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Abstract
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Introduction

The scope and health of philanthropic institutions contribute

substantively to the cultural and economic well-being of a great

diversity of societal institutions. Between 1970 and 2010 Amer-

icans gave approximately 2% of their disposable income to

philanthropic causes [1]. The distribution of income in the United

States and many other countries has long been described by

various heavy tailed distributions including power law, log-normal,

Boltzman, and combinations thereof [2–4]. Similar distributions

have been found in the size of gifts to charitable causes [5].

Here, our aims are to (1) examine empirical data for an

approximate power-law size distribution model of philanthropic

behavior; (2) describe a general mathematical model for philan-

thropic gifting in a manner that gives greater insight into how

different organizations raise money and how individuals choose

the amounts of their gifts; and (3) explore the usefulness of our

findings on current fundraising practices [6]. We have chosen the

power law distributions for the sake of simplicity and to aid

development of a primitive model describing heavy-tailed gifting

behavior capable of addressing basic questions about philanthro-

py. We wish to emphasize that we do not claim that gift size

distributions are perfectly described as ‘true’ power laws generated

by some underlying mechanism(s) not yet elucidated. Rather, we

use power law approximations—linear approximations in loga-

rithmic coordinates—to gain some traction in our description and

to provide a way to carry out some idealized analysis, fully

appreciating the appromixate nature of our work. Larger, much

more comprehensive data sets will certainly advance our

understanding beyond what we have been able to achieve here.

As a foundation for our investigations, we have constructed a

data set spanning a wide range of institutional categories. We

obtained anonymous gift data for a total of six institutions:

N two educational institutions: University of Vermont, Burling-

ton, VT, and Albert Einstein Medical School, Bronx, NY,

N one health care institution: Mt. Sinai Hospital in Manhattan,

NY,

N one combined purpose organization: United Way of Chit-

tenden County, VT,

N one local cultural and educational organization: ECHO

Science Center in Burlington, VT,

N and one arts center: Flynn Theater in Burlington, VT.

We provide the complete data set as part of Dataset S1.

Our central characterization of gift-size distributions will be

through measuring power-law exponents for the paired statistics of

Zipf distributions [7] and gift-size frequency distributions, and we

explain both now. First, the Zipf distribution for a list of gifts is

generated by ranking gifts in order of descending monetary size.

Writing gift size as S and gift rank as r, an ideal Zipf distribution

obeys:

S*r{a, ð1Þ

where we will call a the Zipf exponent. Alternately, we can

compile a gift-size frequency distribution: for each gift size S, we

record the number of such gifts N(S). Again for an ideal system,

we would observe
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N(S)*S{c: ð2Þ

Both views have their merits: Zipf distributions follow a very

natural construction and are simple to interpret, while power-law

size distributions most clearly represent a system’s probabilistic

behavior. Later in our analyses, we will consider the probability

density P(S), the normalized version of N(S).

We can show that the two distributions are related by

considering the complementary cumulative distribution function,

the number of gifts of at least size S: N§(S). We see that N§(S) is

equivalent to the rank of S, meaning N§(S)~r*S{1=a using Eq.

(1). A simple calculation starting from the size frequency

distribution gives N§(S)~
PSmax

S’~S N(S’)*S{(c{1). The expo-

nents are therefore connected as:

a~ 1
c{1

: ð3Þ

Empirically, a typical range for a is 1/2 to 1 with these limits

corresponding to 3 and 2 for c. For 2vcv3, we have the ‘statistics

of surprise’: gifts are typically small but the variance is very large

being dominated by the largest gifts. If cv2, we have an even

more extreme circumstance of the average gift size being typically

large as well.

In what follows, we will generally present figures showing Zipf’s

distribution. We will estimate Zipf’s a with a Maximum Likelihood

(ML) approach [8,9], and then determine c using Eq. (3). We

provide details of these calculations including comparisons to other

potential distributions in the Methods section and in Fig. S1 and

Tabs. S1 and S2 in File S1). In spite of our choice for figures and

for the purposes of analysis, we will prefer to describe our findings

using the gift-size distribution exponent c, though occasionally we

will use Zipf’s a when more convenient.

Due to the real-world nature of our data sets, our measurements

are necessarily not exact. Further, we are not stating that all

philanthropic gift-size distributions possess idealized power-law

Figure 1. Gift size distributions for a range of institutions. The reported a and c were fitted to the region indicated by solid grey line, and the
95% CI of this fit, as well as year for which the fit is plotted, are included for each organization. The ranges over which the data were fit was chosen
empirically; other approaches were found to be inconsistent (see Methods). A. Health Care: Mt. Sinai Hospital, 2010 had c~2:02+0:10. B. Higher
Education (Medical): Einstein School of Medicine, 2010 had c~1:80+0:06. C. Higher Education (General): University of Vermont, 2010 had
c~1:81+0:05. D. Combined Purpose: United Way, 2010 had c~2:47+0:09. E. Cultural: ECHO Aquarium and Science Center, 2009 had
c~1:73+0:15. F. Performing Arts: Flynn Theater, Burlington VT, 2010 had c~2:09+0:05. Later in Fig. 11, we show similar data for an anonymous
religious institution. Dates and amounts of all contributions were collected over time periods ranging from 2 years to 37 years. United Way and Mt.
Sinai Hospital were the only organizations able to ensure that annual donor gift amounts reflected that year’s total of donations by a single donor,
rather than individually posting multiple gifts made by a single donor during that year.
doi:10.1371/journal.pone.0098876.g001
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tails. Power-law statistics are notoriously difficult to estimate and,

moreover, convincingly showing that a power law even applies is

itself a fraught endeavor [8,10]. Nevertheless, assuming approx-

imate power-law tails is reasonable and gives us a serviceable

diagnostic tool for building and challenging our descriptions and

theory.

We report on our work as follows. We first present and give an

overall analysis of our six philanthropic-giving data sets. We then

propose an explanation for the variation in gift-size distributions

across institutions, based on the gift-giving preferences of

individual donors. Based on our findings, we then give recom-

mendations for fundraisers concerning the so-called ‘top 12 rule’,

fundraising pyramids, organization fundraising capacity, and data

collection.

Results

In Fig. 1, we show gift-size Zipf distributions for our six

organizations, organized by calendar year for a total of 27

distributions. For each year’s distribution for each institution, we

estimate a and c, indicating the fitting region with a solid grey line.

Our initial observation is that data for each organization in

Fig. 1 is highly skewed and are generally well fit by decaying power

laws. Four of the six institutions are particularly robust with the

exceptions being Mt. Sinai Hospital (Fig. 1A), which deviates from

a simple power law after the first few hundred donors, and ECHO

Science Museum, which shows the effect of providing strong gift

categories, leading in its case to a shelf at $1000 (Fig. 1E).

Examples of similar smaller shelves can be seen in the other

distributions at natural values of $50, $100, and so on.

We also see that institutions show remarkable consistency across

years. For example, in the case of the University of Vermont

(Fig. 1C), we see Zipf’s a and its related c are relatively stable

across three decades of gift rank, as well as over a range of 8,000 to

31,000 gifts per year. We also see that idiosyncratic distributions

such as those of Mount Sinai (break in scaling, Fig. 1A) and

ECHO Science Museum ($1000 shelf, Fig. 1E) are strongly

preserved from year to year.

As mentioned above, smaller values of c are associated with

more extreme distributions skewed towards very large gifts. The

two educational institutions possess extreme distributions with

c^1:8–1:9v2, and their average gift sizes are relatively large. By

contrast, United Way has a c^2:5w2 meaning its average gift is

small but large ones are possible.

To provide an initial summary, these distributions suggest four

notable characteristics of philanthropic gifting:

1. The distribution of the size of philanthropic gifts received is

qualitatively described with a power-law relationship.

2. Within a given institution, the gift-size distribution exponent c
remains nearly constant year-to-year.

3. As indicated by the similar values of c for the two higher

education institutions, c may be relatively constant within a

single philanthropic category.

Figure 2. Data showing how donors of different income groups distribute their charitable giving (United States, 2005) [11]. For
example, on average donors earning less than $100,000 chose to direct 67% of their total giving to religious causes, panel A, but donors earning
more than one million dollars chose instead to direct 17%, panel D. CP Funds stands for Combined Purpose Funds.
doi:10.1371/journal.pone.0098876.g002
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4. The gift-size distribution exponent c varies considerably

between philanthropic categories.

Of the number of questions raised by these observations, we will

focus in particular on one: Why does c vary among different

categories of philanthropic institutions? Our concrete goal will be

to model how giving behavior of people at different income levels

influences the gift-size exponent c.

As we show in Fig. 2, there is considerable variation in donor

behavior based on income, and this provides some insight for our

next step forward. The data we use here comes from the Indiana

University Center for Philanthropy 2005 Study on Charitable

Giving by Income Group which found in particular that a person’s

income level is strongly informative of the type of institution they

prefer to support [11]. Donors earning less than $100,000 per

year, for example, give a higher percent of their philanthropic

dollars (8.6%) to combined purpose funds (e.g. United Way) than

do those earning more than $1,000,000 per year and direct only

4% of their philanthropic dollars toward such charities. The

opposite is true for education, toward which donors with incomes

less than $100,000 direct only 3% of their philanthropic dollars,

while people earning more than $1,000,000 direct 25% of their

giving. As such, we would expect that educational institutions

would have a much lower c (associated with higher average gift

sizes) than combined purpose funds. Our data bears this out, with

a c of 1.81 for University of Vermont, and 2.47 for United Way of

Chittenden County (2010).

To make some headway with this issue of varying c, we first

need to examine how gift-size distributions differ in more detail. In

Fig. 3, we show that the Albert Einstein School of Medicine and

the United Way of Chittenden County have a similar sized donor

base, both with the 2000th donor giving approximately $200, yet

the largest gifts to Einstein are roughly 30 times those of the

United Way. How do we explain this? The answer is not as simple

as that all donors to Einstein give a multiple of what they would

give the the United Way: this would not change the slope (i.e., a or

c) of the Zipf or frequency distributions in log-log space.

As a first attempt, we start with the reasonable assumption that

larger donations originate from wealthier donors. In terms of Zipf

distributions, gift sizes will be ranked in the same order as the

donors who give them, according to their wealth. If we therefore

know, for a given time period, the distribution of the total amount

donated by each individual across a population, we can estimate

how much individuals, as a function of their income, must

relatively give to specific charity categories to obtain the specific

distributions (i.e., values of c) we observe in Fig. 1.

With this motivation, we turn to evidence that describes how

income and gift-giving are related within the United States. The

United States Internal Revenue Service (IRS) 2001 tax return data

shown in Fig. 4 compares reported income to reported charitable

deductions. On average, Americans donated 2.9% of their

income, with deductions for charitable giving appearing nearly

proportionate to income. When plotted in Zipf format and fitted to

a power law distribution, c for charitable giving (c~2:41) is slightly

smaller than that for income (c~2:56), favoring donating a slightly

higher percentage of income by wealthier individuals.

To move ahead, we now need to be able to compare two

arbitrary Zipf distributions whether they be Zipf distributions of

individual wealth or gift sizes. For ease of language, consider gifts

Figure 3. Comparison of 2010 giving to two organizations with
a similar number of donors, and similarly sized smaller gifts.
Despite these similarities, The Albert Einstein School of Medicine was
able to attract top ranked gifts that were approximately 30 times larger
than those of the United Way of Chittenden County, and raise 10 times
the total, because Einstein enjoyed a substantially lower c than United
Way.
doi:10.1371/journal.pone.0098876.g003

Figure 4. Data from the United States Internal Revenue Service
(IRS) 2001 tax returns for personal income and charitable
deductions. On average, people claimed charitable deductions at a
rate of 2.9% of their income. The top 0.15% of tax filers gave at a higher
rate averaging 4.8%, resulting in a c for charitable deductions slightly
lower (2.41) that that for income (2.56). Fits were computed using linear
regression in log-log space, after attempts to use maximum likelihood
methods failed due to finite size bias. Since income was reported as bin
average, we found the rank of the individual with that average by
assuming a power law distribution within each bin with c equal to the
fit for the whole distribution. This procedure was bootstrapped (as the
new individual ranks changes the whole distribution c) until conver-
gence of c within 10{3 .
doi:10.1371/journal.pone.0098876.g004
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given to a specific institution with a~ainst~1=(cinst{1), and total

donations made by individuals in a population with

a~apop~1=(cpop{1). We want to know how the first ranked

(largest) donation to the institution compares with the first total

amount donated by the population, and so on, down to the last

ranked donation. We derive this relationship by starting with the

Zipf distributions:

Sinst(r)*r{ainst and Spop(r)*r{apop ð4Þ

which, by isolating and equating ranks, immediately gives us

Sinst(r){1=ainst*Spop(r){1=apop : ð5Þ

Using a~1=(c{1), we then have that the size Sinst(r) of a gift to

the institution is related to the similarly ranked total amount

donated by an individual Spop(r) according to

Sinst(r)~cSpop(r) (cpop{1)=(cinst{1), ð6Þ

where c~Sinst(r�) Spop(r�)
� �{(cpop{1)=(cinst{1)

with r� being any

reference ranking.

We determine how much two individuals i and j in our

theoretical population relatively give to the institution. If these

individuals have wealth ranks ri and rj (which by assumption are

their donation ranks as well), then using Eq. (6), we have

Sinst(rj)

Sinst(ri)
~

Spop(rj)

Spop(ri)

� � (cpop{1)=(cinst{1)

: ð7Þ

Finally, we can compute a multiplier M which is the ratio of gift

sizes to an institution normalized by the total donated by

individuals i and j:

M~

Sinst(rj)

Spop(rj)

� �

Sinst(ri)

Spop(ri)

� �~
Spop(rj)

Spop(ri)

� � (cpop{cinst)=(cinst{1)

: ð8Þ

We can now use Eq. (8) to transform the distribution of personal

giving (and relatedly, that of income) into the distributions for

giving to various categories of philanthropy. First, we estimate cpop

using the 2001 IRS charitable deduction data as a reference

distribution, giving cpop^2:41. Employing Eq. (8), we then

calculate multipliers for what people of different total donating

levels would have to give to achieve the gift-size distribution

exponent cinst.

Working from our data sets, we show in Fig. 5 multipliers for six

types of institutions, using an income of $25,000 as an arbitrary

reference for convenience.

We see that the multiplier varies strongly across income level

and institutional type. Consider for example that the United Way,

which has cinst~2:47, serves as our example for combined

purpose funds. Because the United Ways gift-size distribution is

fairly close to that of the populations giving distribution

(cpop^2:41), the multiplier is close to unity. Thus, if a person

with a total donation level of S directs a certain fraction of their

charitable dollars to the United Way, we expect a person with a

total donation 10 times as large, 10S, to also direct a similar

fraction of their charitable dollars there as well resulting in a gift

approximately 10 times larger (Fig. 5, blue squares). The multiplier

here is 10(2:47{1:80)=(1:80{1)^0:9, which means as a percentage of

his total giving, gift from the wealthier person is 0.9 times the gift

from the less wealthy person, but in absolute terms, the gift is 9

times larger because his total donation level is 10 times larger.

By contrast, for the University of Vermont for which

cinst^1:81, the multiplier now depends strongly on income level.

If the same person with a total donation of S were now to direct

some of their charitable dollars to the University of Vermont, the

higher income person would give a multiplier of

10(2:47{1:81)=(1:81{1)^4:0, times more of their annual total

donations to the same institution (Fig. 5, green circles). Note that

the absolute value of the gift has increased 40 times: 10 times from

the larger income, and 4 times from the multiplier effect.

We can superimpose these multipliers onto the 2005 Study on

Charitable Giving by Income Group data. We do so in Fig. 6

which is a rearrangement of the same data displayed in Fig. 2,

binned according to the IRS income data in Fig. 4. The columns

in Fig. 6 represent data collected from surveys of individual

donors. The lines are the calculated multipliers, shown in Fig. 5.

These are two independent data sets: the former represents data

from the gift givers, and the latter is represents data from the gift

receivers. They agree qualitatively, describing the same story but

from different perspectives.

Figure 5. Examples of multipliers as a function of total
donations and institutional categories as calculated by Equa-
tion 8. The X-axis measures the size of an individual’s total donations
relative to that of the index case of size 1. We calculated values of c
from the average of all years of data shown in Figs. 1 and 13C.
Education c is an average of c’s from University of Vermont and Albert
Einstein School of Medicine; Health c is from Mt. Sinai Hospital, Arts c is
from Flynn Theater, Combined Purpose c is from United Way of
Chittenden County, Reference c is from IRS 2001 charitable deductions
Fig. 4, and Religion c is from Fig. 13C. Our model breaks down at
extreme high and extreme low incomes where the multiplier could
calculate a gift that would exceed 100% of that persons total charitable
giving.
doi:10.1371/journal.pone.0098876.g005
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A proposed mechanism for varying slopes
We have so far been able to describe how giving patterns must

vary across institutional type as a function of institutional giving

profiles and donor wealth. We now attempt to explain in part the

origin of these variable donation patterns.

In many systems where multiple, dependent power-law size

distributions appear, the exponents involved are typically related

through simple algebraic expressions [12]. And while exponents

may be tun-able as a function of independent model parameters

[13], smoothly varying relationships between scaling exponents—

the kind we have here–are unusual. Thus we seek to explain part

of the giving mechanism that connects cpop to cinst as being

something more than merely ‘‘Power-Law In, Power-Law Out’’

(PLIPLO).

We start by looking at the giving behavior of individual donors,

who will differ in terms of the number of gifts they make, the size

of these gifts, and their personal ranking of target institutions.

They may choose to make their largest gift to health, their next

largest to education, and so on. We would like examine data that

characterizes the giving behaviors of these donors, such as through

examination of itemized charitable deductions on federal tax

returns. While this private information is generally inaccessible,

some presidential candidates have released their tax returns

publicly, and we can use this data as a rough guide. Fig. 7 shows

itemized deductions for several candidates, plotted on log-log

scales. These donations, ranked largest to smallest, are visually

consistent with an approximate power law Zipf distribution with

gamma ranging from 2 to 3, with an average around 2.5 (see File

S1, Tabs. S3 and S4). For simplicity, we will again presume that

gifts made by individual donors can be adequately described by a

power law Zipf distribution. We can then propose a mechanism

that uses donor choices to explain the different gammas we see

among philanthropic institutions.

In Fig. 8A, we assume a gift size distribution with cpop~2:41

and plot the top five gifts using a rough estimate of adonor~1:8.

The inset shows the head of the Zipf distribution for an example

donor.

Fig. 8B shows the gift distribution for an institution with strong

appeal to the #1 donor garnering their top gift, but interest in this

institution monotonically decreases among ranked donors until it

attracts the 5th gift from the final donor. This generates a low c
consistent with, for example, the Einstein School of Medicine

Figure 6. Allocation of donor giving choices as a function of income. Columns represent 2005 donor survey data [11]. Connected squares
represent our model of multipliers calculated from the values of c described in Fig. 5. The multiplier model agrees qualitatively with the donor survey
data.
doi:10.1371/journal.pone.0098876.g006
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illustrated in Fig. 3. Fig. 8C shows the opposite arrangement of

donor appeal, leading to a high c profile more typical of a religious

institution.

Following this prescription we can straightforwardly derive an

institution’s Zipf exponent ainst (and corresponding cinst) as a

function of a donor’s Zipf exponent adonor, the population’s Zipf

exponent apop (e.g., from the IRS charitable deduction distribu-

tion), the rank of the first donor’s and final donor’s gift choice, and

the number of donors N, As defined by our power law model, such

a relationship is linear in log space, the slope of which equals

{ainst. We have

ainst~{

log10 (Last ranked donor0s gift)

{ log10 (First ranked donor0s gift)

� �

log10 N{ log10 1

where the size of the first ranked donor’s gift is given by

k(Rank of first donor0s choice){adonor

and the size of the last ranked (N th) donor’s gift is

k(Rank of final donor0s choice){adonor N{apop :

Substituting these equations into the equation for slope and

simplifying gives the relationship we seek:

ainst~apopz
adonor

log10 N
log10

Rank of final donor0s choice

Rank of first donor0s choice

� �
: ð9Þ

For the example Fig. 8B and C, the above gives a range of cinst

from around 2 to 3. While the rank of first and final donors’

choices are fixed integers, the relationship will in practice be

statistical.

Discussion

Based on our findings, we are able to provide several

recommendations and observations for fundraisers.

The Top-12 Rule
When undertaking a capital campaign, an institution will want

to estimate the fundraising capacity of its community. Capital

campaigns tend be be a more focused fundraising effort targeting

fewer donors than the annual campaigns reported in this paper.

We have collected some preliminary data suggesting an institu-

tion’s capital campaign c tends to be less than that of its annual

campaign, resulting in a more extreme distribution of gifts. Dove

reports that the top 10 to 15 donors commonly account for 50 to

70 percent of total funds raised [14]. Similarly, a professional

consultant estimates capital campaign fundraising capacity using a

rule-of-thumb that the top 12 donors will contribute 65% of the

revenue [15]. For the sake of discussion, let us refer to this as the

top-12-rule. If we can estimate an expected c for the campaign,

have an idea of the expected number of donors N, and know how

much to expect from the 12 largest gifts, we can calculate a gain

factor G that will give an estimate for the campaign total:

Campaign Total~G|
X12

r~1

S(r)) ð10Þ

where

G~

PN
r~1 S(r)P12
r~1 S(r)

ð11Þ

When we apply a power-law model of philanthropic giving to

the top-12-raises-65% rule, we can find circumstances for when

this rule applies, and when it does not. Fig. 9 confirms that for

campaigns with values of c in the 1.8 to 1.9 range (e.g., for higher

education), the total raised is about 1.5 times that of the top 12

donors, and increases only marginally for a donor pool total of 300

versus 100. But the rule grossly underestimates the total raised for

institutions with larger values of c. For a campaign with a c around

2.3 (e.g., for combined purpose funds) we expect the total raised by

100 donors to exceed twice that of its top 12, and that 300 donors

would triple the total of its top 12. This analysis would suggest that

the top-12-raises-65% rule is a poor fundraising estimator for

higher values of c typical of combined purpose funds and religious

organizations, especially for campaigns with a high number of

expected donors.

Note that Fig. 9 is predicated on the assumptions that we can

identify the top 12 donors for a group of a given size and that a

power-law distribution of gifts applies throughout that donor pool.

These assumptions no longer apply if we then increase the size of

the original donor pool, because gifts from the new donors will not

add serially to the tail of the distribution, but will populate all

positions throughout the distribution and may exceed some of the

original top 12 gifts as the pool is enlarged. This would have the

effect of raising somewhat more money than predicted by Fig. 9.

In other words, as a campaign extends its original scope it may

receive a gift within or greater than the original top 12. For a

Figure 7. Charitable gifts of candidates for the United States
President from their publicly released federal tax returns. Again
due to finite size bias of maximum likelihood methods, we adopted
linear regression for fitting the distribution scaling parameter c. The
included fit is for President Romney’s gifts during the year of 2010. We
include the fitted c’s for each president and the range of their fit in the
File S1 as Table S3, and we show comparisons to other distributions in
Table S4.
doi:10.1371/journal.pone.0098876.g007
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power-law model of growth, the total amount raised tends to grow

super-linearly with the total number of donors: the expected amount

raised from 100 donors is more than twice the expected amount

raised from 50 donors (provided the expanded pool of donors has

the same characteristic wealth distribution and interest in the

organization as the original pool). This trend, however, is subject

to great variability, and is more pronounced for smaller than

larger values of c. The expected largest gift from this enlarged

group of donors follows the scaling:

Max gift in groupA

Max gift in groupB
~

# donors in group A

# donors in group B

� �1=(c{1):

ð12Þ

The following example demonstrates the haphazard variability

that this relationship is subject to. Fig. 10A shows the accumu-

lating total in the order that gifts were received at University of

Vermont in 2010. The total appears to grow linearly for a while,

then jumps upwards when an exceptionally large gift is received.

Fig. 10B shows these gifts broken down into various time

frames. The dotted lines demonstrate how the expected largest gift

grows (per Eq. (9)) as the number of donors increases. Not

surprisingly, the actual largest gift shows substantial variability

around this predicted value.

The 80-20 Principle and the Fundraising Pyramid
Commonly the gifts table (fundraising pyramid) is predicated on

Vilfredo Pareto’s 80/20 principle; that 80% of funds are raised

from 20% of donors [6]. Pareto originally founded his principle on

his observation of the power-law size distribution of wealth in Italy

[16] (the c for an 80/20 fundraising relationship varies based on

the number of donors, ranging from 1.82 for 100 donors, to 2.04

for 5,000 donors). By knowing an organization’s c and donor pool

size, a fundraiser can develop a giving pyramid specific to that

organization’s gift distribution, rather than using a generic 80/20

pyramid. Fig. 11 shows four pyramids, each calculated for an

organization with a specific c. For each pyramid the lowest level of

donations is set at $200. Organizations with lower values of c
should plan for much larger gifts at the higher levels than

Figure 8. Model for differing institutional values of c. A. Gift distribution using 2001 IRS deduction c = 2.41 ranks the total of each donor’s gifts
(solid black line), and value of donor gifts 1 through 5 (dotted lines). Inset shows the five gifts made by donor of rank #316 (2.5 = log10316) according
to a donor c = 1.8. B. Institution gift distribution attracting top gift from donor 1, and 5th gift from donor 10,000, c = 2.08 per Eq. (9). C. Institution gift
distribution attracting 5th gift from donor 1, and top gift from donor 10,000, c = 3.04 per Eq. (9).
doi:10.1371/journal.pone.0098876.g008
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organizations with higher values of c, and should expect to raise

much more from the same number of donors.

What c says about an organization’s fundraising capacity and
robustness

Low values of c generally describe organizations whose largest

gifts are extremely large in proportion to the total amount raised.

For example, for a campaign with a c of 1.81 (e.g., higher

education) and 1000 donations, the lead gift would be expected to

be about 30% of the total raised. But for a campaign with a c of

2.47 (e.g., combined purpose fund) the lead gift would be expected

to be about 5% of the total. In contrast to the predictability of mid-

level gifts, lead gifts are subject to enormous variability about their

expected value, as can be seen by their divergence from the

projected line of slope in most of the data examples presented in

this paper. This means that while low c institutions are more likely

to enjoy the benefit of extremely large gifts, their annual

fundraising total is highly dependent on the gifts of those top

few donors and becomes subject to significant year-to-year

variability (Fig. 12). In contrast, high c institutions are likely to

experience more stable year-to-year totals. Note that United Way

of Chittenden County and Einstein School of Medicine have a

similar sized donor base, demonstrating the fundraising power of a

low c.

Misleading Effect of Multiple Donations per Donor
For proper analysis, data for a given time period must reflect a

single total of gifts from each donor. If the donor has made

multiple gifts, and these gifts are recorded separately, the number

of donors, N, will be falsely inflated. As shown in Fig. 13A, this can

create a false and misleading shoulder on the institution’s Zipf plot

and lead to a miscalculation of c. Fig. 13B appears to show gifts

from 3,500 donors to an anonymous religious institution, with c of

2.04. There appears to be about $100,000 of unrealized potential

from the larger gifts. In fact, there were only 500 donors, but many

of them had made multiple smaller gifts throughout the year. In

panel C, for each year we properly summed multiple gifts by single

donors into a single total for each donor, and see that c of 2.04 in

Panel B was entirely due to a false shoulder effect. The correctly

measured c of 2.73 is more consistent with that predicted from the

donor survey data for religious institutions from Fig. 6. We now

see that the largest gifts in fact exceeded expectations.

Figure 9. Expected total amount raised in comparison to
amount raised by top 12 donors. For low c institutions, a larger
number of donors has a relatively small effect on the total raised. For
higher c institutions, a large donor pool has a greater effect on the total
raised.
doi:10.1371/journal.pone.0098876.g009

Figure 10. Panel A: Accumulation of gifts to University of Vermont in 2010 in the order they were received demonstrates super-linear growth.
Accumulation appears linear until an uncommonly large gift is received. Panel B: Trend lines intersect the vertical axis at the expected maximum gift
and show how the expected maximum gift grows with the number of donors according to Eq. (9).
doi:10.1371/journal.pone.0098876.g010
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Conclusions

The distribution of gifts received by nonprofit institutions is

approximately consistent with a power-law size model. Individual

institutions, and possibly broad of categories institutions, have

their own characteristic scaling exponent c: Fundraising projec-

tions modeled on power laws may be useful for predicting the

success of a given campaign, and for affecting the strategic

planning of a campaign.

Future study should assemble a larger database to see if our

findings are consistent, to study if there is a predictable

relationship between the values of c for an institution’s annual

fund and its capital campaigns, and to capture values of c for new

philanthropic categories such as human services and the environ-

ment. Different regions across the globe and within countries may

show characteristic local variations for values of c for income,

overall giving, and by category of institution. Gifts from private

individuals account for 73% of giving; family foundations,

corporate giving, and bequests account for the remainder [1].

Analysis of these disparate funding sources may find characteristic

values of c for gifts based on the category of their source in

addition to the category of their destination.

Methods

All data sets can be downloaded from our present paper’s online

appendix which is located here: http://www.uvm.edu/storylab/

share/papers/gottesman2014a/.

In this section, we provide some salient details regarding our

data sets, and we describe fitting gift size distributions to a number

of potential candidate forms, employing methods of Maximum

Likelihood (ML) for the estimation of parameters [8]. Unsurpris-

ingly, a pure power law decay does not fit the data with great

precision. Nevertheless, we justify our use of a power law size

distribution as a reasonable, if rough, characterization of

philanthropic gift size distributions–very much in the manner of

standard linear regression–and hence a suitable building block for

our analyses. Larger, much more exhaustive data sets across all

kinds of institutions will be required to strongly advance our

knowledge of philanthropy beyond what we have achieved here.

Details of philanthropic data
For all sources of data in this present work, we made no

distinctions as to whether the donor of a gift was a living person, a

bequest, a foundation, or a corporation. In the 5 year period 2006

through 2010, the sources of total giving in dollars were divided as

73% individuals, 8% bequests, 14% foundations, and 5%

corporate [1].

For the institutions we analyse, gift size specifics were as follows:

N Albert Einstein School of Medicine, University of Vermont,

ECHO Aquarium and Science Center, and the Flynn Theater

provided data for all gifts received over 5 years. Multiple gifts

by a single donor over a single year were not identified by these

institutions, and hence not summed into a single gift.

N Mount Sinai Hospital reported all gifts and was able to identify

multiple gifts per year from individual donors; these were

summed into a single gift per donor per year.

N United Way of Chittenden County likewise identified multiple

gifts which were summed into a single gift per donor per year,

but was able to provide data only on gifts received individually.

Some workplaces collect United Way donations and then send

a lump sum: these sums do not reflect individual gifts and were

not reported to us.

N The anonymous religious institution described their gifts both

as multiple donations per donor per year and a summed

donation per donor per year, permitting construction of

Fig. 13.

Individual donations from United States Presidents and

candidates were obtained directly from their tax returns for the

Figure 11. Fundraising pyramids customized to an institutions c. Using a power-law model of fundraising, low c institutions should plan for
and request much higher top level gifts than high c institutions.
doi:10.1371/journal.pone.0098876.g011

Figure 12. Low c organizations can expect to have greater year-
to-year fundraising volatility than higher c organizations. The c
values reported here are averages for all of the years shown in Fig. 1.
doi:10.1371/journal.pone.0098876.g012
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stated years. This data is available directly at http://www.

taxhistory.org/www/website.nsf/Web/PresidentialTaxReturns.

In addition, we include the data presented here in a CSV file.

Scaling parameter fitting
In general, we use the ML method to fit our scaling parameter c:

However, for small data (e.g., presidential gifts and limited tax data)

the ML method is biased from the finite size and we use a linear

regression for a rough estimate. To determine the portion of our data

that is best power-law behaved, the minimization of the Kolmo-

gorov-Smirnoff statistic D proved to be inconsistent across our data

due the multiple minima of the statistic D (see Fig. S1). For this

reason, we empirically chose the scaling regions (i.e., the cut offs).

In Tab. S1 (File S1), we report results for fitting power-law

decay distributions using the ML approach, and in Tab. S3 (File

S1) we perform the same analysis for presidential gifts. We used

code from both Clauset and Alstott, as well as our own [8,9]. We

note that as argued by Alstott et al., the p-value of the fitted

distribution becomes less useful for large data sets because the

Monte Carlo generated distributions become nearly perfect [9].

Since our data is large, we find that in general none of the

synthetically generated data sets has D greater than for the real

data (p~0:00), but this does not rule out power law behavior.

We then turn to the comparison to other distributions in Tab.

S2 in File S1 (and Tab. S4 in File S1 for presidential gifts), and find

that the power law is at least reasonably supported in most cases.

The only test for which statistical significance was at least as

common is for the exponential distribution, and in all cases the

power law was favored. For all distributions where the cutoff

power law test was significant, in particular the Einstein School of

Medicine, we find that the cutoff power law is favored, and would

be the most likely distribution.

Supporting Information

Figure S1 The Kolmogorov-Smirnoff statistic D plotted
over log10 xmin, where xmin is the minimum value fit for
power law behavior, for the United Way of Chittenden
County over the years 2006–2010. D is generated from the

ML estimate. Existence of multiple minima in our data indicate

that there are multiple possible fitting regions for which the KS

statistic suggests a good fit. The variability of this value over each

year plotted produced widely varying scaling parameters c, and

thus could not be safely used.

(TIFF)

File S1 Supporting tables S1–S4.

(PDF)

Dataset S1

(ZIP)

Acknowledgments

We would like to extend thanks to the development staff at the Albert

Einstein College of Medicine, Mount Sinai Hospital, the University of

Vermont, United Way of Chittenden County, the Flynn Theater, and the

ECHO Lake Aquarium and Science Center, without whose help this

research would not be possible; and to Christine Graham for contributing

her experience as a professional fundraiser.

Author Contributions

Conceived and designed the experiments: WLG PSD. Performed the

experiments: WLG. Analyzed the data: WLG AJR PSD. Contributed

reagents/materials/analysis tools: WLG AJR PSD. Wrote the paper: WLG

AJR PSD.

References

1. Giving USA Foundation (2011) Giving USA 2011: The Annual Report on

Philanthropy for the Year 2010. Available: http://www.givingusareports.org.

Accessed December 15, 2013.

2. Clementi F, Gallegati M (2005) Power law tails in the italian personal income

distribution. Physica A: Statistical Mechanics and its Applications 350: 427–438.

3. Nirei M, Souma W (2007) A two factor model of income distribution dynamics.

Review of Income and Wealth 53: 440–459.

Figure 13. A. ‘Reference’ synthetic power law giving distribution with a largest gift of $62,000, N = 542 total donors of which the largest 200 follow a
power law with c~3:50 is created and labelled Reference, with a fit shown between the 5th and 200th gifts. A comparison is created where each gift
from the reference distribution is split into 60%, 25%, 10%, and 5%. A false shoulder is created with a c~3:01, fitting the slope between the 200-th
and 700-th donors. B. Gift-size data from an anonymous religious institution. The blue region appears to represent around $100,000 of unrealized
potential in the $1,000 and above range. The power law slope of c~2:04 is found by fitting the gifts from donor 110 to donor 1800, over the region
that appears flattest. C. The giving data from panel B corrected for multiple donations, where now c~2:73 is found between the 8th and 200-th
donors.
doi:10.1371/journal.pone.0098876.g013

Collective Philanthropy

PLOS ONE | www.plosone.org 11 July 2014 | Volume 9 | Issue 7 | e98876

http://www.taxhistory.org/www/website.nsf/Web/PresidentialTaxReturns
http://www.taxhistory.org/www/website.nsf/Web/PresidentialTaxReturns
http://www.givingusareports.org


4. Wu Y, Guo J, Chen Q, Wang Y (2011) Socioeconomic implications of donation

distributions. Physica A 390: 4325–4331.
5. Chen Q, Wang C, Wang Y (2009) Deformed Zipf’s law in personal donation.

Europhysics Letters 88: 38001.

6. Pierpoint R, Wilkerson GS (1998) Campaign goals: Taking aim at a moving
target. New directions for Philanthropic Fundraising 21: 61–79.

7. Zipf GK (1949) Human Behaviour and the Principle of Least-Effort. Cambridge,
MA: Addison-Wesley.

8. Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in

empirical data. SIAM Review 51: 661–703.
9. Alstott J, Bullmore E, Plenz D (2014) powerlaw: a Python package for analysis of

heavy-tailed distributions. PLoS ONE 9(1): 9: e85777.
10. Dodds PS, Rothman DH, Weitz JS (2001) Re-examination of the ‘‘3/4-law’’ of

metabolism. Journal of Theoretical Biology 209: 9–27.

11. Center on Philanthropy at Indiana University (2007) Patterns of household

charitable giving by income group. Prepared for Google.

12. Goldenfeld N (1992) Lectures on Phase Transitions and the Renormalization

Group, volume 85 of Frontiers in Physics. Reading, Massachusetts: Addison-

Wesley.

13. Simon HA (1955) On a class of skew distribution functions. Biometrika 42: 425–

440.

14. Dove KE (2000) Conducting a Successful Capital Campaign, San Francisco:

Jassey-Bass, chapter 6. Constructing and using the major gifts chart. 2nd edition,

p. 72.

15. Christine Graham (2011) Personal communication.

16. Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law.

Contemporary Physics 46: 323–351.

Collective Philanthropy

PLOS ONE | www.plosone.org 12 July 2014 | Volume 9 | Issue 7 | e98876


