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Classical rich-get-richer models have found much success in being able to broadly reproduce the
statistics and dynamics of diverse real complex systems. These rich-get-richer models are based on
classical urn models and unfold step-by-step in discrete time. Here, we consider a natural variation
acting on a temporal continuum in the form of a partial differential equation (PDE). We first show
that the continuum version of Herbert Simon’s canonical preferential attachment model exhibits
an identical size distribution. In relaxing Simon’s assumption of a linear growth mechanism, we
consider the case of an arbitrary growth kernel and find the general solution to the resultant PDE.
We then extend the PDE to multiple spatial dimensions, again determining the general solution.
Finally, we apply the model to size and wealth distributions of firms. We obtain power law scaling
for both to be concordant with simulations as well as observational data.

I. INTRODUCTION

In 1955, Herbert Simon described a general version of a
rich-get-richer process that generates power-law size dis-
tributions P (s) ∼ s−γ with scaling exponent γ > 2 [1].
Simon’s process was adapted by Price to capture the
statistics of growing networks, and was later paralleled
by the Barabási-Albert model which introduced scale-
free networks [2]. Simon’s model efficiently captures the
statistical properties of a wide variety of real-world phe-
nomena, such as the linking dynamics of the Web [3]
and the growth of software distributions [4]. Recent-
ly, the present authors and others have shown Simon’s
model also exhibits a potentially pronounced first-mover
advantage and that this feature may be consistent with
the growth of real systems [5].

In Sec. II, we first realize Simon’s model in a contin-
uum setting and describe its dynamics for a number of
growth kernels. Secs. II A and II B describe the contin-
uum version of the model and formulate its analytical
solution. In Sec. II C we determine analytically how the
size distribution generated by the process is dependent on
the growth kernel, and can be proportional not only to
any power law distribution with finite mean (γ > 2), but
also specific instances of the extreme value distribution,
while in Sec. II D we analyze the model’s behavior when
extended to many dimensions. We apply the model to the
dynamics of a market economy in Sec. III, showing that
the power law distribution of firms observed empirically
and in simulation can be derived from first principles of
microeconomic theory with a minimum of assumptions.
[6]
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II. MODEL AND ANALYSIS

We describe Simon’s discrete model by means of an
economic example. Suppose an individual creates a new
firm in some product space with themselves as the sole
employee. An individual that enters the product space
at time-step t must choose between starting a new firm
themselves with probability ρ, and choosing to join an
existing firm with probability 1−ρ from one of the exist-
ing firms, with the likelihood of choosing any particular
firm from which to purchase proportional to the number
of employees k. We will denote the number of firms of
size k at time t by Nk,t. The general discrete model thus
takes the form of the recurrence relation [1]

〈Nk,t+1−Nk,t〉 = (1− ρ)
(
− k

t
Nk,t +

k − 1

t
Nk−1,t

)
(1)

where we formalize ρ as an innovation probability. The
solution to (1) scales as

Nk,t ∼ tk−γ , (2)

with γ = 1+ 1
1−ρ . When ρ→ 0, the size exponent γ → 2,

so that the distribution thus obtained borders on infinite
mean. Zipf’s law for rank-frequency distributions, writ-
ten sr ∝ r−α, is recovered from (2) by setting the Zipf
exponent α = 1

γ−1 = 1− ρ [1]. The corresponding equa-

tion for the size of the n-th arriving group Nn,t is then
given by [5]

Nn,t =


1

Γ(2− ρ)

[
1

t

]−(1−ρ)
if k = 1

ρ1−ρ
[
k − 1

t

]−(1−ρ)
if k ≥ 2

(3)
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A. From discrete to continuous

Though the discrete model accurately models the size
distribution resulting from many real-world processes, it
has a number of shortcomings when applied to econom-
ic situations. Models that exploit mathematical prop-
erties of the preferences of a representative agent often
perform poorly in the task of explaining economic phe-
nomena such as inequality and skewed wealth distribu-
tions [7, 8]. Abstraction of these considerations is thus
desirable in order to account for idiosyncrasies present
at the individual consumer level; the resulting model is
a mean-field equation and better describes macro behav-
ior, analogous to the use of deterministic equations of
statistical mechanics to describe stochastic interactions
among many particles. Moving from discrete to con-
tinuous time is sensible as it corresponds better with
our notion of reality (people do not make decisions in
synchrony at each tick of a universal clock). From a
mathematical viewpoint, the resulting equation will be
more easily analyzed as a partial differential equation
instead of a coupled differential-difference equation. Fur-
ther, where Simon’s model assumes that agents aggre-
gate to firms with growth kernel r(x) = x, we drop this
assumption and write the growth kernel as some function
r(x) to allow for generalization of choice [9]. Finally, we
allow the innovation rate ρ to vary in time as ρ(t), which
may more realistically capture the process of technolog-
ical innovation inherent in the present economic system.
(We note that Simon considered a time-varying innova-
tion probability in [1].)

B. General model

Applying the above adjustments to Simon’s discrete
model, Eq. 1 becomes a boundary value problem for the
function determining the intertemporal distribution of
firms of size x, written f(x, t):

∂f

∂t
= −1− ρ(t)

t

∂

∂x
[r(x)f ] (4)

with the semi-infinite boundary condition
limx→∞ f(x, t) = 0. (We treat only the case of
asymptotic solutions; the question of differing initial
distributions of firms is not considered.) We first
consider ρ∞ as a long-run constant innovation rate

satisfying limt→∞
ρ(t)
ρ∞

= 1 and solve Eq. 4 by separation

of variables. Setting f(x, t) = X(x)T (t), we solve the
equations:

dT

dt
' λ

1− ρ∞
1− ρ(t)

t
T (t) (5)

dX

dx
= −

[ λ

(1− ρ∞)r(x)
+
r′(x)

r(x)

]
X(x), (6)
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FIG. 1. Solutions to Eq. 4 with growth kernel r(x) = x and
innovation rate ρ(t) = ρ∞.

where λ is a constant of separation. The general solution
to (4) is thus

f(x, t) =
c

r(x)
exp

[ λ

1− ρ∞
g(x, t)

]
(7)

where g(x, t) =
∫ t 1−ρ(t′)

t′ dt′ −
∫ x dx′

r(x′) .

Dropping the assumption that ρ(t) → ρ∞, we solve (4)
in all generality using the method of characteristics. We
write the Lagrange-Charpit equations that describe its
solution on the characteristic curves as

dt =
t dx

(1− ρ(t))r(x)
= − t df

(1− ρ(t))r′(x)f(x, t)
(8)

and solve the resulting equations

dx

dt
=

1− ρ(t)

t
r(x) (9)

df

dx
= −r

′(x)

r(x)
f(x, t) (10)

The solution to the first is given implicitly by
∫

dx
r(x)+A =∫ 1−ρ(t)

t dt, while the solution to the second is f(x, t) =
B
r(x) . Letting B = F (A) gives the firm density

f(x, t) =
1

r(x)
F
(∫ 1− ρ(t)

t
dt−

∫
dx

r(x)

)
(11)

We see that Eq. 7 has the same form as Eq. 11, with
F (·) = exp(·).

C. Asymptotics for example growth kernels

We wish to characterize the long-run behavior of equa-
tion (7). Recovering the original Simon model is possi-
ble by setting r(x) = x and letting the innovation rate



3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

log10x

20

15

10

5

0

5
lo

g
1
0
f(
x
)

t
f= − 1− ρ

t x
[xηf]

η=  1.5

η=  2.0

η=  5.0

FIG. 2. Solutions to Eq. 4 with growth kernel r(x) = xη for
η > 1 and innovation rate ρ(t) = ρ∞.

remain constant at ρ∞. Equation (7) then becomes

f(x, t) ∝ 1

x
exp

[
ln t− λ

1− ρ∞

∫ x dx′

x′

]
= tx−(1+

λ
1−ρ∞ ) (12)

with λ → 1 in the long-run time limit. Figure 1 shows
solutions of Eq. 4 with the Simon growth kernel r(x) = x
and a constant innovation rates ρ ∈ {0.01, 0.1, 0.5} Note
that these solutions are pure power laws and thus are
linear in log-log space. The exponent γ = 1+ 1

1−ρ∞ is the

expression found by Simon in [1]. Any discretization of
this continuum process will have a size-rank distribution
S(r) ∝ r−α with Zipf exponent α = 1

γ−1 = 1 − ρ∞;

the dynamics of the Simon process are thus completely
recovered in this case.

For an affine growth kernel r(x) = a0 + a1x, the solution
is similar:

f(x, t) ∝ 1

a0 + a1x
exp

[
ln t− λ

1− ρ∞

∫ x dx′

a0 + a1x′

]
= t(a0 + a1x)

−1− λ
a1(1−ρ∞)

∼ tx−(1+
1

a1(1−ρ∞)
)
, (13)

again in the long-run time limit. A general linear growth
factor can thus be chosen to result in a power law distri-
bution with any γ > 1; as a1 grows large, 1

a1(1−ρ∞) → 0.

Considering a monomial power growth factor r(x) = xη

(η 6= 1), we obtain

f(x, t) ∝ 1

xη
exp

[
ln t− 1

1− ρ

∫ x dx′

x′η

]
= tx−η exp

[
− x−(η−1)

(1− ρ)[−(η − 1)]

]
. (14)

Equation (14) is proportional to a Fréchet distribution
for η > 1 or Weibull distribution for 0 < η < 1.
Krapivsky et al. found a similar result for nk, the num-
ber of nodes of degree k, in growing random networks
[10].

Figure 2 shows solutions of Eq. 4 with r(x) = xη

for η > 1.

D. Preferential attachment in many dimensions

We now extend the model, Eq. (4), to multiple dimen-
sions. Maintaining the assumption of a steady-state con-
stant innovation rate ρ∞, the equation governing the dis-
tribution of firms as a function of time and N spatial
variables x1, ..., xN is

∂f

∂t
= −1− ρ(t)

t

N∑
k=1

∂

∂xk
(rkf), (15)

where rk = rk(xk). This equation is again separable with
solution given by

f(x1, ...xN , t) = T (t)

N∏
k=1

Xk(xk).

Substituting the above into Eq. (15) gives

∂[T (t)
∏N

1 Xk]

∂t
= − (1− ρ∞)(1− ρ(t))

(1− ρ∞)t

×
N∑
k=1

∂

∂xk

(
rkT (t)

N∏
j=1

Xj

)
,

(16)

which, after rearranging and differentiating, becomes

1− ρ∞
1− ρ(t)

t

T (t)

dT

dt

N∏
k=1

Xk = −(1− ρ∞)

×
N∑
k=1

(
rk
dXk

dxk

∏
j 6=k

Xj +
drk
dxk

N∏
j=1

Xj

)
.

(17)

Dividing through by the term
∏N
k=1Xk, we find

dT

dt

(1− ρ∞)t

(1− ρ(t))T (t)
= −(1− ρ∞)

×
N∑
k=1

(
rk
dXk

dxk
X−1k +

drk
dxk

)
,

(18)

which can be separated into an uncoupled system of N+1
ODEs with structures identical to those solved in Eqs.
(5):

dT

dt
=

λ

1− ρ∞
1− ρ(t)

t
T (t), (19)

dXk

dxk
= −

(
λk

(1− ρ∞)rk
+
r′k
rk

)
Xk for k = 1, ..., N,

(20)
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FIG. 3. Power law size distribution of firms. Dis-
tribution of firm sizes by employment from 1977 to 2013,
obtained from the U.S. Census Bureau on August 28, 2016
[11]. Note that U.S. firms exhibit constant returns to scale,
so this implies a power-law distribution (with identical expo-
nent) in firm income. This result was famously publicized by
Axtell in [12]. The wide binning in the figure is due to the lack
of granularity in publicly available U.S. Census data on firms
with more than 104 employees. The inset displays 〈f(x, t)〉x
over the entire date range. These data exhibit linear scaling,
as predicted by Eq. 23.

where λ =
∑N
k=1 λk are the coefficients of separation.

The general solution of Eq. (15) is thus

f(x1, ...xN , t) ∝
c

r
exp

[
1

1− ρ∞

(∫ t 1− ρ(t′)

t′
dt′

−
N∑
k=1

∫ xk dx′k
rk(x′k)

)]
,

(21)

with c = ct
∏
k ck and r =

∏
k rk(xk).

III. APPLICATION TO MARKET STRUCTURE

We demonstrate the applicability of our results with
a microeconomic analysis of firm revenues. Consider a
small time period ∆t in which consumers enter a market
to purchase an item priced at p. During this time period,
we assume each consumer purchases only one item. With
probability ρ (likely quite small) a consumer will choose
to start their own firm; with probability 1 − ρ they will
choose to buy the product from an existing firm. Con-
sumers chose a firm from which to buy in proportion to
the advertising level of the firm, which is itself propor-
tional to the firm’s revenue R. Revenue is given by the
equation R(q) = p(q) · q, where q is the quantity of the
product sold. Firms are price takers, with market price
set at p, so that revenue is R(q) = pq+ c for c some con-
stant. Applying the above model, the mean-field equa-

tion for this process is

∂f(x, t)

∂t
= −1− ρ

t

∂

∂x
[(px+ c)f(x, t)], (22)

where the substitution q = x comes from the restriction
that each consumer purchases only one product during
the small time interval of study. The solution to this
equation is given by

f(x, t) ∝ t(px+ c)−1−
1

p(1−ρ) . (23)

Rewriting this explicitly as f(R, t) ∝ tR−1−
1

p(1−ρ)

emphasizes the result of a power law distribution of
firms in revenue. This result corresponds with simulation
[13] and empirical data [12, 14]. Figure (3) displays
the frequency distributions of U.S. firms with respect
to number of workers from the years 1977 to 2013.
That a power law fits this data is well-known [12]. As
U.S. firms exhibit constant returns to scale [15], this
implies a power law frequency distribution of firms with
respect to revenue. We note that the average coefficient
β1 of the log-log fit 〈log10 f(x)〉 = β0 + β1 log10 x is
approximately equal to 1, implying that 1

p(1−ρ) ≈ 0 in

equation (23). The inset of Figure (3) displays 〈f(x, t)〉x
over the entire date range. These data exhibit linear
scaling, as predicted by Eq. 23, with line of best-fit given
by 〈f(x, t)〉x = −1.98× 107 + 1.04× 104 t (R2 = 0.9204,
p = 8.042 × 10−21). The unpredicted downward trend
in 〈f(x, t)〉x in the late 2000s is likely due to unsta-
ble conditions in the American economy during this time.

From Eq. (23), we show that the cumulative wealth
distribution of firms exhibits power-law scaling. Defining
the wealth kernel to be w(x, t) = π(x, t)f(x, t), where
π(x, t) are the profits resulting from a sale of x items at
time t, and imposing a maximum customer base of xmax,
we have that total system wealth at time t is given by

W (t) =

∫ t

0

∫ xmax

0

w(x′, t′) dx′ dt′. (24)

The functional form of π(x, t) is dependent on the func-
tional form of firms’ cost function C(x, t). Suppose that
firms face identical weakly quadratic costs C(x, t) =
cx + εx2, with 0 < ε � 1. (We choose ε in this range
so as to enforce the first-order condition that dπ

dx = 0 has
a solution in R+.) Then, denoting the total wealth of
firms with x or more customers at time t by W≥(x, t)
and letting pnet = p− c, the above equation becomes

W≥(x, t) ∼
∫ t

0

∫ xmax

x

(pnetx
′ − εx′2)t′x′−1−

1
p(1−ρ) dx′ dt′

∼ pnet
∫ t

0

t′dt′
∫ xmax

x

x′−
1

p(1−ρ) dx′

∝ pnett2
(
x
1− 1

p(1−ρ)
max − x1−

1
p(1−ρ)

)
(25)

Thus the wealth fraction belonging to firms with cus-
tomer base greater than or equal to x at time t, denoted
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Wfrac(x) = W≥(x, t)/W (t), displays power law scaling as
a direct result of the preferential attachment process:

Wfrac(x) ' 1− c0x1−
1

p(1−ρ) , (26)

where c0 ≈
(
x
1− 1

p(1−ρ)
max

)−1
. Eq. 26 is shown in Figure 4

for several values of ρ.

CONCLUDING REMARKS

In sum, we have shown how Simon’s model, and
preferential attachment models more generally, may be

extended to the continuum for ease of use as mean-
field approximations to stochastic processes. We have
developed Simon’s model in a continuum, expanded
upon it by introducing an arbitrary growth kernel r(x)
and a time-variant innovation rate ρ(t), and solved the
model, discussing the cases in which the general solution
satisfies the boundary conditions of the PDE. We are
able to find explicit solutions with various growth kernels
r(x). Noting that preferential attachment processes may
operate in more than one dimension, we allowed the
model to have an arbitrary number of dimensions and
solved it there. Finally, we applied the model to the
case of consumer accumulation to firms, to demonstrate
a theoretical derivation of the power law distribution of
firms by revenue that is observed empirically.

Further extensions to this model could consider
the case in which, as treated above, market entrants
create their own firms with probability ρ. It might
be that market entrants create not a single firm, but
multiple firms, or that, in times of economic crisis, firms
are removed from the marketplace with probability q.
The model could then be described by

∂f

∂t
= −1− ρ

t

∂

∂x
(r(x)f) + q g (f(x, t), x, t) . (27)

Other models could also incorporate past information
about the state of the market or a threshold condition
via an equation of the form

∂f

∂t
= −1− ρ

t

∂

∂x
(r(x)f) +∫ x2

x1

∫ t2

t1

h(f(x− x′, t− t′), x′, t′)dt′dx′.
(28)
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