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We derive a general expression for the probability of global spreading starting from a single infected
seed for contagion processes acting on generalized, correlated random networks. We employ a simple
probabilistic argument that encodes the spreading mechanism in an intuitive, physical fashion.
We use our approach to directly and systematically obtain triggering probabilities for contagion
processes acting on a collection of random network families including bipartite random networks.
We find the contagion condition, the location of the phase transition into an endemic state, from
an expansion about the disease-free state.
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I. INTRODUCTION

Spreading is a pervasive dynamic phenomenon, rang-
ing in form from simple physical diffusion to the com-
plexities of socio-cultural dispersion and interaction of
ideas and beliefs [1–11]. Successful spreading in sys-
tems may manifest as an expanding front, such as in
the spread of disease through medieval Europe [12], or
through inherent or revealed networks, such as in pan-
demics in the modern era of global travel [13]. Here,
we focus on spreading processes operating on generalized
random networks, which have proven over the last decade
to be illustrative of spreading on real networks and at the
same time to be analytically tractable [3, 14–24].

In contributing to the wealth of already known results
for contagion on random networks, we make two main
advances here. First, we obtain, in the most general
terms possible, an expression for the probability of global
spreading from a single seed for a broad range of conta-
gion processes acting on generalized, correlated random
networks. By global spreading we mean a non-zero frac-
tion of nodes in an infinite network are eventually infect-
ed. Second, we use an argument that is physically moti-
vated and direct. Existing approaches rely on a range of
mathematical techniques, such as probability generating
functions [14, 25, 26], which, while being entirely suc-
cessful in determining spreading probabilities and higher
moments of cascade size distribution, obscure the under-
lying physical mechanisms.
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The present paper is a companion to our earlier work
where we derived a general condition for the possibility
(rather than probability) of global spreading for single-
seed contagion processes acting on random networks [27].
We used specific results from both works in a separate
investigation of exactly solvable network spreading mod-
els [28]. As we show below, our expression for the prob-
ability of spreading naturally allows us to recover our
expression for the possibility of spreading, and this is a
purely mathematical exercise. Our key contribution is
the direct derivation of triggering probabilities via phys-
ical arguments, as illustrated in Fig. 1.
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FIG. 1: Physical and mathematical explanations of two fun-
damental aspects of broad classes of contagion processes act-
ing on generalized random networks. In the present paper,
we provide a physical approach to determining the probabil-
ity of spreading from a single seed (derivation B). We use
mathematical arguments to arrive again at the binary conta-
gion condition (derivation C), which we obtained in a previous
work [27] using a direct physical explanation (derivation A).

We structure our paper as follows. In Sec. II, we define
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the broadest class of correlated random networks allow-
ing for directed and undirected edges and arbitrary node
and edge properties. In Sec. III, we define the gener-
al class of contagion processes that our treatment can
encompass. In Sec. IV, we compute the probability that
seeding a node of a given type generates a global spread-
ing event. For completeness, in Sec. V, we derive the
contagion condition (location of the endemic phase tran-
sition) result found in [27], and we show how non-physical
expressions may arise through this mathematical route.
We use our formalism for six interrelated random network
families with general contagion processes acting on them
in Sec. VIA. In Secs. VIB and VIC, we show how our
approach readily applies to random bipartite networks,
and we offer some concluding remarks in Sec. VII.

II. GENERALIZED RANDOM NETWORKS

λ′

νν′ λ

Ωin Ωout

Ω

Ωscc

b

d

ca

FIG. 2: Schematic showing the configuration of the potential
triggering node subnetwork using the present work’s formal-
ism for generalized random networks described in Sec. II, and
the basic form of a random network with directed edges and
a giant component. The ellipses labelled a–d show four pos-
sible locations of the subnetwork in the overall network Ω.
Global spreading events can be successfully generated only if
the subnetwork is part of the giant in-component Ωin, either
within or outside of the giant strongly connected component
Ωscc (ellipses a and b). No spreading is possible if the sub-
network is instead part of the giant out-component outside
of the strongly connected component (Ωout/Ωscc, ellipse c) or
outside of all three giant components (ellipse d).

Our theoretical treatment builds on a formalism we
introduce here for representing generalized random net-
works, an expansion of what we used in our connected,
earlier work [27]. Our theory applies to large random net-
works with bounded degrees (such as the configuration
model), since these graphs are all locally tree-like and
can be approximated by multitype branching processes.
Generalized random networks may contain a combination
of directed and undirected edges, so they are in general
nonsimple graphs.
We depict the essential features of a random network

with possibly directed edges in Fig. 2, noting that our
analytic treatment will also cover more specialized ran-
dom networks, such as those induced by bipartite graphs,
or networks with multipartite structure (see Sec. VIB).
The most basic elements of networks are nodes and edges,
and here we allow the following features encoded in two
types of labels:

• Node type, ν ∈ N : arbitrary node characteris-
tics such as node age, susceptibility to a given
disease or message, etc. The node type implicit-
ly includes information about its degree, which we
explain below.

• Edge type, λ ∈ Λ: arbitrary edge characteristics
such as age, strength, conductance, etc. Since edges
may be directed, edge type includes whether an
edge is directed or not and its orientation if so.
We thus use the notation λ̄ to indicate the edge’s
type when considered as travelling in the disallowed
direction. (There is no need to distinguish λ or λ̄
for undirected edges.) In other words, if there is a
directed edge of type λ from node u to node v, we
say there its type is λ̄ when viewing v as the source
and u as the target.

We take N and Λ to be discrete. We denote the entire
network by Ω, and the set of edge types incident to a
node of type ν by Λν .
We define degree as the number of edges of a certain

type emanating from a node. In simple networks, we let
k(ν, λ) denote the number of edges of type λ emanating
from a node of type ν. In more general networks we

let the multi-index ~k(ν, λ) = [ku(ν, λ), ki(ν, λ), ko(ν, λ)]
denote the number of undirected, inward, and outward
edges of type λ belonging to a node of type ν.

The ‘total degree’ of a node of type ν is then ~k(ν) =
∑

λ∈Λν

~k(ν, λ), and we define the effective degree, a scalar

important for spreading mechanisms, as k(eff)(ν, λ) =
ko(ν, λ)+ku(ν, λ). We also introduce a directedness indi-
cator function d(λ) which equals one if edges of type λ
are directed and zero if not.
To characterize a random network with arbitrary node-

edge-node correlations, we need to specify a number of
interrelated probabilities, and these must further satisfy
certain restrictions and detailed balance equations [15].
First, we have the node and edge distributions Pr(ν) and
Pr(λ). Note that we immediately have the restriction
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Pr(λ) = Pr(λ̄). Also, these induce the usual degree
distributions via

Pr(~k) =
∑

ν∈N

Pr(ν)δ~k,~k(ν)

where δ is the Kronecker delta.
Next we need Pr(νλ), defined as the probability that,

in randomly choosing an edge and traversing it (in the
allowed direction if directed or a random direction if undi-
rected), we find it is of type λ and that we are travelling
away from a node of type ν.
Finally, we encode correlations via the transition prob-

ability Pr(ν|ν′λ′) which is the probability that we reach
a type ν node, given that we are following a type λ′ edge
away from a type ν′ node. This includes the usual degree-
degree transition probabilities (see Sec. VIA and [28] for
notation):

P (i)(~k′′|~k′) =
∑

ν,ν′∈N

∑

λ∈Λν′

Pr(ν|ν′λ′)d(λ′)

× δ~k′,~k(ν′)δ~k′′,~k(ν),

P (u)(~k′′|~k′) =
∑

ν,ν′∈N

∑

λ∈Λν′

Pr(ν|ν′λ′)[1 − d(λ′)]

× δ~k′,~k(ν′)δ~k′′,~k(ν).

(1)

We are now forced to connect and constrain the prob-
abilities Pr(νλ) and Pr(ν|ν′λ′) according to a detailed
balance constraint. Consider Pr(ν′λ′ν) defined as the
probability that a randomly selected edge is of type λ′

and runs from a type ν′ node to a type ν node (corre-
sponding to the subnetwork in Fig. 2). Then,

Pr(ν′λ′ν) = Pr(ν|ν′λ′)Pr(ν′λ′).

Now, if we traversed the edge in the disallowed direction,
it would “connect” a type ν node to a type ν′ node. Then
we must also have Pr(ν′λ′ν) = Pr(νλ̄′ν′). We therefore
arrive at the detailed balance condition:

Pr(ν|ν′λ′)Pr(ν′λ′)
︸ ︷︷ ︸

Pr(ν′λ′ν)

= Pr(ν′|νλ̄′)Pr(νλ̄′)
︸ ︷︷ ︸

Pr(νλ̄′ν′)

. (2)

Note that the detailed balance condition, Eq. (2),
is more general for typed random networks than the
detailed balance conditions in terms of the degree dis-

tributions Pr(~k,~k′) and Pr(~k) found by [15]. If the
types of the nodes are their degrees and the edge types
are Λ = {undirected, incoming, outgoing}, then Eq. (2)
reduces to the well-known detailed balance conditions
given in [15] and [28], which can all be written as

P (λ)(k|k′)
k′λPr(k′)

〈kλ〉
︸ ︷︷ ︸

P (λ)(k,k′)

= P (λ̄)(k′|k)
kλ̄Pr(k)

〈kλ〉
︸ ︷︷ ︸

P (λ̄)(k′,k)

. (3)

In networks where there are multiple types of directed
or undirected edges, the detailed balance equations given

in [15, 28], which have the form of Eq. (3), are not nec-
essarily valid. This is because not all edges or degree-k
nodes are equivalent. Using Eq. (2), we can show that
the symmetry of the degree distributions is conserved,
Pr(k, k′) = Pr(k′, k).

Pr(k′′, k′) =
∑

ν,ν′∈N

∑

λ∈Λν

Pr(ν′λν)δk′,k(ν′)δk′′,k(ν)

In considering contagion processes, we recall the well-
known typical macroscopic ‘bow-tie’ form of random net-
works with directed edges [14, 15, 29], given that a giant
component is present. As shown in Fig. 2, there are three
giant components of functional importance: (1) the giant
strongly connected component, Ωscc, within which any
pair of nodes can be connected via a path of directed
and/or undirected edges, traversing the directed ones;
(2) the giant in-component Ωin, the set of all nodes from
which paths lead to Ωscc (n.b., Ωscc ⊂ Ωin); and (3) the
giant out-component Ωout, the set of all nodes which can
be reached along directed paths starting from a node in
Ωin (n.b., Ωscc ⊂ Ωout). By definition, we have that
Ωscc = Ωin ∩ Ωout. Any global spreading event must
begin from a seed in the giant in-component, and can at
most spread to the giant out-component Ωout.

III. GENERALIZED CONTAGION PROCESS

We consider contagion processes where the probabil-
ity of a node’s infection may depend in any fashion on
the current states of its neighbors, potentially resembling
phenomena ranging from the spread of infectious diseases
to socially-transmitted behaviors [20, 30–32]. Since we
are interested in the probability of spreading, we can cap-
italize on the fact that random networks are locally pure
branching structures. We therefore need to know only
what the probability of infection is for a type ν node giv-
en a single neighbor of type ν′ is infected, whose influence
is felt along a type λ′ edge. We write this probability as
Bν′λ′ν . Time is removed from this quantity, as we need to
know only the probability of eventual infection. Disease
spreading models with recovery [27, 32] are included, as
are threshold models inspired by social contagion [20, 31].

IV. TRIGGERING PROBABILITIES

We define Qνλ to be the probability that seeding a type
ν node generates a global spreading event along an edge
of type λ. Due to the Markovian nature of random net-
works, this probability must satisfy a nonlinear recursion
relation:

Qν′λ′ =
∑

ν∈N

Pr(ν|ν′λ′)Bν′λ′ν

×

[

1−
∏

λ∈Λν

(1−Qνλ)
k(eff)(ν,λ)−δ

λ,λ̄′

]

,

(4)
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Network: Edge Triggering Probability: Node Triggering Probability, Q:

I. Undirected,
Uncorrelated

Q∗∗ =
∑

ku

P (u)(ku | ∗)B∗∗ku

[

1− (1−Q∗∗)
ku−1

]

∑

ku

Pr(ku)
[

1− (1−Q∗∗)
ku

]

II. Directed,
Uncorrelated

Q∗∗ =
∑

ki,ko

P (u)(ki, ko| ∗)B∗∗ki

[

1− (1−Q∗∗)
ko

]

∑

ki,ko

Pr(ki, ko)
[

1− (1−Q∗∗)
ko

]

III. Mixed
Directed and
Undirected,
Uncorrelated

Q∗u =
∑

~k

P (u)(~k| ∗)B
∗∗~k

[

1− (1−Q∗u)
ku−1(1−Q∗o)

ko

]

Q∗o =
∑

~k

P (i)(~k| ∗)B
∗∗~k

[

1− (1−Q∗u)
ku(1−Q∗o)

ko

]

∑

~k

Pr(~k)
[

1− (1−Q∗u)
ku(1−Q∗o)

ko

]

IV. Undirected,
Correlated

Qk′

u∗
=

∑

ku

P (u)(ku | k
′
u)B∗∗ku

[

1− (1−Qku∗)
ku−1

]

∑

ku

Pr(ku)
[

1− (1−Qku∗)
ku

]

V. Directed,
Correlated

Qk′

i
k′

o,∗
=

∑

ki,ko

P (u)(ki, ko| k
′
i , k

′
o)B∗∗ki

[

1− (1−Qkiko,∗)
ko

]

∑

ki,ko

Pr(ki, ko)
[

1− (1−Qkiko,∗)
ko

]

VI. Mixed
Directed and
Undirected,
Correlated

Q~k′u
=

∑

~k

P (u)(~k|~k′)B
∗∗~k

[

1− (1−Q~ku
)ku−1(1−Q~ko

)ko

]

Q~k′o
=

∑

~k

P (i)(~k|~k′)B
∗∗~k

[

1− (1−Q~ku
)ku(1−Q~ko

)ko

]

∑

~k

Pr(~k)
[

1− (1−Q~ku
)ku(1−Q~ko

)ko

]

TABLE I: For the six classes of random networks described in Sec. VIA, the probability of triggering a global spreading events
due to (1) an infected edge, and (2) an infected, randomly chosen single seed (see Eqs. 4 and 6). We indicate by the symbol ∗
when no node or edge type is relevant.

an expression which involves the following three elements.
First, we havePr(ν|ν′λ′) which is the probability of tran-
sitioning to a node of type ν. The second term Bν′λ′ν

is the probability of successful infection. The last term
contains the recursive structure. At least one of the
edges leading away from the type ν node must gener-
ate a global spreading event (note that we avoid double
counting the incident edge of type λ̄′ with the indica-
tor in the exponent). The probability this happens is
the complement of the probability that none succeed,
∏

λ∈Λν
(1−Qνλ)

k(eff)(ν,λ)−δ
λ,λ̄′ . Eq. (4) will rarely be

analytically tractable (but see [28] for an exactly solved
simple model), and will usually be solved numerically by
iteration.
The probability that an infected type ν node seeds a

global spreading event follows as

Qν = 1−
∏

λ∈Λν

(1−Qνλ)
k(eff)(ν,λ), (5)

where again success is defined in terms of not failing.
Finally, the probability that the sole infection of a ran-
domly chosen node leads to a global spreading event is

Q =
∑

ν′∈N

Pr(ν′)Qν′ (6)

The effects of weighted triggering schemes—where the
initial node is chosen according to its degree in some

fashion—can be easily examined by replacingPr(ν′) with
the appropriate distribution.

V. CONNECTION BETWEEN TRIGGERING

PROBABILITIES AND THE CONTAGION

CONDITION

We show how our general expression for triggering
probabilities reduces to the general cascade condition we
described in [27]. The calculation involved makes an
important analytic connection but is necessarily largely
mathematical in nature, as represented in Fig. 2.

The cascade condition is a binary expression of pos-
sibility; when the condition is met, global spreading
events initiated by single seeds are possible, and oth-
erwise they are impossible. Starting from Eq. (4),
we determine the cascade condition by examining
under what circumstances the triggering probability
Qνλ → 0+. In this limit, the product in Eq. (4),
∏

λ∈Λν
(1−Qνλ)

k(eff)(ν,λ)−δ
λ,λ̄′ . can be approximated

as 1 −
∑

λ∈Λν

(
k(eff)(ν, λ)− δλ,λ̄′

)
Qνλ, to first order.
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Neglecting higher order terms, Eq. (4) reduces to

Qν′λ′ ≃
∑

ν∈N

Pr(ν|ν′λ′)Bν|λ′ν′

×
∑

λ∈Λν

(

k(eff)(ν, λ)− δλ,λ̄′

)

Qνλ.
(7)

We introduce the notation from [27], where α = (ν, λ)
and α′ = (ν′, λ′), as well as kα′α = k(eff)(ν, λ) − δλ,λ̄′ as
the number of type λ edges leaving from nodes of type ν,
with the exclusion of the incident type λ′ edge arriving
from a type ν′ node. We also let Pα′α = Pr(ν|ν′λ′),
Bα′α = Bν′λ′ν . Note that the outgoing edge of type λ′

does not affect the contagion mechanism and is left as
arbitrary in α′. Then the above equation becomes

Qα′ ≃
∑

α

Pα′α • kα′α •Bα′αQα =
∑

α

Rα′αQα, (8)

where we have identified the gain matrix R we obtained
and described in [27]. Contagion is possible only when
the largest eigenvalue of R exceeds unity, and we have
connected the triggering probability to the cascade con-
dition.

VI. APPLICATIONS

A. Triggering probabilities for six random network

families

In Tab. I, we list the forms of Qν′λ′ and Q for six
specific families of random networks which we describe
below. The last of these network families is the most gen-
eral and contains the other five as special cases. Nodes
potentially have three kinds of unweighted edges incident
to them: undirected, in-directed, and out-directed, and

we use the vector representation ~k = (ku, ki, ko) to define
node classes [15, 27]. The specific transition probabilities,

P (i)(~k|~k′), P (o)(~k|~k′), and P (u)(~k|~k′), give the probabili-

ties of an edge leading from a degree ~k′ node to a degree ~k
node being oriented as undirected, incoming, or outgoing
(see Refs. [27] and [28] for more details). For uncorrelat-

ed networks, we use the notation P (i)(~k| ∗), etc. Similarly
for the triggering probabilities, where the node or edge
type is irrelevant we also use ∗ (e.g., Q∗∗ instead of Qνλ

for undirected, uncorrelated, unweighted networks). For
simplicity, we assume infection is due only to properties
of the node potentially being infected, which for these
networks means the node’s degree.

B. Random bipartite networks

We now show how the theory of contagion in bipar-
tite networks [14] is a special case of the general model.
Consider a bipartite network G = (V,E) with the nodes
partitioned into disjoint sets A(1) and A(2), such that

V = A(1) ∪ A(2) and all edges uv ∈ E satisfy u ∈ A(1)

and v ∈ A(2) or u ∈ A(2) and v ∈ A(1). Again, we consid-
er general node types ν, but now they are also associated
with either one of the sets A(1) or A(2).
Due to the bipartite structure, the triggering probabil-

ity Eq. (4) separates into two coupled equations

Q
(1)
ν′λ′ =

∑

ν

Pr
(1)(ν|ν′λ′)B

(1)
ν′λ′ν

×

[

1−
∏

λ∈Λν

(

1−Q
(2)
νλ

)k(eff)(ν,λ)−δ
λ,λ̄′

]

,

Q
(2)
ν′λ′ =

∑

ν

Pr
(2)(ν|ν′λ′)B

(2)
ν′λ′ν

×

[

1−
∏

λ∈Λν

(

1−Q
(1)
νλ

)k(eff)(ν,λ)−δ
λ,λ̄′

]

,

(9)

where the superscripts denote the triggering probabilities
starting in A(1) and A(2), respectively.
The contagion condition arises again by linearizing

Eq. (9) about Q(1) = Q(2) = 0. This gives the linear
system of equations

Q
(1)
ν′λ′ =

∑

ν

∑

λ∈Λν

Pr
(1)(ν|ν′λ′)B

(1)
ν′λ′ν

×
(

k(eff)(ν, λ)− δλ,λ̄′

)

Q
(2)
νλ ,

(10)

Q
(2)
ν′λ′ =

∑

ν

∑

λ∈Λν

Pr
(2)(ν|ν′λ′)B

(2)
ν′λ′ν

×
(

k(eff)(ν, λ)− δλ,λ̄′

)

Q
(1)
νλ .

(11)

These equations are of the form
[
Q(1)

Q(2)

]

=

[
0 R12

R21 0

] [
Q(1)

Q(2)

[

= R

[
Q(1)

Q(2)

]

, (12)

where the entries of R12 and R21 are shown in Eqs. (10)
and (11). The structure of the gain matrix R, of course,
reflects the bipartiteness of G. Spreading will occur when
the spectral radius ρ(R) > 1 [27]. The eigenvalues of R
are the solutions λ to

det(λ2I −R12R21) = 0,

since the diagonal matrix λI and R21 commute [33]. The
eigenvalues of R are thus the square roots of the eigenval-
ues of R12R21, meaning we can also express the contagion
condition as ρ(R12R21) > 1.
There is a physical explanation for the contagion condi-

tion. Assume the contagion starts with one active node in
A(1). It then must pass to A(2) before returning to A(1).
The gain going from A(1) to A(2) is R12, and the gain
is R21 going from A(2) to A(1). If the expected number
of active nodes after these two passes exceeds unity, the
contagion will spread. Note that the spectra of R12R21

and R21R12 are equal, so that we could also consider
starting the contagion in A(2).
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C. Uncorrelated, undirected bipartite networks

We now confirm that the general theory gives the pre-
viously known results for uncorrelated, undirected bipar-
tite networks. These networks are fully specified by the
degree distributions P (1)(k) and P (2)(k) for nodes in sets
A(1) and A(2), respectively. We set the infection proba-
bility B(1) = B(2) = 1 for all nodes, so that we are solving
for the existence of a giant component. The edge proba-
bilities are

P (1)(k|∗) =
kP (1)(k)

∑

k kP
(1)(k)

(13)

P (2)(k|∗) =
kP (2)(k)

∑

k kP
(2)(k)

(14)

where P (1)(k|∗) is the probability of reaching a degree k
node in A(1) from a random node in A(2), and P (2)(k′|∗)
is likewise the probability of reaching a degree k′ node in
A(2) from a random node in A(1).
Pick a random node u ∈ A(1) and imagine that the con-

tagion arrives at u via one of its incoming edges. Then
there are an expected

∑

k(k − 1)P (1)(k|∗) = R12 edges

leftover, each leading to an unexplored node in A(2). Fol-
low one of these to v ∈ A(2), then the expected excess
edges coming from v is

∑

k′(k′−1)P (2)(k′|∗) = R21. Mul-
tiplying these two sums together gives the expected num-
ber of new nodes reached in A(1) after two passes, so the
contagion condition is

R12R21 =
∑

k,k′

(k−1)P (1)(k|∗)(k′−1)P (2)(k′|∗) > 1. (15)

Substituting (13) and (14) for the conditional probabil-
ities, taking the normalization factors to the right hand
side, and simplifying, we arrive at

∑

k,k′

kk′(kk′ − k − k′)P (1)(k)P (2)(k′) > 0 (16)

which is the condition found by Newman, Strogatz, and
Watts [14] using generating functions. While Eqs. 15
and 16 are equivalent, the former preserves the physics
of the spreading process.

VII. CONCLUDING REMARKS

We have shown that the probability of a single infected
node generating a global spreading event can be derived
in a straightforward way for spreading processes on a
very general class of correlated random networks. Our
approach brings a physical intuition to the problem, and
while more sophisticated mathematical analyses arrive
at the same results, and are certainly useful for more
detailed investigations, they are burdened with some
degree of inscrutability.
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