilepsy, as the two are often
conflated. Seizures are an acute event, whereas epilepsy
is a chronic condition of repeated seizures. While clas-
sification schemes vary, all center around the division
between generalized and focal seizures.

Generalized seizures involve the entire brain, and start
in both hemispheres at the same time, which is why they
are often called primary generalized seizures. The man-
ifestation of these seizures crosses an entire spectrum.
They sometimes hardly present to an external observer,
as in the case of the typical absence seizure5, which is
nonconvulsive and results in a complete cessation of mo-
tor activity for approximately 10 seconds. Patients lose
consciousness, but not posture, making it seem to an
observer like a trance or simply “spacing out.”

5 Due to early epilepsy research being performed in French-
speaking regions, “absence” is pronounced æb"sAns.

On the other side of the range is the tonic-clonic
seizure, wherein effectively all of a patient’s muscles con-
tract at once for around 30 seconds (the tonic phase),
and then clench and unclench rapidly, resulting in jerk-
ing of the extremities (the clonic phase) for 1 to 2 min-
utes. After tonic-clonic seizures (in the postictal phase),
patients often report confusion, muscle soreness, and ex-
haustion.

Focal seizures start in one part of the brain (the seizure
focus). They are generally preceded by auras such as a
sense of fear, or hearing music, and often manifest as
clonic movement of the extremities. In many cases, they
secondarily generalize, spreading to the entire brain.
This can make focal seizures and primary generalized
seizures hard to distinguish, as a focal seizure can gen-
eralize rapidly after a brief aura. This can lead to mis-
diagnoses and improper treatments.

An empirical/phenomenological seizure model called
Epileptor was recently developed by Jirsa et al. [25 and
26]. The model involves two fast processes x1 and y1,
two spike-wave event processes x2 and y2, and a slow
permittivity variable z. Its guiding equations are:

ẋ1 = y1 − f1(x1, x2)− z + Irest1, (14)
ẏ1 = y0 − 5x2

1 − y1, (15)

ż = 1
τ0

(4(x1 − x0)− z), (16)

ẋ2 = − y2 + x2 − x3
2 + Irest2 (17)

+ 0.002g(x1)− 0.3(z − 3.5), (18)

ẏ2 = 1
τ2

(−y2 + f2(x1, x2)), (19)

where

g(x1) =
∫ t

t0

e−γ(t−τ)x1(τ) dτ , (20)

f1(x1, x2) =
{
x3

1 − 3x2
1 if x1 < 0,

x1

(
x2 − 0.6(z − 4)2

)
if x1 ≥ 0,

(21)

and

f2(x1, x2) =
{

0 if x2 < −0.25,
6(x2 + 0.25) if x2 ≥ −0.25.

(22)

The required parameters have the following values: x0 =
−1.6, y0 = 1, τ0 = 2857, τ1 = 1, τ2 = 10, Irest1 = 3.1,
Irest2 = 0.45, and γ = 0.01. A feature to note is that
τ0 � τ2 � τ1. As previously mentioned, these vastly
different time scales allow for chaotic dynamics to occur,
and contribute to the nonlinearity of the system.

While the Epileptor model is highly accurate, and is
currently being used to develop patient-specific mod-
els and treatments, its main issue is that it is purely
phenomenological and not fully rooted in theory. EEG
traces of humans, mice, and zebrafish were collected, and
parameters were adjusted until x1+x2 matched the mea-
sured traces, resulting in the above values. The model
may be an important tool for treating symptoms, but is
not necessarily as valuable for determining root causes.



6

II. LITERATURE REVIEW

One of the most powerful tools for describing the qual-
itative behavior of a nonlinear system is bifurcation anal-
ysis, determining how the number and stability of fixed
points and limit cycles changes as parameters of a model
change [27].

A. Bifurcation Analyses of Seizure Models

Analyses of the dynamics of brain models can pro-
vide an understanding of the mechanisms underlying
a wide variety of brain behaviors. Multistability and
bifurcations can be interpreted as being at the cen-
ter of many different states, from seizures to switch-
ing from syncopated to anti-syncopated finger tapping
[12, 18, 19, 24, 25, and 28]. In this section, we review
some examples of bifurcation analyses of neural models.

1. The Wilson-Cowan Model

One of the simplest models which lends itself to bi-
furcation analysis is the Wilson-Cowan model (Eqs. 11
to 13). Traces of x over time look remarkably like the
output from an EEG scan. Fig. 5 shows a simulation of
the Wilson-Cowan model with the parameters6:

C =

23 −15 −10
35 0 0
10 0 0

 ,
PQ
R

 =

 3
−5
−5

 ,
and

τ =

0.015
0.013
0.267

 . (23)

These results show a stereotypical spike-wave event, rep-
resented to a high degree of accuracy relative to the sim-
plicity of the model.

The main challenge for performing bifurcation analy-
sis on this type of system is two-fold. The first aspect is
that there are 15 parameters to vary. This makes bifur-
cation analysis exceedingly difficult, as all 15 dimensions
and their relationships to each other must be analyzed.
This is closely related to the second aspect of the chal-
lenge this model provides: the variables in this model
are abstracted from their physical/physiological mean-
ings. For example, because the coupling strengths do
not correspond directly to any measurable values, it is
hard to gain actionable semantic knowledge from analy-
sis of their effects on the system [25].

6 Parameters taken from [19], table 1. Note that the values in
rows 3(g),3(i) and 3(j),3(l) should be switched.

A

B

FIG. 5. A comparison of a simulation of the Wilson-Cowan
system and an actual EEG trace of spike-wave event. A. The
output of a simulation of the Wilson-Cowan model (Eqs. 11
to 13) using parameters from [19]. We ran a 4th-order Runge-
Kutta solver (dt = 0.01, tmax = 1000) on the Wilson-Cowan
model with parameters shown in Section II A 1. B. An EEG
trace of a spike-wave event, often characteristic of absence
seizures. Taken and modified from [29].

However, it is possible to observe a bifurcation if the
external input P varies (Eq. 11). Fig. 6 shows the change
from spike-wave behavior to simple wave behavior as P
increases past 3.92, at time 47.3. While it would be
impossible to do an exhaustive sweep of parameter space,
one can in principle observe all of the dynamics of brain
behavior in this model.

0

1

x

44 45 46 47 48

t

3.90

3.95

P

FIG. 6. A bifurcation from spike-wave behavior to simple
wave behavior in the Wilson-Cowan model as a function of
continuously varying external input parameter P . For the
simulation, we used a 4th-order Runge-Kutta solver (dt =
0.01, tmax = 100) as P linearly increased from 3 to 5.

2. The Epileptor Model

In the Epileptor model (Eqs. 14 to 17,19 to 22), bi-
furcations depending on the slow permittivity variable
z determine whether the brain is behaving normally, or
having a seizure [25]. Given the time scale on which z
varies ( 1

2857 times as fast as x1) and the bifurcations’ de-
pendence on it, z acts like an external parameter to the
system, causing the model to go into and out of seizure.
In Fig. 7, the transitions into and out of seizure are clear
as critical points in z. In particular, as is the case with
many similar models, normal steady-state brain func-
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tion corresponds to a stable fixed point, while seizure-
like events are represented by stable limit cycles. This
raises a question: what kinds of bifurcations occur dur-
ing the transition from healthy brain activity to seizures
and back?

−2.5

0.0

x
1

+
x

2

1500 2000 2500 3000 3500

t

3

4

z

FIG. 7. A simulation of the Epileptor model showing the
observable x1 and the slow-changing permittivity variable z,
using a 4th-order Runge-Kutta solver (dt = 0.01, tmax =
2000) and the parameters listed in Section I B 2. The brain
is exhibiting healthy behavior for t ∈ (0, 360) = h1, then
rapidly jumps into a seizure-like behavior. It stays in this
state for t ∈ (360, 1360) = s, until it returns to a healthy
fixed point for t ∈ (1360, 2000) = h2. Note the DC shift,
wherein x1(s) > x1(h1) ≈ x1(h2).

To discuss the dynamics of Epileptor in general, we
will use the stereotypical behavior displayed in Fig. 7.
An important aspect of Epileptor to note is that x1 +x2
is the closest variable to an observable quantity, but it
still does not resemble an EEG trace without some post-
processing. For example, x1 would look a lot more like
the output from an EEG if put through a high-pass filter.
However, there is an invertible map directly between x1+
x2 and the readings from an EEG, so the results can be
treated as the same [25].

During seizure onset at t = 360, the stable fixed point
of healthy activity disappears, replaced by a stable limit
cycle. This indicates that the system undergoes either
a Hopf or a saddle-node bifurcation. A hint towards
the type of bifurcation involved is that seizures occur
suddenly [20]. This means that the amplitude of oscil-
lation does not steadily increase from 0, meaning that
a supercritical Hopf bifurcation can be ruled out [27].
At t = 360, the mean values of x1 + x2 jump from
〈x1(t) + x2(t)〉t∈h1

= −2.5 to 〈x1(t) + x2(t)〉t∈s = −0.8.
This DC shift does appear in experiment, and indicates
that the bifurcation can not be a subcritical Hopf. This
leaves only a saddle-node bifurcation for the transition
into a seizure [25].

As the seizure ends at t = 1360, the model returns
from a limit cycle to a fixed point with another DC shift.
This indicates that the bifurcation is either a fold bifur-
cation or a homoclinic bifurcation. One important point
of note is that the frequency of oscillation decreases as
the seizure approaches offset, which matches with ex-
periment. This indicates that the transition must be a
homoclinic bifurcation, because systems maintain con-
stant frequency as they approach fold bifurcations [25].

B. Chimera States in the Brain

Chimera states in brain models have often been linked
loosely to unihemispheric sleep, seizures, and other brain
behaviors [4–7, 10, 30–32]. In most cases, these connec-
tions are made in off-hand remarks to introduce the con-
cept of a chimera state, but serious connections between
these phenomena are rarely drawn. However, there are
some notable cases of investigations of chimera states in
brains.

1. Square Torus

One such example is an investigation of two differ-
ent neural models (FitzHugh-Nagumo neurons and leaky
integrate-and-fire neurons, both known to be accurate
neural models [15]) run on a toroidal square network of
N × N nonlocally coupled neurons [33]. The most im-
portant result of this simulation is that similar behaviors
appeared in each. It was found that FitzHugh-Nagumo
and leaky integrate-and-fire neurons can not only pro-
duce chimera states, but ones with similar shapes and
patterns.

For example, both types of neurons produced isolated
disks of high synchrony while the rest of the torus was os-
cillating asynchronously (coherent-spot), as well as disks
of asynchrony while the rest of the system was oscillating
synchronously (incoherent-spot). Both types of neurons
also produced states in which a ring of neurons were
firing synchronously between two areas of asynchronous
oscillation (coherent-ring), and vice versa (incoherent-
ring).

The presence of similar behavior suggests that chimera
states may be a quality universal to brain activity, and
consequently should appear in any reasonably accurate
brain model.

2. Chimera Collapse

Chimera states are transient behavior for finite net-
works of oscillators [34]. This means that a finite num-
ber of oscillators will eventually collapse into a totally
synchronous state. This transition occurs suddenly, but
does provide warning signs. As the system gets closer to
collapse, the asynchronous group gets increasingly inco-
herent [9]. This is counterintuitive, as the asynchronous
group is already almost incoherent (by definition). How-
ever, the order parameter of an asynchronous group is
rarely 0. As an example, in the snapshot of the sim-
ulation of the Kuramoto model (Fig. 2 B), the asyn-
chronous group is generally gathered around φ = 0.
The asynchronous group’s non-zero coherence provides
its own mean-field (however spread it may be), which
protects it from being absorbed into the synchronous
group. Thus, when the coherence of the asynchronous
group decreases, this mean-field goes away, leaving the
asynchronous group susceptible to collapse.
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Such hypo-coherence preceding chimera state collapse
was observed in transcranial EEG recordings of patients
undergoing seizures [9]. However, the authors in [9] were
very clear that the analogies between chimera state col-
lapse and seizures are extremely conceptual. It has yet
to be shown whether chimera state collapse specifically
is related to seizure activity in any way.

3. Chimeras in a Cat Model

A final example of a chimera state being investigated
in neural models (and the inspiration for this work)
was an exploration of chimera states on a network of
Hindmarsh-Rose neurons (Eqs. 24, 25 and 27) [12]. This
model was simulated on the connectome of a cat (Fig. 8).
Parameter space for the two connection strengths α and

18 28 46

18

28

46

1

2

3

FIG. 8. The cat connectome, represented as a matrix.
The cat brain was divided into 4 cortices (visual, auditory,
somato-motor, and frontolimbic) with 65 subcortices. The
connection strength between the subcortices was measured
and placed on a scale of 1, 2, or 3.

β was explored. Chimera states are most prevalent for
low values of β, the inter-cortex connection strength
[12]. This is unsurprising. If the inter-cortex connec-
tion strength is too high as compared to the intra-cortex
connection strength, the coupling acts global instead of
nonlocal. This means that each cortex has less holding
it together than pulling it apart, allowing the system to
descend into asynchrony.

Further, with increasing input current I0 (and increas-
ing noise in the input current), chimera states give way
to incoherence. This also intuitively makes sense. As
the input current increases, its significance relative to
the coupling also increases. Thus, the oscillators have
no reason to synchronize. And, of course, adding noise
will simply amplify the effect [12].

III. METHODS

A. Model

The model we used here was the modified Hindmarsh-
Rose neural model7 taken from [12].

ẋj = yj − x3
j + bx2

j + Ij − zj

− α

n′j

N∑
k=1

G′jkΘj(xk)− β

n′′j

N∑
k=1

G′′jkΘj(xk),
(24)

ẏj = 1− 5x2
j − yj , (25)

(26)

and

żj = µ(s(xj − xrest)− zj), (27)

where

Θj(xk) = xj − xrev

1 + e−λ(xk−θ) (28)

is the sigmoidal activation function. This function helps
the model better approximate the behavior of neural
masses, as opposed to specific neurons. Table I shows
the values and meanings of the symbols in the model.

Symbol Value Meaning
xj — Membrane potential of the jth neu-

ral mass
yj — Associated with the fast processes
zj — Associated with slow processes
b 3.2 Tunes the spiking frequency
Ij 4.4 External input current
xrev 2 Ambient reverse potential
λ 10 Activation function parameter
θ -0.25 Activation function parameter
µ 0.01 Time scale for variation of z
s 4 Governs adaptation

xrest -1.6 Resting/equilibrium potential
α Varied Coupling strength within cortices
n′
j See Fig. 10 A Number of connections within a cor-

tex from the jth neuron
G′
jk See Fig. 10 C Intra-cortical connection strength
β Varied Coupling strength between cortices
n′′
j See Fig. 10 B Number of connections between cor-

tices from the jth neuron
G′′
jk See Fig. 10 D Inter-cortical connection strength

TABLE I. The list of parameters used in modeling the
Hindmarsh-Rose network.

We chose this model due to the intelligibility of its pa-
rameters, as well as its proven ability to exhibit chimera-
like behavior as a neural mass model [12]. Additionally,
the Hindmarsh-Rose model was not designed to emulate

7 The modification is to add in the coupling, turning it into a
network model instead of a single neuron.
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seizures, which provides further evidence for the asser-
tion that chimeras may be a universal aspect of brain
activity, as discussed in Section II B 1.

It is worth noting that one of the limitations of this
model is the changing nature of α and β in the actual
brain. The strengths of connections and the amounts by
which they are amplified vary in time. However, they
will be treated as constant, in order to present a view of
parameter space.

B. Network

We implemented the model on a mesoscale mouse con-
nectome, which comprises into 213 fine areas, grouped
into 13 coarse areas, along with measured connection
strengths between the subcortices [35]. We used these
coarse areas as the sets C (Eqs. 5,6) for chimera and

metastability analyses. We reduced the connection
strengths to those with sufficient certainty (p < 0.01),
and segmented as follows:

Gjk =


0 if Ojk < 10−4,

1 if 10−4 ≤ Ojk < 10−2,

2 if 10−2 ≤ Ojk < 1,
3 if 1 ≤ Ojk,

(29)

where Ojk is the raw connection strength provided by
[35]. We performed this simplification to match the anal-
ysis of Santos et al. more closely [12].

We show G in Fig. 9, and break it down into its inter-
and intra-connections in Fig. 10. This brain network is a
small-world network [35], a graph topology which lends
itself well to the development of chimera states, as it
facilitates nonlocal coupling [8].

A B

FIG. 9. A. A matrix representation of the mouse connectome, with strengths as defined by Eq. 29. The cortices represented
are, left to right (top to bottom), the striatum, the olfactory areas, the isocortex, the crebellar cortex, the hippocampal
formation, the midbrain, the hypothalamus, the pallidum, the pons, the medulla, the cortical subplate, the thalamus, and the
cerebellar nuclei. B. An embedding of the graph. Edge colors indicate the source location.

Another benefit to this network is that it is accurate
and complete. Given the complexity of brains, creating
an accurate structural or functional connectome is ex-
tremely difficult. It has yet to be done to a large-scale
extent in humans, and was only recently done in mice.
Moreover, as mice are common analogues for humans in
laboratory settings, the mouse seemed a fitting “guinea
pig” for the creation of chimera states.

C. Implementation

We coded the modified Hindmarsh-Rose model using
Python (Python version 3.7.0, NumPy version 1.15.2,
Pandas version 0.23.4, SciPy version 1.1.0), and inte-
grated using a 4th-order Runge-Kutta with variable step
size8 dt < 0.01. We verified the code by reproducing the
results of [12]. We ran the model for a time period of

8 Step size was determined by SciPy’s internal algorithms, but
was limited to a maximum of 0.01.
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0
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n
′ j A
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n
′′ j B

G′
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G′′

D

FIG. 10. A breakdown of the network. A. & B. show n′
j and

n′′
j , effectively the number of nonzero elements in the jth

row of G′ and G′′, respectively. C. & D. show G′ and G′′,
which are G (Fig. 9 A) only within and between cortices,
respectively.

0 50 100 150 200
0.0

2.5
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0 20 40 60 80 100 120
0.0

2.5
B

FIG. 11. The average connection strengths for each neuron
j, within cortices (blue) and between them (orange). A. All
of the subcortices. B. All of the subcortices for which neither
intra- nor inter-cortical average strength was 0.

Tsim = [−1000, 5000], where only times T = [0, 4000]
were saved. We threw away the times [−1000, 0] to elim-
inate transients. The chimeras were extremely unlikely
to be eliminated on such a time scale, due to the size of
the network [34]. We calculated the times [4000, 5000]
to facilitate analysis of the phase.

We computed the phase of the jth neuron in the re-
sulting waveform as

φj(t) = 2π × t− ti
ti+1 − ti

, (30)

where ti is the time at which the jth neuron fires (xj
crosses 0 in a positive direction) for the ith time9. In
order for this calculation to be possible for all values
in T , it was necessary to have each neuron fire at least
once after T had finished (i.e., there has to be some

9 This is a similar measure for the phase as was used in [12], but
allows for easier discrimination between physical and aphysical
parameter sets. It is modified to keep φj ∈ (0, 2π) and to elimi-
nate ambiguity about the meanings of the subscripts.

ti+1 /∈ T in order to calculate the phase for times
ti ≤ t ≤ tmax = 4000). The calculated time range
went so far beyond tmax so that any extremely slow-
firing neurons were allowed to do so, to ensure that as
much of parameter space was in the physical region (Sec-
tion IV B). We then used phase to find the chimera and
metastability indices of the result using Eq. 5 and Eq. 6
respectively.

We repeated this process for various parameter sweeps
of α× β, summarized in Table II. Note that the step in
each strength i ∈ {α, β} is ∆i = imax

ni−1 , due to the fact
that the ranges are inclusive of both endpoints.

αmax, βmax ∆α (nα), ∆β (nβ) Figure
1.6, 0.4 0.0203 (80), 0.0211 (20) —
3.2, 0.8 0.0405 (80), 0.0205 (40) —
0.2, 0.1 0.00253 (80), 0.00256 (40) Fig. 15
0.9, 0.9 0.0101 (80), 0.0101 (80) —
1.0, 1.0 0.0101 (100), 0.0101 (100) Fig. 14

TABLE II. The sweeps we used in evaluating the effects of
α and β on the chimera and metastability indices. All pa-
rameter sweeps started at (α, β) = (0, 0). We performed
the [0, 1] × [0, 1] sweep 10 times, and averaged the resulting
chimera-like indices.

Initial conditions were drawn from uniform distribu-
tions of xj ∈ [−2, 2], yj ∈ [0, 0.2], zj ∈ [0, 0.2]. We per-
formed all simulations on the Vermont Advanced Com-
puting Core, and is available online10.

IV. RESULTS

We investigate three aspects of the model’s output.
First, we compare the output from the model to real-
world data, on a qualitative level. We then discuss the
region of parameter space for which the model produces
aphysical results. Finally, we draw connections between
chimera states in the model and their physiological ana-
logues.

A. Model Quality

It is worthwhile to first discuss the quality of the model
used, and its relationship to reality. Fig. 12 shows sev-
eral types of behavior one can expect on an EEG trace.
Healthy brain behavior presents as low-amplitude oscil-
lations on an EEG, as the asynchrony leads the firings
of individual neurons to cancel each other out. Seizures
and seizure-like activity present as higher-amplitude os-
cillations, as the synchrony decreases the variance be-
tween neurons, making the mean closer to the behavior
of each neuron. One of the main challenges of simulat-
ing seizures is that only trained experts can truly identify

10 https://gitlab.uvm.edu/Henry.Mitchell/chimera-2019

https://www.uvm.edu/vacc
https://www.uvm.edu/vacc
https://gitlab.uvm.edu/Henry.Mitchell/chimera-2019
https://gitlab.uvm.edu/Henry.Mitchell/chimera-2019
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FIG. 12. A typical EEG trace. The first row (“Wild type”)
shows a normal awake adult mouse EEG trace. The other
four rows (“Mutant”) show typical abnormal/epileptiform ac-
tivity. Taken from [36].

seizures; as yet, there is no mathematical technique for
identifying seizures [20].

The highly chimeric portion of the landscape appears
to be mostly below the β = α line.

However, one can indicate whether a model resembles
epileptiform activity on a qualitative level. Fig. 13 shows
the results of a simulation of the Hindmarsh-Rose net-
work for (α, β) = (0.608, 0.267). Qualitatively, in our
simulation, the thalamus, the pons, and the striatum
look like the wild type EEG; the cerebellar cortex shows
some spiking behavior, as well as some spike runs; the
medulla and the hypothalamus look to be in repetitive
spike runs; and the cortical subplate seems to be exhibit-
ing seizure-like behavior over some time periods. This
shows that the behavior visible on an EEG can be ap-
proximately reproduced in this model.

While obtaining a higher neuronal resolution from the
EEG is not possible due to the nature of the method, we
can see the neural dynamics of the model (Fig. 13 B). It
is evident that the thalamus, the pons, and the striatum
are each highly asynchronous, which corresponds to their
wild-type presentation.

Both presentation methods have their benefits, as
Fig. 13 A allows us to view the individual subcortical
behaviors leading to the net dynamics, where Fig. 13 B
looks similar to an EEG (and therefore lends itself well
to the comparison).

B. Aphysical Region

We choose not to include figures for the first two
sweeps of Table II because a large portion of parameter
space leads to an aphysical model. Specifically, for cer-
tain value pairs of (α, β), certain neurons never fired (in-
creased past 1). Despite the drastically increased time of
evaluation (see Section III C), a vast swath of parameter
space gave nonsense results (the white shown in Fig. 14).

The boundary between physical and aphysical appears
to be linear, with a negative slope. This means that α
can range further when β is low, and vice versa. This
makes sense, as increased α and β influence the model
in the same way (increasing the coupling and decreasing
ẋj).

Furthermore, the slope of the boundary is greater than
−1, which means that α has an greater influence on the
physicality of the model. This is also reasonable, but
for slightly less self-evident reasons. To explain why, we
must look specifically at the coupling term from Eq. 24:

− α

n′j

N∑
k=1

G′jkΘj(xk)− β

n′′j

N∑
k=1

G′′jkΘj(xk).

This coupling will, in fact, be positive, as Θj(xk) < 0 if
xj < 2, which is true almost all of the time. This means
that, as α and β increase, so does the overall coupling
strength. So, there is some threshold K for which the
overall coupling is too strong if, for some j,

α

n′j

N∑
k=1

G′jk|Θj(xk)|+ β

n′′j

N∑
k=1

G′′jk|Θj(xk)| > Kj . (31)

In order for α to influence the coupling’s proximity to
K more than β does, there must exist some j such that
1
n′
j

∑
G′jk|Θj(xk)| > 1

n′′
j

∑
G′′jk|Θj(xk)|. Seeing as g′j =

1
n′
j

∑
G′jk and g′′j = 1

n′′
j

∑
G′′jk are the average connection

strength within and between cortices (shown in Fig. 11
A), these are simply a function of the topology of the
graph.

It may look from Fig. 11 A like β should have more in-
fluence than α, as for most j, g′′j > g′j . However, for most
of those cases, g′j0

> g′′j0
= 0. This means that, for those

j0, ∂Kj0
∂α = 0. So, those cases contribute to the value

of the threshold, but do not influence the physicality’s
dependence on α and β.

If we remove the j for which 0 ∈
{
g′j , g

′′
j

}
, we find that,

on average, g′j = 2.100, slightly more than g′′j = 2.079
(see Fig. 11 B). This explains the slope of the boundary
between the physical region and the aphysical region.

C. Chimera states

We show the normalized chimera-like index of the en-
tire physical region in Fig. 14. Near the maximal edge
of the physical region, the highest values of the chimera
index appear to follow a slope of −1. It is unsurprising
that chimera states would be prevalent when the cou-
pling is large (out near the boundary of the aphysical
range).

What is surprising, however, is the presence of the
chimeric patch in the bottom left corner of Fig. 14, shown
at a higher resolution in Fig. 15. Plotting the results
of the simulations (Fig. 16), it is evident that this is
not a calculation error, but is an actual feature of the
parameter landscape.
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FIG. 13. A typical run of the Hindmarsh-Rose simulation. A. The mean membrane potential within each cortex. B. The
phase φ of the entire timeseries for a simulation of the Hindmarsh-Rose network.

The highly chimeric portion of the landscape appears
to be mostly below the β = α line. This is reasonable,
as chimera states occur when coupling within groups is
greater than coupling between groups. A small portion
of the chimeric patch lies above the β = α line, likely
because the average strength between cortices is greater
than the average strength within cortices (see Fig. 11 A).

The chimera-like index χ greatly lessens at α ≈ 0.1.
A possible explanation for this comes from comparing
the order of ẋ without the coupling terms, and the cou-
pling terms themselves. From our simulation, we find
that ẋ without the coupling terms ranges roughly from
-6 to 3. The coupling terms each11 range from 0 to ap-
proximately 30α. This means that, when α > 0.1, the
coupling is at least of the same order as the sum of the
rest of the terms in the equation. This leads to a qual-
itative difference between the two states, which likely
manifests itself as the less chimeric states.

11 Since the same can be said for both α and β, we will discuss
only α, with the understanding that β could be substituted into
the proceeding sentences.

V. DISCUSSION

The logical next step is to compare the simulated EEG
traces to actual data collected from mice, with the aid
of an epileptologist. With further work in this direc-
tion, our research could potentially go from a mathemat-
ical curiosity to an applicable therapeutic and diagnostic
tool.

Finding an instructive phase-space embedding of the
Hindmarsh-Rose network would be challenging (seeing
as it is a 639-dimensional system), but would likely reveal
potentially useful insights into the nature of the mecha-
nisms underlying these systems. The same could be said
for Lyapunov analysis, as well as finding an informative
way to create a bifurcation diagram and perform more
in-depth bifurcation analysis.

Another way our work could be extended is by look-
ing at chimera state collapse and its relationship to sec-
ondary seizure generalization. However, it would be ex-
tremely computationally expensive, given the size of the
system, and would therefore require some clever handi-
work [34].

Future work could also naturally be performed on bet-
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FIG. 14. The chimera-like landscape of parameter space
on (α, β) ∈ (0, 1.0) × (0, 1.0). The aphysical region of the
model is shown in white. The black rectangle in the bottom
left corner indicates the region of parameter space shown in
Fig. 15. The dashed line has a slope of −1, to serve as a guide
for Section IV C. The chimera-like index (defined in Eq. 5) is
normalized to 1

7 , as usual.
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FIG. 15. A. The chimera-like index χ of runs with (α, β) ∈
(0, 0.2)×(0, 0.2). As before, the chimera-like index is normal-
ized to 1

7 . Note that the values of the index are much higher
in this patch than in most of the rest of (α, β) ∈ (0, 1)×(0, 1)
(Fig. 14). B. The variance of the chimera-like index.

ter, more up-to-date connectomes [37].
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