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Of  basic  interest  is  the  quantification  of  the  long  term  growth  of  a language’s  lexicon  as  it  develops  to
more  completely  cover  both  a  culture’s  communication  requirements  and  knowledge  space.  Here,  we
explore the usage  dynamics  of  words  in  the English  language  as reflected  by  the  Google Books  2012
English  Fiction  corpus.  We  critique  an earlier  method  that  found  decreasing  birth  and  increasing  death
rates of  words  over  the  second  half  of  the  20th  Century,  showing  death rates  to be  strongly  affected  by
the  imposed  time  cutoff  of  the  arbitrary  present  and  not  increasing  dramatically.  We  provide  a  robust,
principled  approach  to examining  lexical  evolution  by  tracking  the volume  of  word  flux across  various
relative  frequency  thresholds.  We show  that  while  the overall  statistical  structure  of  the  English  language
remains  stable  over  time  in  terms  of its  raw  Zipf distribution,  we  find  evidence  of  an  enduring  ‘lexical
turbulence’:  The  flux  of words  across  frequency  thresholds  from  decade  to  decade  scales  superlinearly
with  word  rank  and  exhibits  a scaling  break  we  connect  to  that of Zipf’s  law.  To  better  understand  the
ulture
oogle books
grams
orpus
ooks
iterature

changing  lexicon,  we examine  the  contributions  to the  Jensen-Shannon  divergence  of  individual  words
crossing  frequency  thresholds.  We  also  find  indications  that scholarly  works  about  fiction  are  strongly
represented  in  the 2012  English  Fiction  corpus,  and  suggest  that  a  future  revision  of  the corpus  should
attempt  to  separate  critical  works  from  fiction  itself.

© 2017  Elsevier  B.V.  All  rights  reserved.
nformation theory

. Introduction

In studying any entity or system, a fundamental scientific goal
s the satisfactory characterization of temporal dynamics, whether
mpirically observed, simulated, or theoretically predicted. For lan-
uage, there are many kinds and scales of temporal dynamics to
onsider such as the introduction and usage decline of specific
ords [1], the evolution of accents, the long term development of

ndividual languages [2], and the changes in the overall ecology of
uman languages which has now moved well into an era of die off
3].

Here, we are concerned with the dynamics of the English lan-
uage’s lexicon. Primarily, we want to know how the usage of words

as changed in time, and how this is reflected in the English lex-

con’s evolution. This focus leads us to several core questions: (1)
hat are the rates at which words are born and at which they
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ttp://dx.doi.org/10.1016/j.jocs.2017.04.020
877-7503/© 2017 Elsevier B.V. All rights reserved.
die? (2) How do we  reasonably identify word births and deaths
in the first place? (3) As the English lexicon has expanded, how
have overall statistical patterns such as Zipf’s law [4] changed, if
at all? We  are especially interested with revisiting work on word
“birth” and “death” rates as performed in [1]. As we will show, the
methods employed in [1] suffer from boundary effects, and we pro-
pose and investigate an alternative approach insensitive to time
range choice. We  also investigate lexical changes at a range of usage
frequency levels.

We will perform our analyses using the Google Books corpus
[5,6] whose incredible volume generated from an extensive cover-
age of all written works would seemingly make it an ideal candidate
for linguistic research. However, there are two major caveats that
limit its potency and we  will lay them out before proceeding.

In previous research [7], we  broadly explored the characteris-
tics and dynamics of the unfiltered English and English Fiction data
sets from both the 2009 and 2012 versions of the Google Books
corpus. We  showed that the 2009 and 2012 unfiltered English data

sets and, surprisingly, the 2009 English Fiction data set, all become
increasingly influenced by scientific texts throughout the 1900s,
with medical research language being especially prevalent. We

dx.doi.org/10.1016/j.jocs.2017.04.020
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Fig. 1. Total 1-gram counts for the Google Books corpus 2012 English Fiction data
set  as a function of publication year. More than simple words, 1-grams include any
sequence of unbroken non-space characters as well as punctuation marks, such as
commas and brackets, which are broken away from words. The number of 1-grams
is proportional to the number of books and pages in the corpus but does not account
for  readership popularity [7]. A roughly exponential increase in 1-gram volume is
apparent over time with several periods of stasis and decline. Volume decreases are
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articularly apparent during the American Civil War, World War  I, and World War
I  as indicated by the three vertical gray shadings. Both World Wars follow a decade
f  stagnancy and decline for the corpus.

oncluded that, without sophisticated processing or the provision
f extensive metadata, only the 2012 English Fiction data set is
uitable for any kind of analysis and deduction as it stands.

We  also described the confounding problem of the library-like
ature of the Google Books corpus. Each book is, in principle, repre-
ented only once (re-editions are one exception). Word frequency is
hus a deceptive aspect of the Google Books corpus as book popular-
ty is not encoded in any way. Word counts are in no way reflective
f how often these words are read—as might be informed by book
ales and library borrowing data—much less spoken by the general
ublic. Nevertheless, the Google Books corpus registers an imprint
f a language’s lexicon and remains worthy of study, as long as we
emain mindful of its nature.

In this paper, we therefore focus only on the 2012 version of the
nglish Fiction data set. To provide a sense of scale for this corpus,
e show in Fig. 1 the total number of 1-grams for this data set

etween 1800 and 2000 (1-grams are defined to be contiguous text
lements and are more general than words including, for example,
unctuation; for ease of expression, we will use word and 1-gram

nterchangeably). An exponential increase in volume is apparent
ver time with notable exceptions during major conflicts when the
otal volume decreases. There is effectively zero growth in volume
ver first half of the 20th Century.

A number of researchers have carried out studies of the Google
ooks corpus with the aim of examining properties and dynamics
f entire languages. These include analyses of Zipf’s and Heaps’ laws
s applied to the corpus [8], the rates of verb regularization [5], rates
f word “birth” and “death” and durations of cultural memory [1],
s well as an observed decrease in the need for new words in several
anguages [2]. However, most of the studies were performed before
he release of the second version, and, to our knowledge, none have
aken into account the substantial effects of scientific literature on
he data sets.
We  structure the paper as follows. In Section 2, we  critique the
ethod from [1] which examines the birth and death rates of 1-

rams for several languages using the first Google Books corpus.
hrough a number of different analyses, we show that while 1-gram
ational Science 21 (2017) 24–37 25

birth rate has slowed, death rates have not increased substantially.
In Section 3, we describe information theoretic methods for exam-
ining lexical evolution using the Jensen-Shannon divergence, and
then present our observations in the form of word shift graphs. We
first recall and confirm an apparent bias toward increased usage
rates of 1-grams over time [7]. We then measure the flux of 1-grams
across various relative frequency boundaries in both directions for
the 2012 English Fiction data set. We describe the use of the largest
contributions to the Jensen-Shannon divergence between succes-
sive decades from among the 1-grams crossing each boundary as
signals to highlight the specific dynamics of 1-gram growth and
decay over time. We  display ranked examples of these 1-gram
usage changes and explore the factors contributing to the observed
disparities between growth and decay. In releasing the original data
set, Michel et al. [5] noted that English Fiction contained scholarly
articles about fictional works (but not scholarly works in general),
and we  also investigate this mixing of texts. We  offer conclud-
ing remarks in Section 5 Supporting material can be found at our
paper’s Online Appendices [9].

To compare across years, we  will work with relative frequency, f.
For a 1-gram w,  fw;y is the usage frequency of w normalized by the
total number of 1-grams in the year y (the total number of 1-grams
is to be distinguished form the number of unique 1-grams). We  will
also use the average relative frequency for a 1-gram over the time
scale of a decade.

2. On quantifying the birth and death of words

In this section, we  aim to measure the births and deaths of words
over time. As we  will show, this will turn out to be a delicate and
arguably ill-defined task. We  will arrive at this conclusion by con-
sidering and attempting to reproduce the work of Petersen et al. [1]
on word life spans, and, by doing so, show how word death rates
are strongly affected by our vantage point in history.

Petersen et al. [1] examined the birth and death rates of words
over time for various data sets in the 2009 version of the Google
Books corpus including unfiltered English, English Fiction, Spanish,
and Hebrew.

Their quantification of birth and death is nuanced and requires
some examination. They define the birth year and death year of an
individual word as the first and last year, respectively, that the given
word’s relative frequency fw;y is found to be equal to or greater than
a cutoff frequency f cut

w;y1,y2
equal to one twentieth its median relative

frequency fmed
w;y1,y2

, i.e., fw;y ≥ f cut
w;y1,y2

= 0.05fmed
w;y1,y2

. The subscripts
y1 and y2 indicate the first and last year of the overall time period.
They exclude words appearing in only one year (we will show
this is problematic) and words appearing for the first time before
y1 = 1700. The rates of word birth and death, respectively, are then
found by normalizing the numbers of word births and deaths by
the total number of unique words in a given year.

For all four data sets, Petersen et al. found strongly decreased
birth rates and increased death rates over time, a variation for both
of two to three orders of magnitude occurring most rapidly between
1950 and 2000. They noted that they obtained qualitatively similar
results when one tenth the median frequency is used as the cutoff
threshold.

The very specific nature of the analysis raise questions as to the
robustness of the method. Three major concerns:

• Use of the median relative frequency for a threshold of birth and
death. This quantity depends on the word and the year range

chosen. Hypothetically, a rare word w1 that has a constant rel-
ative frequency over time will never be identified as being born
or dying, while a word w2 with much higher relative frequencies
may  die out yet still never fall to the relative frequency of w1. In
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short, the standards for a word’s birth and death vary from word
to word and from time range to time range. As we will see in par-
ticular, shifting the end year y2 using this analysis strongly affects
death rates.
The problematic use of the median for very rare words. Rare
words that have a zero relative frequency in more than half of
the years examined will have a median relative frequency fmed

w;y1,y2
= 0. The strict definition in [1] means such a word will never be
born or die as its relative frequency will always be greater than or
equal to 0 (such a state could be possibly termed ‘unalive’ [10]).
If we simply ignore such words, then we will at the same time
be including words with lower overall abundance, e.g., words
that appear only in two consecutive years. To overcome this
issue, we adjust Petersen et al.’s criterion to involve an inequal-
ity: fw;y > f cut

w;y1,y2
= 0.05fmed

w;y1,y2
. We  note that we  presume the

computation of the median in [1] was carried out for the range of
years covering the first and last appearance of a word.
By necessity, the Google Books corpus was constructed with a
frequency threshold for a word to be included or not (a word
must appear at least 200 times). Thus, a word having a relative
frequency of 0 in the data set does not mean it was  entirely absent.
We do not attempt to incorporate this issue of censusing here
but note that it becomes problematic for rare words (which are
collectively legion).

With these points in mind, we recreated the described anal-
sis of [1] for the 2012 version of English Fiction at the level of
ndividual years. Per [1], we initially exclude words appearing in
nly one year. We  also limit our analysis to 1800– (rather than
700–) and our findings will help us address this choice. We  believe
hese differences with [1] should not be substantive, and allow us to
e-examine their work and build out our own in meaningful ways.

We compare the birth and death rates as observed at differ-
nt end points of history by performing the analysis with y2=1860
hrough to y2=2000 in increments of 20 years. We  present the
esulting birth and death rates in Fig. 2 (cf. Fig. 2 in [1]). Subse-
uent modifications which we will explain below will give us the
omparison plots shown in Fig. 2B and D.

We observe in Fig. 2A that birth rates decline approximately
xponentially overall, and here we find general agreement with [1]
nd [2]. However, we also see sharp departures to much lower birth
ates near the end point of each history. We  are able to entirely
ttribute these drops to the decision in [1] to ignore all 1-grams
hat have a non-zero relative frequency in a single year. By includ-
ng these 1-grams, Fig. 2A becomes Fig. 2B and we see that birth
ate is no longer affected by the choice of y2. We  therefore see
hat words that appeared in only one year before a selected end
ear y2 may  well be just sputtering into existence. Such words will
e retrospectively declared born when the end of history moves
orward.

We can also now see that the apparent speeding up of the drop
n birth rate after 1980 in Fig. 2B appears to be real, consistent with
1]. We  note that this is a complicated time with massive growth
nd change in information technology and publishing, and we will
ee that literary criticism starts to populate the corpus during this
ime period as well.

We now turn to word death rates in Fig. 2B. In contrast to birth
ates, there is no overlap between death rates at any point in time
s a function of the end of history y2. For example, death rates in the
ate 1800s are estimated at 10% if y2=1900 but <10−3% if y2 = 2000.
t appears that words are not in fact dying out.
So why is the word death rate used in [1] affected so profoundly
y boundaries? Including words appearing in only one year as we
id for birth rates, does not resolve this issue: Fig. 2D is essentially
he same as Fig. 2C.
ational Science 21 (2017) 24–37

The problem lies instead in that the relative frequency thresh-
old for a word “existing” in a given year y is determined by range
of years being considered. We  argue that a number of example rel-
ative frequency trajectories are problematic for a range dependent
definition.

Consider two  different ranges of years, [y1, y2] and [y1, y′
2] with

y2 < y′
2 and a year y internal to both ranges. The median relative

frequency for the same 1-gram will very likely differ for the two
ranges, and a word which is alive in year y for the [y1, y2] range
may be either not yet born or dead for the same year y in the [y′

1, y′
2]

range.
This complication allows for unintuitive results such as a 1-gram

appearing to have died out by y2 but over a longer period of time
ending at y′

2, it qualifies as having being alive, or possibly, “undead.”
We provide two  examples of dead-undead behavior in Fig. 3.

First, in Fig. 3A, we show the word “CHAP” (all capitals, likely short
for Chapter). We  chose this word as one with a reasonably high
median relative frequency but otherwise fairly randomly from all
words with oscillating dead-undead states. The main curve is the
relative frequency for ‘CHAP’ over time showing a gradual decline
over around three orders of magnitude. In both Figs. 3A and 3 B,
the blue region outlines the lowest possible relative frequency for
each year (i.e., 1 divided by the total number of 1-grams recorded).

We measure median relative frequency over a series of time
ranges with y1 = 1800 and ends-of-history at y2 = 1850 through to
y2 = 2000 in decade steps. The circles mark the cutoff frequency
f cut
w;y1,y2

for each time range. Open circles indicate the relative fre-
quency of ‘CHAP’ has exceeded the cutoff at that y2—‘CHAP’ is
alive—while filled circles show that ‘CHAP’ has died.

In 1850, the word ‘CHAP’ would have appeared to have snuffed it
in 1848; then viewed as having only temporarily been stunned and
revived for the following 8 decadal end points; been declared an
ex-word again in 1940, nailed to the perch as it were; and finally
seen again to be only resting and not at all ready to push up the
daises through to 2000 [11].

In Fig. 3B, we  show the relative frequency for a much less com-
mon  word which displays a different kind of dead-undead cycling:
“Coryphaeus” (the head of a Greek chorus). The time series includes
numerous zeroes (which we  must remember pertain only to the
sample behind the Google Books 2012 English Fiction corpus). This
example shows a decadal-scale swapping between being dead and
undead from 1850 on, and demonstrates how zero frequencies
may  induce unexpected behavior in the birth-death criterion in [1].
Essentially, whenever “Coryphaeus” does not appear in the corpus
for a year, it will be considered dead, and if it does appear, it will
have a relative frequency exceeding the dead-undead cutoff.

Thus, while the method in [1] provides a reasonable approach to
analyzing dynamics and asymmetries in the evolutionary dynam-
ics of a language data set and is informative about birth rates, the
results for death rates depend on when the experiment is per-
formed. We proceed to develop an approach that is independent
of time boundaries and agnostic to the 1-grams themselves.

3. Tracking language evolution through the flux of words
across relative frequency thresholds

We  move away from attempting to identify words as having
been born or died to exploring the flux of words across fixed rela-
tive frequency thresholds. For example, over some time span, we
wish to find and count which words decline in prevalence and drop

below, say, a relative frequency of 10−5, along with which words
move up above this threshold. With a decay in the birth rates of
words, English may  be globally “cooling” [2] but we will show that
there is still much bubbling within.
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Fig. 2. (A) and (C): Birth and death rates for 1-grams for the 2012 version of English Fiction determined using the method proposed in [1]. Curves correspond to different
end-of-history boundaries with history running from y1=1800 to y2=1860–2000 in 20 year increments. Birth rates show clear departures from an overall form as each end of
history  year is approached. Including words that appear in only one year in a time range eliminates these discrepancies (plot B). Death rates however are strongly affected by
the  choice of when history ends and this cannot be remedied by modifying the rule for 1-gram death. As the end of history moves forward in time, words that seemed dead
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re  no longer dead for a number of reasons B and D: Birth and death rates as per p
ange—i.e., have a non-zero relative frequency in only one year. Birth rates are now
ecay appears confirmed. Death rates remain incongruent as in C.

To work at a meaningful temporal scale, we coarse-grain the rel-
tive frequencies in the second English Fiction data set at the level of
ecades—e.g., between 1870-to-1879 and 1990-to-1999—by aver-
ging the relative frequency of each unique word in a given decade
ver all years in that decade. We  weight each year equally. This
llows us to conveniently calculate and sort contributions to the
ensen-Shannon divergence (defined below) of individual 1-grams
etween, for example, any two time periods. To avoid high lev-
ls of optical character recognition (OCR) errors for texts typeset
rior to the early 19th century, we will concern ourselves going for-
ard with 1-grams between the years 1820 and 2000. A prevalent

xample is the long s—e.g., “said” being read as “faid” [7].

.1. Basic stability of Zipf’s law

A famous and fundamental scaling for language is Zipf’s law [4]
hich was long held to be that the relative frequency of a word in

 corpus scales approximately as the inverse of its size rank, f ∼ r−˛

ith  ̨ � 1. However, recent empirical work has shown that for large
orpora, Zipf’s law typically exhibits two scaling regimes:

 ∼
{
r−˛ for r � rb,

r−˛′
for r � rb,

(1)

here ˛′ > ˛, and the transition between scaling regimes around the
reak point rb typically occurs over an order of magnitude. Prior
ork by our group has elsewhere found the break in scaling for
ipf’s law to be a result of text mixing [12] (other theories have been
ut forward [13,14]). The break point rb can be estimated by average
ext length, though we cannot do so for the Google Books corpus as
he necessary information on individual books is not available.
 and C in all respects except now including words that appear only once in a time
 determined retrospectively from any vantage point of history and an exponential

For the present work, we only need to characterize Zipf’s law
with its two scaling regimes. In Fig. 4A, we plot Zipf’s law for each
decade running from the 1830s through to the 1990s. We  observe
very strong agreement over nearly 200 years of English Fiction. The
variations that we do see are (1) the most common words become
slightly less common, and (2) the tail becomes slightly fatter as new
1-grams enter the lexicon.

For the sake of introducing and broadly characterizing word flux,
it is sufficient for us to perform a simple measure of the scaling
exponents by averaging the Zipf’s laws and then using standard
linear regression over the ranges indicated in Fig. 4A. We  estimate
˛′ � 1.14 and  ̨ � 1.95.

In Fig. 4B, we show in detail how the numbers of 1-grams
with relative frequencies exceeding fixed thresholds are stable
over time. The only exception is the top 1-gram—always the
comma—which gradually deflates in relative frequency (punctured
punctuation).

At least in the case of English fiction then, the “bones” of Zipf’s
law have changed little over the period 1820 to 2000.

But the words underlying Zipf’s law have fluctuated in relative
frequency, and this is an aspect often overlooked when comparing
ranked distributions for any system.

3.2. Lexical turbulence: The scaling of word flux across internal
frequency thresholds

In Fig. 5, we  show word flux as a function of time and fre-

quency threshold. First, In Fig. 5A and B, we display the upward and
downward fluxes �up and �down of the number of 1-grams crossing
relative frequency thresholds of powers of 10 from fthr = 10−4 down
to 10−7. Each point is centered in a decade and represents the total
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Fig. 3. Two examples of how a 1-gram may  be variously labeled dead or alive depending on the end of history using the criterion in [1]. A. The word ‘CHAP’ declines in
relative frequency over time, from a high of 10−3.5 to as low as 10−7.5. Using a twentieth of the median frequency of a 1-gram as a threshold for birth and death, we see ‘CHAP’
appears  to have “run down the curtain” in 1850 but then re-emerged as alive for 8 subsequent decadal end points. ‘CHAP’ once again succumbs in 1940 only to stagger on
through 2000. This dead-undead cycling can be seen for many words and leads us to exploring how words pass above and drop below fixed relative frequency thresholds.
In  both plots, the blue region marks the lowest possible relative frequency for each year achieved when a 1-gram has a count of 1. B. The word ‘Coryphaeus’ is a much less
frequent  word than ‘CHAP’, and its time series contains a substantial number of zeroes and ones (resting on the top of the blue region). The criterion in [1] leads to a flipping
back  and forth between being dead and undead at most end-of-history years from 1850 through to 2000.

Fig. 4. A. Overlay of Zipf’s laws for all decades running from the 1820s to the 1990s for the 2012 English Fiction corpus (color shifts from light gray to black). The observed
s ish Fic
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tability demonstrates that Zipf’s law remains largely unchanged for the 2012 Engl
n  support of A, rank threshold boundaries correspond to nearly constant relative fr
op  1-gram (always a comma), which decreases in relative frequency. Points are loc

umber of words moving across a frequency threshold from that
ecade to the next.

We  can see that word flux across frequency thresholds is rela-
ively constant over time. Of the minor modulations we  see some

onsistency across thresholds, notably recent decades for �down and
thr = 10−5, 10−6, and 10−7. Moreover, in comparing Figs. 5A and 5
, the two fluxes appear to be fairly balanced.
tion data set, even though individual words may  vary greatly in rank over time. B.
cy threshold boundaries over many orders of magnitude, with the exception of the
t the center of each decade.

However, word flux does vary strongly with respect to fre-
quency threshold fthr and we view this as a kind of ‘lexical
turbulence’. We  see in Fig. 5A and B that, as we should expect, the
lower the threshold, the higher the flux. The most common words

have essentially no turnover (see below) while increasingly rare
ones are increasingly volatile.

In Fig. 5C, we attempt to characterize the relationship between
word flux and frequency threshold, fthr. We  average the fluxes in
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Fig. 5. Upward and downward fluxes, �up and �down as a function of relative frequency threshold fthr. These fluxes are the total number of words crossing relative frequency
thresholds of fthr = 10−4, 10−5, 10−6, and 10−7 in both upward (Plot A) and downward (Plot B) directions between consecutive decades. Word flux is roughly proportional
to  the inverse of the relative frequency threshold fthr. For each threshold, the upward and downward flux roughly cancel. For either direction of flux, there appears to be
little  qualitative difference between the three smallest thresholds. Plot C: Upward and downward fluxes �up and �down from A and B averaged over all decade pairs as a
function of relative frequency threshold fthr. The balance between the two  fluxes is evident, and the two  scaling regimes identified are tied to the break in scaling in Zipf’s
law  (Fig. 4A) [12]. Word flux scales approximately as the inverse of frequency threshold showing that in moving further away from the most common words, the English
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anguage becomes more and more alive, churning internally in a regular fashion. 

ank.  The scaling regimes connect to those of C through the Zipf exponents  ̨ and ˛
urbulence with rank r is strong. For example, around 16.8% of words with r ≤ 105 w

ig. 5A and B, and plot them as a function of fthr. The averages for �up

nd �down are indistinguishable to the eye, confirming the balance
uggested in Figs. 5A and 5 B.

We have at hand evidence of lexical turbulence through an
pparent inverse scaling of word flux across frequency thresholds,
nd we mark two possible scaling regimes:

∼
{
fthr

−� for fthr � fb,

fthr
−�′

for fthr � fb,
(2)

here � � 0.77 and �′ � 1.10, and fb is the scaling break point.
In Fig. 5D, we also show how flux scales with word rank r. To do

o, we have used the average form of Zipf’s law in Fig. 4A to map
requency to rank. The evident upper limit for flux is � = r, marked
y gray area in Fig. 5D.

We are able to connect the scaling break for flux with respect to
oth fthr and r to the scaling break in Zipf’s law. Combining Eqs. (1)
nd (2), we have

∼
{
r� = r˛�

′
for r � rb,

r�
′ = r˛

′� for r � rb.
(3)

e measure the lower and upper exponents in Fig. 5D as 1.23 and
.47, and these compare favorably using the equation above and the
xponents measured in Figs. 4 and 5 D: � = ˛�′ � 1.14 × 1.10 � 1.25

nd �′ = ˛′� � 1.95 × 0.77 � 1.50 .

Now, both lower and upper scalings of flux with rank are super-
inear meaning that the lexical turbulence increases strongly with
ank—relatively more and more words are turned over the further
: Using Zipf’s law from Fig. 4A, C transformed to show flux as a function of word
 Eqs. (1, 2), and (3)). The superlinear scaling makes clear that the growth in lexical

 replaced every decade.

we move up in word rank (down in relative frequency thresholds).
Clearly this scaling cannot be sustained as eventually we would
have � > r. For the 2012 English Fiction corpus, we  see that the
lexicon is exhausted before such a possibility comes about.

For the top 100 words, we see the lexicon is strongly
conserved—crystallized—with on average 2.4% of words turning
over every decade. But the superlinear scaling means the lexicon
becomes increasingly volatile. As we travel out to the top 105 words,
the flux has grown to a considerable 16.8% per decade.

There are some important limitations to our findings. The time
scale of comparison, which is here decade-to-decade, will affect the
scaling as well, i.e., we need to consider �(r, �) where � is the length
in years of adjacent periods. Clearly, the smaller the time scale of
comparison, the less the degree of lexical turbulence which must
tend toward 0.

We  stress that the scalings indicated for flux are intended only
to be rough estimates, and we will stop well short of proclaiming a
set of universal exponents. Future work will need to be performed
across many languages and using better curated and different cor-
pora.

In sum, we  find that despite a steady decline in word birth rate
for the 2012 English Fiction corpus—two orders of magnitude over
two hundred years (Fig. 2)—the flux of words across frequency
thresholds in the Zipf distribution has remained essentially con-
stant in magnitude and scaling. Our next and last task will be to

explore the individual words most strongly contributing to this
lexical turbulence.
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Fig. 6. Percent of (Jensen-Shannon divergence) JSD in English Fiction 2012 corpus
due to words increasing in relative frequency of use for successive decades (dark
gray), and decades three apart (light gray; e.g., 1990s versus 1960s). The contribution
for successive decades is nearly always more than half—the exceptions are between
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. Fine-grained exploration of flux across frequency
hreshold boundaries

We  now begin to examine the specific 1-grams that cross rela-
ive frequency thresholds as we move from decade to decade. We
rst describe the very limited flux across the fthr = 10−2 boundary
nd then investigate the richer transitions for the lower thresholds
0−3 down to 10−6.

Flux across the 10−2 boundary between consecutive decades is
lmost nonexistent from the 1820s to the 1990s. The 1-grams that
o achieve such a crossing make for a short list of three:

Between the 1820s and 1830s, the semicolon falls below the 10−2

relative frequency threshold.
Between the 1840s and 1850s, “I” rises above the 10−2 relative
frequency threshold.
Between the 1910s and 1920s, “was” rises above the 10−2 relative
frequency threshold.

This is the entirety of the flux across the 10−2 threshold from
820 to 2000 showing once again that the regime of 1-grams above
his frequency (roughly the top 10 1-grams) is extremely stable. The
leven 1-grams with relative frequency above a threshold of 10−2

n the 1990s in decreasing order of frequency are: the comma  “,”,
he period “.”, “the”, the quotation mark “””, “to”, “and”, “of”, “a”, ‘
I”, “in”, and “was”.

.1. Jensen-Shannon divergence and individual 1-gram
ontributions

To enable us to make better sense of the detailed flux across
ower frequency thresholds, we need some way of assigning some
ind of weight of importance to each 1-gram involved in the flux. To
o so, we start with a standard measure for comparing two  proba-
ility distributions, the Jensen-Shannon divergence (JSD) [15]. We
ill then decompose the JSD into contributions from individual 1-

rams which in turn will afford a simple ranking of 1-grams. We
ote that other approaches to determining the salience of words
re possible such as the different lens generated by the use of the
artial KL in [16].

Given two corpora with 1-gram distributions P and Q, the JSD
etween P and Q may  be expressed as

JS(P || Q ) = H(M) − 1
2

[H(P) + H(Q )] , (4)

here M = 1
2 (P + Q ) is the mixed distribution of the two years, and

(P) =−
∑

ipi log2pi is the Shannon entropy [17] of the original dis-
ribution. The JSD is symmetric and bounded between 0 bits and 1
it, and these bounds are only attained when the distributions are

dentical and free of overlap, respectively.
Helpfully, the JSD is a linear combination of contribu-

ions due to individual words and can be expressed as
JS,i(P || Q) =

∑
iDJS,i(P || Q) . The contribution from the ith word to

he divergence between the two distributions, as derived from Eq.
4), is given by

JS,i(P || Q ) = mi ·
1
2

[rilog2ri + (2 − ri)log2(2 − ri)], (5)

here ri = min(pi, qi)/mi. The contribution from an individual word
s therefore proportional to the average frequency of the word mi
nd also depends on the ratio between the smaller and average
requencies, ri = pi/mi. We  write the contribution of the ith word

s:

JS,i(P || Q ) = miC(ri), (6)

here C(ri) = 1
2 [rilog2ri + (2 − ri)log2(2 − ri)].
the 1820s, 1840s, and 1970s, and their successive decades. For decades three apart,
the  contribution is always greater than 50%. The JSD between successive decades
also shows peaks in the vicinity of major conflicts.

Words with larger average frequencies (mi) yield larger con-
tribution signals as do those with smaller ratios (ri). A commonly
occurring 1-gram changing subtly can produce a large signal. So can
an uncommon or new word given a sufficient shift in probability.
The quantity C(ri) is concave (up) and symmetric about ri = 1, where
the frequency remains unchanged (pi = qi = mi) yielding no contri-
bution. If a word appears or disappears between two decades (e.g.,
pi = 0 and qi > 0), then the contribution is maximized at precisely
the average frequency of the word in question.

4.2. Asymmetry in Jensen-Shannon divergence measures between
decades

As we  show in Fig. 6, more than half of the JSD between a given
decade and the next is typically due to contributions from words
increasing in relative frequency. The JSDs between 1820s, 1840s,
and 1970s and their successive decades are the only exceptions.
Moreover, when the time differential is increased to three decades,
no exceptions remain. This asymmetry is sympathetic to the lexicon
enjoying new words but relatively few true deaths (Section 2).

We note relative extrema of the inter-decade JSD in the vicinity
of major conflicts. Between the 1860s and successive decade, words
on the rise contribute substantially to the JSD. This is consistent
with words not relatively popular during wartime (specifically the
American Civil War) being used more frequently in peacetime. A
similar tendency holds for the JSD between the 1910s (World War  I)
and the 1920s. This is not as apparent in the JSD between the 1910s
and the 1940s, possibly because the 1940s coincide with World War
II. The absolute maximum for the single-decade curve corresponds
to the divergence between the 1950s and 1960s. This suggests a
strong effect from social movements. For the 3-decade split, the
absolute peak comes from the JSD between the 1940s and 1970s,
which are certainly decades of starkly different character.

4.3. Fine-grained exploration of flux across frequency threshold
boundaries: fthr = 10−3
We  conclude our analysis with a series of observations on which
words contribute to flux between a number of example decade
pairs and across the frequency thresholds 10−3, 10−4, 10−5, and
10−6. For thresholds of 10−5 and below, we omit signals corre-
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ig. 7. Words crossing relative frequency threshold of 10−3 between consecutive d
ensen-Shannon divergence (JSD) between those decades. Bars pointing to the rig
epresent words that fell. In parentheses in each title is the total percent of the JSD 

ponding to references to specific years, as such references would
therwise overwhelm the charts for these thresholds. We prepare
he reader by noting that these final sections are somewhat detailed

n nature.

But we also add that any study of texts reduced to 1-grams
hould in some fashion “look at the words” themselves, for the very
s. Signals for each pair of decades are sorted and weighted by contribution to the
resent words that rose above the threshold between decades. Bars pointing left
en the given pair of decades that is accounted for by flux over the 10−3 threshold.

least as a sanity check on code and more deeply to find the story
behind observed summarized dynamics and patterns [18,19].

The set of 1-grams with relative frequencies above 10−3 is also

fairly stable. From Zipf’s law for the 2012 English Fiction corpus
(Fig. 4), we know that this threshold is typically exceeded by the 100
most common 1-grams. Viewing language as code, these top 100 1-
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rams are fundamental elements in the construction of meaningful
tatements and comprise around 55% of all 1-grams.

We should expect limited turnover for these core 1-grams, and
ndeed the flux of 1-grams across the 10−3 boundary between con-
ecutive decades is entirely captured by Fig. 7.

We  generate these and all subsequent “JSD word shift” figures
y:

Finding all 1-grams that either move above or below a given
threshold between two decades;
Ranking these 1-grams by their contributions to the JSD measured
between the same decades; and
Plotting downward flux 1-grams with their contributions as bars
to the left, and upward flux 1-grams with their contributions as
bars to the right. We  leave aside all 1-grams representing years.

In taking a close look at Fig. 7, we see that parentheses drop in
elative frequency of use between the 1840s and 1850s and cross
ack over the threshold after the American Civil War  (between
he 1860s and 1870s). The same is true for before and after World

ar  II (between the 1930s and 1940s and between the 1940s and
950s, respectively). Beyond these, the flux is entirely due to proper
ords (not punctuation). For example, “made” fluctuates up and

own over this threshold repeatedly over the course of a century.
etween the 1870s and the 1880s, “made”, which sees slightly

ncreased use, is the only word to cross the threshold. The most
rossings is 12, which occurs between the first two  decades. Also,
great” struggled over the first 5 decades and eventually failed to
emain great by this measure. “Mr.” fluctuated across the threshold
etween the 1830s and 1910s. More recently, from the 1930s on,
They” has been making its paces up and down across the threshold.

.4. Fine-grained exploration of flux across frequency threshold
oundaries: 1970s–1980s and 1980s–1990s

We  now choose a few interesting decade-to-decade transitions
o delve into for the flux at the lower frequency thresholds of
thr = 10−4, 10−5, and 10−6. Returning to Fig. 5, we know that for each
hreshold between 10−4 and 10−7, the upward and downward flux
oughly cancel. For both upward and downward flux, there appears
o be little qualitative difference between the three smallest thresh-
lds of 10−4, 10−5, and 10−6. For these thresholds, the downward
ux between the 1950s and the 1960s is a minimum then increases
ver the next two pairs of consecutive decades, and then dips again
etween the 1980s and 1990s. For fthr = 10−4, the increase between
he 1960s and 1970s and the next pair of decades is more notice-
ble for the downward flux, as is the decrease between the last two
airs of decades.

Based on these observations, we will examine the flux for two
ecade pairs in this section: 1970s–1980s and 1980s–1990s. In the

ollowing two sections, we will consider the 1930s–1940s tran-
ition because of the historical importance of these decades, and
hen finally the 1960s–1970s transition to show some peculiarities
f word flux.

We begin by displaying in Fig. 8 the top 60 flux 1-grams across
thr=10−4 between the 1970s and the 1980s, and in Fig. 9, we show
ll 55 flux words between the 1980s and the 1990s for the same

thr. In these and all subsequent figures, we use the same format as
ig. 7.

Between each pair of decades, we see reduced relative use of par-
icularly British words, including “England” between the first two
ecades and “King”, “George”, and “Sir” between the latter two. We

lso see reduced use of more formal-sounding words, such as “char-
cter”, “manner”, and “general” between the first two decades and
suppose”, “indeed”, and “hardly” between the latter two. Increas-
ng are physical and emotional words. Those between the first
references to years in this and all subsequent figures.

two decades include “stared”, “breath”, “realized”, “shoulder” and
“shoulders”, “coffee”, “guess”, “pain”, and “sorry.” Between the lat-
ter two, we  see “chest”, “skin”, “whispered”, “hit”, “throat”, “hurt”,
“control”, and “lives.” Also included are “phone” and “parents.”

In Figs. 10 and 11, we display the top 60 flux words, not count-
ing references to years, across the 10−5 threshold between the same
pairs of decades. Many of the words declining below the threshold
between the 1970s and 1980s are unusual spellings such as “tho”,
proper names like “Balzac”, or words from non-English languages
like “une.” Increasing across this threshold between the first two
decades are a plethora of mostly female proper names, with “Jes-
sica” and “Megan” leading. Also seen are “KGB” and “jeans.” (“KGB”
decreases in the 1990s, as does “Russians.”) Increasing between
the 1980s and 1990s are a few proper names; however, most of
the signals here are social and sexual in nature, and in part point

to the inclusion of academic, literary criticism. These include “les-
bian” and “lesbians”, “AIDS”, and “gender” in the top positions. Also
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quency in any given decade), we  see some noise (mostly in the
ld of 10−4 between the 1980s and 1990s. See the caption for Fig. 8 for details. Note
hat  only 55 words make this transition.

ncluded are both “homosexuality” and the more general “sexual-
ty.” We  also see “girlfriend”, “boyfriend”, “feminist”, and “sexy.”

We show in Figs. 12 and 13 the flux across a threshold of 10−6

etween the 1970s and 1980s, and the 1980s and 1990s (again, not
ounting years). The first of these is not particularly topical, though
e do see “AIDS” increase above this threshold a decade prior to its

ncrease over 10−5 as seen in Fig. 11. For the second pair of decades,
e find some surprising signals. In particular, while increases in

HIV” and “bisexual” make the list (similarly to many signals in
ig. 11), as do “fax”, “laptop”, and “Internet”, a great swath of the
ignals are accounted for by one franchise. We  note increases in
Picard”, “TNG”, “Sisko”, and “DS9.” These latter signals should serve
s a reminder that the word distributions in library-like Google

ooks corpus [7], even for fiction, do not remotely resemble the
ontents of normal conversations (at least not for the general pop-
lation). However, we do observe signals arising at this threshold
Fig. 10. Words (not counting references to years) crossing relative frequency
threshold of 10−5 between the 1970s and 1980s. See the caption for Fig. 8 for details.

from factors external to the imaginings of specific authors. It would
therefore be premature to dismiss the contributions at this thresh-
old because of an apparent overabundance of “Star Trek.” In fact,
because “The Next Generation” and “Deep Space 9” aired precisely
during these two  decades, an abundance of “Star Trek” novels in the
English Fiction data set is actually quite encouraging, because these
novels do exist, are available in English, and are (clearly) fiction.

The cultural signals change as we dial down the frequency
threshold. We  typically find that thresholds of 10−4 and above pro-
duce signals with little to no noise. This is not surprising because
this relative frequency roughly corresponds to rank threshold for
the 1000 most common words (see Fig. 4) in the data set. Using
a threshold of 10−5 (fewer than 10,000 words fall above this fre-
form of familiar names), but still observe many valuable signals.
Only when the threshold is reduced to 10−6 does the overall tex-
ture of the signals become questionable as a result of a variety of
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ig. 11. Words (not counting references to years) crossing relative frequency
hreshold of 10−5 between the 1980s and 1990s. See the caption for Fig. 8 for details.

roper nouns far less familiar than those observed with the previ-
us threshold. However, at this threshold, we nevertheless observe
everal early signals of real social importance.

.5. Fine-grained exploration of flux across frequency threshold
oundaries: 1930s–1940s

Curiously, between the 1930s and 1940s the volume of flux
cross each threshold is not atypical (see Fig. 5). Moreover, the
symmetry between the JSD contributions between those decades
s very low. Yet it is obvious that we should expect signals of histori-
al significance between these two decades, and indeed we  do once
e examine the dynamics of individual 1-grams. In Figs. 14 and 15

 we see words crossing the 10−4 and 10−5 thresholds, respectively

with references to years omitted in Fig. 15). For the higher thresh-
ld, only 56 words cross. The most noticeable such words that are
ore commonly used in the 1940s are “General” and “German.”

lso, “killed” appears in this list. Words used less frequently include
Fig. 12. Words (not counting references to years) crossing relative frequency
threshold of 10−6 between the 1970s and 1980s. See the caption for Fig. 8 for details.

“pleasure”, “garden”, and “spirit.” For the lower threshold, we see
the signals from prolific authors as in our previous paper [7], par-
ticularly Upton Sinclair’s character, Lanny Budd. We  also see more
Nazis (“Nazi” and “Nazis”).

4.6. Fine-grained exploration of flux across frequency threshold
boundaries: 1960s–1970s

Last, we  include one of the more colorful examples. In Fig. 16,
we show signals (not including years) for words crossing the 10−5

threshold between the 1960s and 1970s. Profanity dominates. We
see references to The World According to Garp (“Garp”) and, again, to
“Star Trek” (“Kirk” this time). We  also see more “computer”, “TV”,

and, per The Graduate, “plastic.” Signals also appear for “blacks” and
“homosexual”, for narcotics (“drug” and “drugs”), and a changing
role for police (“enforcement” and “cop”).
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Fig. 14. Words (not counting references to years) crossing relative frequency
−4
ig. 13. Words (not counting references to years) crossing relative frequency

hreshold of 10−6 between the 1980s and 1990s. See the caption for Fig. 8 for details.

We  refer the reader to our paper’s Online Appendices [9] for
gures representing flux across relative frequency thresholds of
0−4, 10−5, and 10−6 between consecutive decades over the entire
eriod analyzed (the 1820s to the 1990s).

. Concluding remarks

In seeking to characterize word birth and death for the 2012
oogle Books English Fiction corpus, we have identified and char-
cterized what we believe is a fundamental feature of language
volution: lexical turbulence. In general, for any time-coded cor-
us, we quantify lexical turbulence as the flux � of words across

 relative frequency of usage threshold between two  time periods.

e speak of undirected flux � because we found that upward and

ownward flux �up and �down across a threshold were on average
ell balance, though this may  not always be the case.
threshold of 10 between the 1930s and 1940s. See the caption for Fig. 8 for details.
Note that only 56 words make this transition.

Like the Jensen-Shannon divergence and related measures, lex-
ical turbulence is one way of characterizing the degree of word
rank (or relative frequency) variability underlying Zipf’s law. The
overall form of Zipf’s law may  be strongly preserved across corpora
suggesting stability (Fig. 4) but completely occlude how individual
word usage rates are changing (Fig. 5).

Word flux may  also be naturally measured across a fixed word
rank, with the connection to relative frequency being made through
Zipf’s law (Fig. 5D). The scaling of word flux with rank is superlinear
with a break in scaling tied to that of Zipf’s law [12].

We conjecture that word rank may  be viewed as roughly analo-
gous to a kind of temperature where the most common words are
nearly frozen in usage rates while rarer and rarer words increas-

ingly boil and bubble in their relative frequencies. One metaphor for
words sometimes invoked is that of tools [4]. Words form a hier-
archy of tools with a crystallized set of the most frequently used
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Fig. 16. Words (not counting references to years) crossing relative frequency
threshold of 10−5 between the 1960s and 1970s. See the caption for Fig. 8 for details.
ig. 15. Words (not counting references to years) crossing relative frequency
hreshold of 10−5 between the 1930s and 1950s. See the caption for Fig. 8 for details.

nstruments (comma, period, “the”) resting above a vast tool set of
ncreasingly specific uses.

We  arrived at the notion of lexical turbulence via our efforts to
eproduce the results of [1]. We  found general agreement regard-
ng a decay in word birth from 1800 to 2000 but not so for word
eath. True word death appears to be extremely and durably rare.
verall, the lowering birth rate signals a cooling of language [2] but

he time-independent scaling of lexical turbulence shows that the
exicon is constantly turning over.

Using JSD word shifts, we also explored in detail the words
ominating the flux across some example frequency thresholds

or a number of interesting decade-decades transitions. While
xtremely specific fiction can be of great interest—whether it

e in the form of war novels or volumes from the “Star Trek”
ranchise—vocabulary from these works is more easily studied

hen placed in proper context. Dialing down the relative frequency
hreshold across several orders of magnitude helps to capture this
distinction. However, further experimentation is called for, because
an automatic means of separating specific signals from the more
general signals (e.g., “Star Trek” from social movements) could
afford both a more intuitive grasp of the lexical dynamics and
might, ideally, allow investigators to hypothesize causal relation-
ships between exogenous and endogenous drivers of language.

Of many potential directions for future work, several that stand
out would be (1) Reproducing the present analysis of lexical turbu-
lence for 2-grams and 3-grams which, n-grams that are particularly
rich in meaning; (2) Quantifying the behavior of lexical turbu-
lence with time (e.g., beyond adjacent decade comparisons as we
have done here); (3) Creating toy models of language evolution
to attempt to capture lexical turbulence; and (4) Building inter-

active JSD-based word shifts where corpora, frequency thresholds
and year range may  be selected to facilitate rapid explorations.
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