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Foreign power interference in domestic elections is an age-old, existential threat to societies.
Manifested through myriad methods from war to words, such interference is a timely example of
strategic interaction between economic and political agents. We model this interaction between
rational game players as a continuous-time differential game, constructing an analytical model of
this competition with a variety of payoff structures. Structures corresponding to all-or-nothing
attitudes regarding the effect of the interference operations by only one player lead to an arms
race in which both countries spend increasing amounts on interference and counter-interference
operations. We then confront our model with data pertaining to the Russian interference in the
2016 United States presidential election contest, introducing and estimating a Bayesian structural
time series model of election polls and social media posts by Russian internet trolls. We show that
our analytical model, while purposefully abstract and simple, adequately captures many temporal
characteristics of the election and social media activity.

I. INTRODUCTION

In democratic and nominally-democratic countries,
elections are societally and politically crucial events in
which power is allocated [1]. In fully-democratic coun-
tries elections are the method of legitimate governmental
change [2]. One country, whom we will label “Red”, may
wish to influence or appear to influence the outcome of an
election in another country, whom we will label “Blue”,
because of the importance or perceived importance of
elections in Blue with respect to Red’s interests. Such
attacks on democracies are not new; it is estimated that
the United States (U.S.) and Russia or its predecessor,
the Soviet Union, often interfere in the elections of other
nations and have consistently done this since 1946 [3].
Though academic study of this area has increased [4], we
are unaware of much formal modeling of noncooperative
dynamics in an election interference game.

Here, we consider a Red - Blue two-player game in which
Red wishes to influence a two-candidate, zero-sum elec-
tion taking place in Blue’s country, as outlined above. In
this context, we think of Red and Blue as the respective
foreign (Red) and domestic (Blue) intelligence services
of the two countries. Red wants a particular candidate
(candidate A) to win the election, while Blue wants the
effect of Red’s interference to be minimized. We charac-
terize this problem theoretically, deriving a noncooper-
ative, non-zero-sum differential game, and then explore
the game numerically. We find that all-or-nothing atti-
tudes by either Red or Blue can lead to arms-race con-
ditions in interference operations. In the event that one
party credibly commits to playing a particular strategy,
we derive further analytical results.

Turning to a recent instance of election interference, we
confront our model with the 2016 U.S. presidential elec-
tion in which Russia conducted interference operations
[5]. After fitting a Bayesian structural time series model
to election polls and social media posts associated with
Russian Internet Research Agency internet trolls, We

show that our model, though simple, is able to adequate-
ly capture many of the observed and inferred parameters’
dynamics. We close by proposing some theoretical and
empirical extensions to our work.

II. THEORY

A. Election interference model

We consider the case of a simple election between two
candidates in a homogeneous environment (e.g., no insti-
tutions such as an Electoral College) so that the election
process at any time t ∈ [0, T ], a noisy representation of
which is a public poll, can be represented by a scalar
Zt ∈ [0, 1]. The actual result of the election is ZT . We
hypothesize that the election dynamics take place in a
latent space, where dynamics are represented by Xt ∈ R.
Without loss of generality, we will set x < 0 to be val-
ues of the latent poll that favor candidate A and x > 0
that favor candidate B. The latent and observable space
are related by Zt = φ(Xt), where φ is a smooth sig-
moidal function. We will choose φ(x) = 1

1+e−x . The
election takes place in a population of N voting agents,
each of whom updates their preferences over the candi-
dates in the latent space at each time step tn by a small
random variable ξn,tn . These random variables satisfy
En [ξn,tk ] = 0 for all t. The election process’s increments
are the sample mean of the realizations of the voting
agents’ preferences at time t. In the absence of interfer-
ence, the stochastic election model is thus very simple—
an unbiased random walk, which we write as

Xtk+1
= Xtk +

1

N

∑
1≤n≤N

ξn,tk∆t, (1)

where ∆t = tk+1 − tk. We display sample realizations
of this process for different distributions of ξn,tk in Fig.
1. Though one distribution of ξn,tk describes the process
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FIG. 1. Though simple, the random walk latent space elec-
tion model is a unified approximation to varied population
candidate preference updates. The latent election process
evolves according to Xk+1 = Xk + 1

N

∑
1≤n≤N ξn,k, where

ξn,k is voting agent n’s shift toward the left (< 0) or right
(> 0) of the political spectrum at time k. In the cen-
ter panel, the solid curve is a draw from the latent elec-
tion process resulting from the preference updates ξn,t ∼
B
(
0.1T−t

T
+ 1.5 t

T
, 0.1T−t

T
+ 1.5 t

T

)
, where B(α, β) is the Beta

distribution and we have set T = 365. This change in
political preference shift distribution describes an electorate
with increasing resistance to change in their political view-
points. We display the preference shift distributions at t = 0
(t = T ) in Panel A (Panel B). For contrast, the dashed
curve is a draw from the latent election process resulting from
ξn,t ∼ B

(
1.5T−k

T
+ 0.1 k

T
, 1.5T−k

T
+ 0.1 k

T

)
, which describes

an electorate for which political viewpoints are in increasing
flux. We show the corresponding preference shift distributions
at t = 0 (t = T ) in Panel D (Panel E). Despite these prefer-
ence updates that are, in some sense, opposites of each other,
the latent processes Xt are statistically effectively identical
and are both well-modeled by the continuum approximation
dXt = σdWt.

of hardening of political preferences and another charac-
terizes preferences that are in increasing flux, the sample
paths of Xtk are statistically effectively identical since
1
N

∑
n ξn,tk does not vary much between the distribu-

tions. When N is large we can reasonably approximate
this process by the Wiener process, dXt = σdWt, where

σ2 ' Var
(

1
N

∑
1≤n≤N ξn,t

)
. We denote the control poli-

cies of Red and Blue— the functions by which Red and
Blue attempt to influence (or prevent influence on) the
election—by uR(t) and uB(t). These control policies are
abstract variables in the context of our model but can
be interpreted as monetary expenditures on interference

operations.

We will assume that Red and Blue can affect the mean
trajectory of the election but not its volatility (variance of
its increments). We make this assumption because Xt is
an approximation to the process described by Eq. 1 and,
as displayed in Fig. 1 and described above, this process’s
statistical characteristics do not change much even when
the voting population’s underlying preference change dis-
tributions are significantly different. Thus, under the
influence of Red’s and Blue’s control policies, the elec-
tion dynamics become

dXt = f(uR(t), uB(t))dt+ σdWt, X0 = y. (2)

To first order expansion we have f(uR(t), uB(t)) = a0 +
aRuR(t)+aBuB(t)+O(u2), so the state equation becomes

dXt = [uR(t) + uB(t)]dt+ σdWt, X0 = y, (3)

since we have assumed a priori zero drift and can absorb
constants into the definition of the control policies. We
will use Eq. 3 as the state equation for the remainder of
the paper.

B. Subgame-perfect Nash equilibria

Red and Blue each seek to minimize separate scalar
cost functionals of their own control policy and the other
agent’s control policy; for now, we will assume that the
agents do not incur a running cost from the value of the
state variable. The cost functionals can thus be written

EuR,uB,X

{
ΦR(XT ) +

∫ T

0

CR(uR(t), uB(t)) dt

}
, (4)

and

EuR,uB,X

{
ΦB(XT ) +

∫ T

0

CB(uR(t), uB(t)) dt

}
. (5)

The functions CR and CB represent the running cost
or benefit of conducting election interference operations.
With the assumption that it is equally costly to con-
duct operations that favor candidate A or candidate B
and the additional requirement that the cost functions
be smooth, we take the cost functions to be

Ci(uR, uB) = u2i − λiu2¬i (6)

for i ∈ {R,B}. The non-negative scalar λi parameterizes
the utility gained by player i from observing player ¬i’s
effort; if λi is high, player i gains utility from player
¬i’s expending resources, while if λi = 0, player i has
no regard for ¬i’s level of effort but only for their own
running cost and the final cost.

Though the running cost functions are equivalent across
players in form, the final conditions differ between Red



3

and Blue because of their qualitatively distinct objec-
tives. Since Red wants to influence the outcome of the
election in Blue’s country in favor of candidate A, their
final cost function ΦR must satisfy ΦR(x) < ΦR(y) for
all x < 0 and y > 0; it seems reasonable to further
assume that ΦR is monotonically non-decreasing every-
where. A straightforward approximation is to assume
ΦR(x) = c0 + c1x+O(x2) ∼ cx, since the constant does
not affect the relative dynamics. However, this allows the
somewhat unrealistic limiting condition of infinite benefit
(cost) if candidate A (B) gets 100% of the vote in the elec-
tion. We will thus also consider two final conditions with
bounded extremal cost: one smooth, ΦR(x) ∝ tanh(x);

and one discontinuous, ΦR(x) ∝

{
1 if x ≥ 0

−1 if x < 0
. Blue is

attempting to exactly counteract the effects of Red’s con-
trol policy, hence the form of the state dynamics present-
ed in Eq. 3. Since Blue is a priori indifferent between the
outcomes of the election, at first glance it appears that
the final condition ΦB(x) = 0 is a reasonable modeling
choice. However, for the case λB = 0, this results in Blue
taking no action at all in the game due to the function-
al form of Eq. 6. In other words, if Blue does not gain
utility from Red expending resources, then Blue will not
try to stop red from interfering in an election in Blue’s
country! Hence it appears likely that Blue must actually
have nontrivial preferences over the election outcome.

We present three possible alternatives for a cost function
representing Blue’s preferences. Blue may simply be sus-
picious that a result was due to Red’s interference if XT

is too far from E0[XT ] = 0, so, again enforcing smooth-
ness, we have ΦB(x) = x2. However, this neglects the
reality that Red’s objective is not to have either candi-
date A or candidate B win by a large margin, but rather
to have candidate A win (i.e., have XT < 0). Thus
Blue might be unconcerned about larger positive values

of the state variable and have ΦB(x) ∝

{
0 if x > 0

x2 if x ≤ 0
.

Alternatively, Blue may accept the result of the election
as long as it does not stray “too far” from the initial
expected value; we have a discontinuous final condition

ΦB(x) ∝

{
1 if |x| > ∆

−1 if |x| < ∆
, where ∆ is Blue’s accepted

margin of error. A nondenumerable panolopy of other
final conditions can be hypothesized, but these capture
the range of possible payoff structures.

The application of the dynamic programming principle
[6, 7] to Eqs. 3, 4, and 5 leads to a system of coupled
Hamilton-Jacobi-Bellman equations for the value func-
tions of Red and Blue,

−∂VR
∂t

= min
uR

{
∂VR
∂x

[uR + uB] + u2R − λRu2B +
σ2

2

∂2VR
∂x2

}
,

(7)
and

−∂VB
∂t

= min
uB

{
∂VB
∂x

[uR + uB] + u2B − λBu2R +
σ2

2

∂2VB
∂x2

}
.

(8)
The dynamic programming principle does not result in
an Isaccs equation because the game is not zero-sum and
the cost functionals for Red and Blue can have differ-
ent functional forms. Performing the minimization with
respect to the control variables gives the Nash equilibri-
um control policies,

uR(t) = −1

2

∂VR
∂x

∣∣∣∣
(t,Xt)

(9)

uB(t) = −1

2

∂VB
∂x

∣∣∣∣
(t,Xt)

, (10)

and the exact functional form of Eqs. 7 and 8,

−∂VR
∂t

= −1

4

(
∂VR
∂x

)2

− 1

2

∂VR
∂x

∂VB
∂x
− λR

4

(
∂VB
∂x

)2

+
σ2

2

∂2VR
∂x2

, VR(x, T ) = ΦR(x); (11)

−∂VB
∂t

= −1

4

(
∂VB
∂x

)2

− 1

2

∂VB
∂x

∂VR
∂x
− λB

4

(
∂VR
∂x

)2

+
σ2

2

∂2VB
∂x2

, VB(x, T ) = ΦB(x). (12)

When solved over the entirety of state space, solu-
tions to Eqs. 11 and 12 constitute the strategies of a
subgame-perfect Nash equilibrium because, no matter
the action taken by player ¬i at time t, player i is
able to respond with the optimal action at time t + dt.
Given the solution pair VR(x, t) and VB(x, t), the dis-
tribution of Z = (x, uR, uB)T can be written analyti-
cally. Substitution of Eqs. 9 and 10 into Eq. 3 gives

dx = − 1
2

{
∂VR

∂x |(t,x) + ∂VB

∂x |(t,x)
}

dt+σdW. We discretize
the state equation to obtain

xn+1 − xn +
∆t

2
[V ′Rn + V ′Bn]

− (∆t)1/2σwn − yδn,0 = 0,

(13)

with wn ∼ N (0, 1) and where we have put V ′in ≡
V ′i (xn, tn). Thus the distribution of an increment of the
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latent electoral process is

p(xn+1|xn) =
1√

2πσ2∆t
e−

∆t
2σ2 (

xn+1−xn
∆t + 1

2 [V
′
Rn+V

′
Bn]−y

δn0
∆t )2 .

(14)
Now, using the Markov property of Xt, we have

p(x1, ..., xN |x0) =

N−1∏
n=0

p(xn+1|xn) (15)

=
1

(2πσ2∆t)N/2
exp {−S(x1, ..., xN )} ,

(16)

where

S(x1, ..., xN ) =
1

2σ2

N−1∑
n=0

∆t
[xn+1 − xn

∆t

+
1

2
[V ′Rn + V ′Bn]− yδn,0

∆t

]2
.

(17)

Taking N → ∞ as N∆t = T remains constant gives a
standard Gaussian path integral with an action S(x(t))
that incorporates the derivatives of the value functions.
Since uR and uB are just time-dependent functions of
x(t), their distributions can also be found explicitly using
the probability distribution Eq. 16 and the appropri-
ate (time-dependent) Jacobian transformation. Unfor-
tunately, these analytical results are of limited utility
because we are unaware of analytical solutions to the
system given in Eqs. 11 and 12, and hence V ′R(x, t) and
V ′B(x, t) must be approximated. However, we will have
something to say about analytical solutions presently in
the case that player i announces a credible commitment
to a particular control path.

In the general case presented above, we find the value
functions VR(x, t) and VB(x, t) numerically through back-
ward iteration, enforcing a Neumann boundary condition
at a large but finite value of the latent state variable. Fig.
2 displays example realizations of the value functions for
different λi and final conditions. The value functions
display diffusive behavior in common due to the game’s
stochasticity, but also differ qualitatively depending on
the effect of the final condition propagating backward
in time. When the final conditions are discontinuous,
as is the case in the top panels of Fig. 2, the deriva-
tives of the value function assume greater magnitudes
and vary more rapidly throughout the game than do the
derivatives of the value function when the final condi-
tions are continuous; this is a typical feature of solutions
to equations of HJB-type [8] and has consequences for
the game-theoretic interpretation of these results, as we
discuss below. Fig. 2 also demonstrates that the extrema
of the value functions are not as large in absolute mag-
nitude when λR = λB = 0 as when λR = λB = 2; this
is because higher values of λi mean that player i derives
utility not only from the final outcome of the game but

also from causing player ¬i to expend resources in the
game.

Eqs. 7 and 8 give the closed-loop control policies uR and
uB respectively given the current state Xt and time t. We
display samples of uR, uB, and the electoral process Zt in
Fig. 3 to illuminate some of the qualitative properties of
this game before considering a more comprehensive sweep
over parameters. We simulate the game with parameters

λR = λB = 2, ΦR(x) = x, and ΦB(x) =

{
0 x > 0
1
2x

2 x ≤ 0
.

We plot the control policies in the top panel including
the mean control policies E[uR] and E[uB], displayed in
thicker curves. For this parameter set, it is optimal for
Red to begin play with a relatively large amount of inter-
ference and, in the mean, decrease the level of interfer-
ence over time. Conversely, throughout the game Blue
increases their resistance to Red’s interference. Despite
this resistance, the bottom panel reveals that, for this
parameter set, Red is able to accomplish their objective
of causing candidate A to win: in the mean case, candi-
date A enjoys a comfortable lead in the election poll by
the final time.

To gain a better idea of the qualitative nature of
this game for a more varied set of parameters, we
conduct a coarse parameter sweep over λR, λB, ΦR,
and ΦB. Fig. 4 displays the results of this param-
eter sweep. We plot Red and Blue Nash equili-
brum strategies for each of a set of 81 (= 34) dis-
crete parameter combinations: λR, λB ∈ {0, 1, 2},

ΦR(x) ∈

{
x, tanh(x),

{
2 if x ≥ 0

−2 if x < 0

}
, and ΦB(x) ∈{

1
2x

2,

{
0 if x > 0
1
2x

2 if x ≤ 0
,

{
2 if |x| > ∆

−2 if |x| < ∆

}
. For each

combination, we generated 1000 trials of the election pro-
cess and averaged the resulting strategies to generate esti-
mates of the mean strategy profile, shown as thick red
and blue curves. Higher values of the coupling parame-
ters λi cause greater mean magnitude in control policies.
Certain combinations of parameters lead to an “arms-
race” effect in both playeres’ control policies, wherein
the Nash equilibrium strategies entail superexponential
growth in the control policies near the end of the game.
This occurs when at least one player has a discontinuous
final condition. To the extent that this model reflects
reality, this points to a general statement about elec-
tion interference operations: An all-or-nothing mindset
by either Red or Blue regarding the final outcome of the
election leads to an arms race that negatively affects both
players. This is a general feature of any situation to
which the model described by Eqs. 3—5 applies.
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FIG. 2. Example value functions corresponding to the system Eqs. 11 and 12. Panels A and B display VR(x, t) and VB(x, t)

respectively for λR = λB = 0, ΦR(x) ∝

{
1 if x ≥ 0

−1 if x < 0
, and ΦB(x) ∝

{
1 if |x| > ∆

−1 if |x| < ∆
with ∆ = 0.1, while panels C and D

display VR(x, t) and VB(x, t) respectively for λR = λB = 2, ΦR(x) = 2 tanh(x), and ΦB(x) ∝

{
0 if x > 0

x2 if x ≤ 0
. For each solution

we enforce Neumann no-flux boundary conditions and set σ = 0.6. The solution is computed on a grid with x ∈ [−3, 3], setting
dx = 0.025, and integrating for Nt = 8000 timesteps.

C. Credible commitment

If player ¬i credibly commits to playing a particular
strategy v(t) on all of [0, T ], then the difficult problem
of player i’s finding a subgame-perfect Nash equilibrium
strategy profile becomes a slightly easier problem of opti-
mal control. Player i now seeks to find the policy u(t)
that minimizes the functional

Eu,X

{
Φ(XT ) +

∫ T

0

(u(t)2 + λv(t)2) dt

}
, (18)

subject to the modified state equation

dx = [u(t) + v(t)]dt+ σdW. (19)

Following the logic of Eqs. 7 and 9, player i’s value func-
tion is now given by the solution to the considerably-
simpler HJB equation

−∂V
∂t

= −1

4

(
∂V

∂x

)2

+ v(t)
∂V

∂x
+ λv(t)2 +

σ2

2

∂2V

∂x2
,

V (x, T ) = Φ(x).
(20)

Though nonlinear, this HJB equation can be linearized
through a change of variables and subsequently be for-
mally solved through path integral methods [9]. Setting
V (x, t) = −η logϕ(x, t), substituting in Eq. 20, and per-
forming the differentiation, we are able to remove the

nonlinearity iff η2

4
1
ϕ2

(
∂ϕ
∂x

)2
= σ2η

2
1
ϕ2

(
∂ϕ
∂x

)2
, so we find
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FIG. 3. We display realizations of uR and uB in the top panel
and paths of the electoral process in the bottom panel. We
draw these realizations from the game simulated with param-

eters λR = λB = 2, ΦR(x) = x, and ΦB(x) =

{
0 x > 0
1
2
x2 x ≤ 0

.

For this parameter set, Blue is fighting a losing battle—the
bottom panel clearly shows that, even with Blue attempting
to stop Red from interfering in the game, optimal play by
both players results in a significantly lower E[Zt] than for the
electoral process without any interference.

η = 2σ2. Eq. 20 becomes a backward Kolmogorov equa-
tion with time-dependent drift and sink term,

∂ϕ

∂t
=

λ

2σ2
v(t)2ϕ(x, t)− v(t)

∂ϕ

∂x
− σ2

2

∂2ϕ

∂x
,

ϕ(x, T ) = exp

{
− 1

2σ2
Φ(x)

} (21)

Application of the Feynman-Kac formula gives the solu-
tion to Eq. 21 as [10]

ϕ(x, t) = exp

{
− λ

2σ2

∫ T

t

v(t′)2 dt′

}
×

EYt

{
exp

[
− 1

2σ2
Φ(YT )

] ∣∣∣∣Yt = x

}
,

(22)

where Yt is defined by

dYt = v(t) dt+ σdWt, Y0 = x. (23)

Using this formalism, path integral control can be applied
to estimate the value function for arbitrary v(t). Fig. 5
displays path integral solutions to Eq. 20 when player ¬i
credibly commits to playing v(t) = t2 for the duration of
the game and player i’s final cost function takes the form

Φ(x) =

{
1 if |x| > 1

−1 if |x| < 1
. In the further restricted case

where there is a credible commitment by one party to
play v(t) = v, a constant control policy, we can say more
about the nature of solutions. We will also show present-
ly why this constraint is actually not all that restrictive.
Under this assumption, the probability law correspond-
ing with Eq. 23 is given by

u(y, t) =
1√

2πσ2t
exp

{
1

2σ2t
[(y − x)− vt]2

}
, (24)

so that the (exponentially-transformed) value function
reads

ϕ(x, t) =
exp

{
−λv

2

2σ2 (T − t)
}

√
2πσ2(T − t)

×

∞∫
−∞

exp

{
− 1

2σ2

[
Φ(y) +

((y − x)− v(T − t))2

T − t

]}
dy.

(25)
This integral can be evaluated exactly for many Φ(y)
and can always be approximated using the method of
Laplace. If σ is small, Laplace’s approximation to the
integral reads

∞∫
−∞

exp

{
− 1

2σ2

[
Φ(y) +

((y − x)− v(T − t))2

T − t

]}
dy

'
√

2πσ2(T − t) exp

{
− 1

2σ2
Φ(x+ (T − t)v)

}
,

so that, inverting the transformation above, the value
function can be approximated by

V (x, t) = λv2(T − t) + Φ(x+ (T − t)v), (26)

and the control policy by

u(t) = −1

2
Φ′(x+ (T − t)v). (27)

Fig. 6 displays the results of approximating the val-
ue function with Eq. 26 at t = 0, along with the
true (numerically-determined) value function at both
t = 0 and t = T . Even with these seemingly-restrictive
assumptions, this theory can be used to provide a model-
agnostic method for value function approximation in a
noncooperative scenario. For arbitrary v(t), expansion
about t + ∆t gives v(t + ∆t) = v(t) + v′(t)∆t, leading
to an approximate value function iteration over a small
time increment ∆t,

V (x, t+∆t) ' λv(t)2(T−t)+Φ(x+(T−t)[v(t)+v′(t)∆t]).
(28)
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FIG. 4. The universe of possible strategies varies qualitatively based on the coupling parameters λR and λB and the final
conditions ΦR and ΦB. We obtain the value functions VR and VB through numerical solution of Eqs. 11 and 12, and then
calculate the realized Nash equilibrium strategies uR and uB for 1000 simulations of the election process. We then average
these simulations and plot them in thick red and blue curves, representing E[uR(t)] and E[uB(t)] respectively. Along with these
mean strategies, we plot two arbitrary realizations of uR and uB in thinner red and blue curves. For parameter combinations
leading to large fluctuations near the final time, we display the final 10% of the curves in inset plots with a linear-log scaled
vertical axis and log scaled horizontal axis.

In application, both of v(t) and v′(t) can be estimated
from possibly-noisy data on t′ ∈ [0, t] and used in this
approximation.

III. APPLICATION

A recent notable example of election interference oper-
ations is that of the Russian military foreign intelligence
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FIG. 5. Result of the path integral Monte Carlo solution
method applied to Eq. 20 with the final condition Φ(x) ={

1 if |x| > 1

−1 if |x| < 1
and v(t) = t2. Approximate value functions

are computed using N = 10000 trajectories sampled from
Eq. 23 for each point (x, t). Approximate value functions
are displayed in Panel A for t ∈ {0, 0.75, 1 − dt} and the
corresponding approximate control policies in Panel B, along
with their smoothed counterparts (15-step moving averages,
plotted in dashed curves). Panel C displays realizations of
Yt, the process generating the measure under which the solu-
tion is calculated. This method can be advantageous over
numerical solution of the nonlinear PDE when the final con-
dition is discontinous, as here, since in this case Eq. 20 has
a solution for all t ∈ [0, T ] only in the sense of distribu-
tions. The analytical control vector at t = T is given by
u(t) = − 1

2
[δ(x− 1)− δ(x+ 1)].

service (GRU)’s and Internet Research Agency (IRA)’s
operations in the 2016 U.S. presidential election con-
test to attempt to harm one candidate’s chances of win-
ning (Hilary Clinton) and aid another candidate (Don-
ald Trump) [5]. Though Russian foreign intelligence had
conducted election interference operations in the past
at least once before, in the Ukrainian elections of 2014
[11], the 2015–16 operations were notable in that IRA
operatives used the microblogging website Twitter in an
attempt to influence the election outcome. When this
attack vector was discovered, Twitter accounts associat-
ed with IRA activity were shut down and all data asso-
ciated with those accounts was collected and analyzed
[12, 13]. However, to the best of the authors’ knowl-
edge, there exists no publicly-available effort to reverse-
engineer the exact qualitative nature of the control vec-
tors used by the the IRA—Red team—and by U.S.
domestic and foreign intelligence agencies—Blue team.

0
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t)

V(x, 0)
V(x, T)
VLaplace(x, 0)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1.0

0.5

0.0

0.5

1.0

V(
x,

t)

V(x, 0)
V(x, T)
VLaplace(x, 0)

FIG. 6. When player ¬i commits to playing a constant strat-
egy profile v(t) = v for a fixed interval of time, an analytic
approximate form for player i’s value function V (x, t) is given
by V (x, t) ' λv2(T − t) + Φ(x+ (T − t)v). The numerically-
determined value functions at time t = 0 are shown above in
black curves, while the Laplace approximations at t = 0 are
displayed in dashed curves. The curves of lighter hue are the
value functions at the final time T . The top panel demon-
strates results for the final condition Φ(x) = 1

2
x2, while the

bottom panel has Φ(x) = tanh(x).

In an effort to perform data-driven simulation of Red-
Blue dynamics, we fit a form of the model described in
Sec. II A and compare it to qualitative theoretical predic-
tions, finding the free parameters in the model that best
describe the observed data and inferred latent controls.

Since the U.S. presidential election system is of nontriv-
ial complexity, owing both to the number of minor party
candidates that also compete and also to the unique Elec-
toral College system, we make the simplifying assump-
tions stated in Sec. I—namely, that only two candidates
contest the election and that the election process is mod-
eled by a simple “candidate A versus candidate B” poll.
We can observe neither the Red uR(t) nor Blue uB(t)
control policies, but are able to observe a proxy for uR,
namely, the number of tweets sent by IRA-associated
accounts in the year leading up to the 2016 election [14].
This dataset contains a total of 2,973,371 tweets from
2,848 unique Twitter handles. Of these tweets, a total
of 1,107,361 occurred in the year immediately preced-
ing the election (08/11/2015 - 08/11/2016). We grouped
these tweets by day and used the time series Ntweets(t) =
total number of tweets on day t as an observable from
which uR could be inferred. This time series was sub-
sequently normalized to have (intertemporal) zero mean
and unit variance for ease in inference. We used the Real-
ClearPolitics poll aggregation as a proxy for the electoral
process itself [15], averaging polls that occurred at the
same timestamp and using the earliest date in the date
range of the poll if it was conducted over multiple days
as the timestamp of that observation.

With these two observables, we fit a Bayesian structural
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time series model of the form presented in Fig. 7, written
as 

µB ∼ Normal(0, 1)

µR ∼ Normal(0, 1)

σ ∼ HalfCauchy(2)

uB ∼ GaussianRandomWalk(µB, σ)

uR ∼ GaussianRandomWalk(µR, σ)

X ∼ GaussianRandomWalk(uB − uR, 1)

σtweet ∼ HalfCauchy(0.5)

Ntweets, norm ∼ Normal(uR, σtweet)

σe ∼ HalfCauchy(0.25)

α ∼ HalfCauchy(0.5)

e ∼ Normal
(

1
1+e−αX

, σe

)
.

(29)

We have written X for the election process in latent space
and e for the observed election poll results on [0, 1]. We fit
the model of Eq. 29 using the No-U-Turn Sampler algo-
rithm [16], sampling 2000 draws from the model’s distri-
bution from each of two independent Markov chains, not
including 1000 draws per chain of burn-in. The sampler
appeared to converge well based on graphical considera-
tion of draws from the posterior predictive distribution
of Ntweets, norm and e, and because Gelman-Rubin statis-

tics for all variables had mean value E[R̂] < 1.01 except

for that of σ (E[R̂σ] = 1.0865). Fig. 8 displays draws
from the latent distributions of uR and uB, along with
draws from the posterior predictive distributions of e and
Ntweets, norm overlaid with the respective observed series.
Latent control policies display a roughly-convex shape,
with higher values in the beginning of the time under
study, a steady decrease toward the middle of time, and
a more rapid increase toward larger values near t = 1.

To gain qualitative insight from the theoretical model
proposed above, we need to find the parameter values
θ = (λR, λB, σ,ΦR,ΦB) that best explain the observed
data and latent control vectors fit using the model of Eq.
29. We use Legendre polynomials to approximate the

functions ΦR and ΦB, setting Φi(x) '
∑K
k=0 aikPk(x),

so that the actual parameter vector considered is θ =
(λR, λB, σ, a0,r, ..., aK,r, a0,b, ..., aK,b). Bayes’s theorem
states that

p(θ|Z,M) =
p(Z|θ,M)p(θ|M)

p(Z|M)
,

where M is the model presented above, and Z is the col-
lection of observed data and unobservable inferred latent
variables, Z = (X,uR, uB). Though Eq. 16 and sub-
sequent application of time-dependent Jacobian trans-
formations gives us an analytical method of determin-
ing the distributions of X, uR, and uB, and hence a
method for determining p(θ|Z,M), in practice this result
is not much help since we still must numerically solve the
PDEs Eqs. 11 and 12 in order to estimate V ′R and V ′B, as
well as numerically estimate the appropriate Jacobians.

To avoid at least the numerical Jacobian estimation, we
approximate the likelihood function using a nonparamet-
ric kernel-based method with kernel function K, so that

P (Z|θ,M) ' 1

N

N∑
n=1

K(Z − Zn|θ). (30)

The values Zn|θ are draws from the distribution of
(Xt, uR(t), uB(t)) generated by the analytical model giv-
en a particular value of θ. A maximum a posteriori esti-
mate of θ is then given by

θ∗ ' arg max
θ

p(θ|M)

N∑
n=1

K(Z − Zn|θ). (31)

We will not state any a priori beliefs over θ and so set
p(θ|M) ∝ 1, so that an MAP estimate of θ can be found

through maximization of
∑N
n=1K(Z − Zn|θ). We set

K(x) to be a Gaussian kernel and maximize a stochastic

estimation of log10

∑N
n=1K(Z − Zn|θ) using N = 500

draws from the distribution of paths corresponding with
the value functions given by solutions of the system of
HJB equations. This maximization was performed using
the differential evolution algorithm [17]. Fig. 9 displays
draws from the estimated p(Z|θ∗,M), the latent uR,
uB, and X inferred in fitting the model of Eq. 29, and
the the estimated ΦR and ΦB. The coupling parameters
are estimated to be λR = 0.716 and λB = 1.054, while
the final-time cost functions are approximated in the
optimum by ΦR(x) ' −1.713P0(x/2) + 3.269P1(x/2) −
1.221P2(x/2) + 0.266P3(x/2) − 2.884P4(x/2) and
ΦB(x) ' −2.823P0(x/2)−3.993P1(x/2)+1.812P2(x/2)+
0.696P3(x/2) + 2.239P4(x/2). As hypothesized in Sec.
II, Red’s final cost is increasing on most of its spatial
domain, while Blue’s final cost is decreasing on most of
its spatial domain. Draws of uR and uB from p(Z|θ∗,M)
show qualitatively good agreement with uR and uB
inferred from data over most of the time range under
consideration, but do not accurately model the dynamics
at the very beginninng (approximately first 45 days) or
end (approximately last 45 days) of the 2016 election
cycle. Draws of X from p(Z|θ∗,M) show qualitatively
good agreement with X inferred from data over nearly
all of the time range under consideration except for the
first approximately 20 days.

DISCUSSION AND CONCLUSION

We introduce, analyze, and numerically solve (analyt-
ically solve in simplified cases) a simple, first-principles
model of noncooperative strategic interference by a for-
eign intelligence service from one country (Red) in
an election occurring in another country (Blue) and
attempts by Blue’s domestic intelligence service to
counter this interference. Though simple, our model is
able to provide qualitative insight into the dynamics of
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FIG. 7. A discrete-time version of the model discussed in Section II with observable proxies for the latent election process and
Red control policy. Latent control vectors by Red and Blue agents can be inferred by noisy observations of two associated time
series. Tweets by Twitter “troll” accounts associated with the Russian Internet Research Agency (Red tweets) were grouped
by day and the total count measured, while a relative poll (election ≡ Clinton

Clinton+Trump
) in the 365 days prior to the 2016 U.S.

presidential election (which occurred on 08/11/2016) was computed using RealClearPolitics poll aggregation data. The number

of tweets was normalized as Ntweets, norm = Ntweets−E[Ntweets]
Std(Ntweets)

−min Ntweets−E[Ntweets]
Std(Ntweets)

for stable model fitting.

FIG. 8. Fitting of the graphical model displayed in Fig. 7 results in the latent control policies displayed in Panel G with the
inferred uR displayed in red and inferred uB displayed in blue, and posterior predictive distributions of the observed election
process (Panel H) and observed normalized IRA tweet activity (Panel I). Panel A–F display marginal posterior distributions
of model parameters α, µR, µB, σ, σe, and σtweets. As noted above, the number of tweets was normalized as Ntweets, norm =
Ntweets−E[Ntweets]

Std(Ntweets)
− min Ntweets−E[Ntweets]

Std(Ntweets)
for stable model fitting; this normalization procedure is why posterior predictive

samples N ′norm may have values below zero. The spike in tweets in early October of 2016 co-occurred with the U.S. Director of
National Intelligence and Department of Homeland Security’s joint statement accusing Russia of interference in the presidential
election process.
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FIG. 9. Using a kernel-based approximation to the functional density p(Z|θ,M), we used the differential evolution algorithm
to compute a maximum a posteriori estimate of the parameter vector θ. Panel A displays draws of uR and uB from the
distribution p(Z|θ∗,M) in thin curves, along with the inferred values of uR and uB from the 2016 U.S. presidential election.
The model describes the data well except near the beginning and end of the time period under study, in which dynamics other
than those modeled appear to be predominant. Panel C displays draws of X from p(Z|θ∗,M), which also appear to describe
the data well. Panel B shows the MAP estimates for ΦR (red curve) and ΦB (blue curve).
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such strategic interactions and performs well when fitted
to polling and social media data surrounding the 2016
U.S. presidential election contest. We find that all-or-
nothing attitudes regarding the outcome of the election
interference (whether or not it was successful) with no
gradation of utility, even if these attitudes are held by
only one player, result in an arms race of spending on
interference and counter-interference operations by both
players. We then find analytical solutions to player i’s
optimal control problem in the case where player ¬i cred-
ibly commits to a strategy v(t) and detail an analytical
value function approximation that can be used by player
i even when player ¬i does not commit to a particular
strategy as long as player ¬i’s current strategy and its
derivative can be estimated. We demonstrate the appli-
cability of our model to real election interference scenar-
ios by analyzing the Russian effort to interfere in the 2016
U.S. presidential election through observation of Russian
Internet Research Agency (IRA) troll posts on the web-
site Twitter. Using this data, along with aggregate pres-
idential election polling data, we infer the time series of
Russian and U.S. control policies and find parameters of
our model that best explain these inferred (latent) con-
trol policies. We show that, for most of the time under
consideration, our model provides a good explanation for
the inferred variables.

There are several areas in which our work could be
improved. From a theoretical point of view, our model is
one of the simplest that can be proposed to model this sit-
uation. While from an a priori point of view it is derived
from first principles and makes a minimum of assump-
tion about the election mechanics, electorate, and cost
(equivalently, utility) functions of the respective intelli-
gence agencies and hence is justafiable on the grounds
of parsimony and acceptable empirical performance (on
at least one election contest), the lack of assumptions
that we make is rather unrealistic. Though a pure ran-
dom walk model for am election is not without serious
precedent [18], a prudent extension of this work could
incorporate non-interference-related state dynamics as a
generalization of Eq. 3, e.g., as

dx = [µ0 + µ1x+ uR(t) + uB(t)]dt+ σdW. (32)

This state equation can account for simple drift in the
election results as a candidate endogenously becomes
more or less popular or capture possible mean-reverting
behavior in a hotly-contested race. Another interest-
ing extension would allow for state-dependent running

costs, particularly in the running cost of the Red player.
Though the action of election interference is nominally
intended to cause a particular candidate to win or lose,
there are often other goals as well, such as undermining
the Blue citizens’ trust in their electoral process. Thus,
Red might gain utility even just from having a partic-
ular candidate pull ahead in polls multiple times when
that candidate would not have otherwise done so, even if
the candidate does not actually win the election. In the
context of our model, this can be represented by setting
Red’s cost functional to be

EuR,uB,X

{
ΦR(XT ) +

∫ T

0

[−1Xt<0(Xt)

+ u2R(t)− λRu2B(t)] dt
}
.

(33)

Both of these modifications are relatively easy to incor-
porate into the model, as demonstrated, and will not
qualitatively change the nature of the value functions VR
and VB since their effects will simply be to introduce
an additional drift term (Eq. 32) or a continuous, non-
differentiable source term (Eq. 33). A more fundamental
qualitative change would be to expand the scope of Red’s
interference to alter the latent volatility of the election
process. For example, the objective of Red’s interference
operations might be not only to change the drift of the
state equation to make it more likely for candidate A to
win, but also to increase the uncertainty associated with
the election’s polling.

In addition to theoretical modifications, other work could
simply extend the present results to other elections. The
principal difficulty with this approach lies in the inherent
difficulty of finding any data at all with which to work.
As we note in Sec. III, we are able to confront our model
to data only because the Russian interference in the 2016
U.S. presidential election was so well-publicized, and even
so we found it necessary to infer the variables in which
we were actually interested. Other than this event, we
were unable to find any publicly-available data for any
other election interference episode that is in the public
domain.
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