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We study binary state dynamics on a network where each node acts in response to the average
state of its neighborhood. Allowing varying amounts of stochasticity in both the network and node
responses, we find different outcomes in random and deterministic versions of the model. In the limit
of a large, dense network, however, we show that these dynamics coincide. We construct a general
mean field theory for random networks and show this predicts that the dynamics on the network are
a smoothed version of the average response function dynamics. Thus, the behavior of the system can
range from steady state to chaotic depending on the response functions, network connectivity, and
update synchronicity. As a specific example, we model the competing tendencies of imitation and
non-conformity by incorporating an off-threshold into standard threshold models of social contagion.
In this way we attempt to capture important aspects of fashions and societal trends. We compare
our theory to extensive simulations of this “limited imitation contagion” model on Poisson random
graphs, finding agreement between the mean-field theory and stochastic simulations.

I. INTRODUCTION

Networks are an exploding area of research due to the
recognition of their generality and ubiquity in physical,
biological, technological, and social settings. Dynamical
processes taking place on networks are now recognized as
the most natural description for a number of phenomena.
These include neuron behavior in the brain [1], cellular
genetic regulation [2], ecosystem dynamics and stability
[3], and infectious diseases [4]. This last category, the
study of biological contagion, is in many ways similar to
social contagion, which refers to the spreading of ideas,
fashions, or behaviors among people [5, 6]. This concept
underlies the vastly important contemporary area of viral
marketing, driven by the ease with which media can be
shared and spread through social network websites.
In this work, we present results for a very general

model of networked map dynamics, motivated by models
of social contagion. Each node has a “response function,”
a map which determines the state the node will take in
response to the states of nodes in its neighborhood. Our
model is a type of boolean network [7], and it is closely
related to models of percolation [8] and magnetism [7, 9].
We focus on the derivation and analysis of dynamical
master equations, both exact and mean-field approxima-
tions, that describe the expected evolution of the system
state. We also show how certain dense network limits

∗ Current address: Department of Applied Mathematics, Univer-

sity of Washington, Seattle, WA 98103 USA ; kamdh@uw.edu
† chris.danforth@uvm.edu
‡ peter.dodds@uvm.edu

lead to the convergence of the dynamics to the average
response function map dynamics.
We then apply our general theory to a particular lim-

ited imitation contagion model [10]. Nodes, representing
people, act according to competing tendencies of imita-
tion and non-conformity. One can argue that these two
ingredients are essential to all trends; indeed, Simmel,
in his classic essay “Fashion” [1957], believed that these
are the main forces behind the creation and destruction
of fashions. Our model is not meant to be quantitative,
except perhaps in carefully designed experiments, but it
captures the features with which we are familiar: some
trends take off and some do not, and some trends are sta-
ble while others vary wildly through time. Our model is
closely related to the seminal work of Schelling [12] and
Granovetter [13].
In Section II, we define the general model and its de-

terministic and stochastic variants. In Section III, we
provide an analysis of the model when the underlying
network is fixed. In Section IV, we develop a mean-field
theory of the model on generalized random networks. In
Section V, we consider the model on Poisson random
networks with a specific kind of response function that
reflects the limited imitation we expect in many social
contagion processes. For this specific case, we compare
the results of simulations and theory. Finally, in Sec-
tion VI, we present conclusions and directions for further
research.

II. GENERAL MODEL

Let G = (V,E) be a network with N = |V | nodes,
where V is the node set and E is the edge set. We let
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A = A(G ) denote the adjacency matrix; entry Aij is the
number of edges from node j to node i. Assign each
node i ∈ V a response function fi : [0, 1] → {0, 1}, and
let x(0) ∈ {0, 1}N be the vector of initial node states. At
time step t, each node i computes the fraction

φi(t) =

∑N
j=1 Aijxj(t)
∑N

j=1 Aij

(1)

of their neighbors in G who are active and takes the state

xi(t+ 1) = fi (φi(t)) (2)

at the next time step.
The above defines a deterministic dynamical system

given a network and set of response functions. This is
called a realization of the model [7]. Each node is in ei-
ther the 0 or 1 state; we refer to these as the off/inactive
and on/active states, respectively. In the context of con-
tagion, these would be the susceptible and infected states.
With these binary states, our model is a particular kind
of Boolean network [7]. Note that each node reacts only
to the fraction of its neighbors who are active, rather
than the absolute number, and the identities of the in-
put nodes do not matter. Each node’s input varies from

0 to 1 in steps of 1/ki, where ki =
∑N

j=1 Aij is node i’s

degree (in-degree if G is not a simple graph).
In the rest of this Section, we will describe some vari-

ations of the basic model which also differentiate our
model from the Boolean networks extant in the litera-
ture. This is mainly due to the response functions, but
also the type of random network on which the dynamics
take place, varying amounts of stochasticity introduced
into the networks and response functions, and the possi-
bility of asynchronous updates.

A. The networks considered

The mean-field analysis in Section IV is applicable to
any network which can be characterized by its degree
distribution. The vast majority of the theory of ran-
dom Boolean networks considers only regular random
networks. Fortunately, such theories are easily general-
ized to other types of networks with independently cho-
sen edges, such as Poisson (Erdös-Rényi) and configura-
tion model random networks [9, 14]. We develop specific
results for Poisson random networks, and these are the
networks considered in Section V.

B. Stochastic variants

The specific network and response functions determine
exactly which behaviors are possible. These are chosen
from some distribution of networks, such as G(N, kavg/N)
(Poisson random networks on N nodes with edge prob-
ability kavg/N), and some distribution of response func-
tions. In the example of Section V, the response functions

Rewiring network Fixed network

Probabilistic response P-R P-F

Deterministic response D-R D-F

TABLE I. The four different ways we implement the model,
corresponding to differing amounts of quenched randomness.
These are the combinations of fixed or rewired networks and
probabilistic or deterministic response functions. In the ther-
modynamic limit of the rewired versions, where the network
and response functions change every time step, the mean-field
theory (Sec. IV) is exact.

are parameterized solely by two thresholds, φon and φoff ,
so the distribution of response functions is determined
by the joint density P (φon, φoff). Again, the specific net-
work and response functions define a realization of the
model. When these are fixed for all time, we have, in
principle, full knowledge of the possible model dynamics.
Given an initial condition x(0), the dynamics x(t) are
deterministic and known for all t ≥ 0. As for all finite
Boolean networks [7], the system dynamics are eventually
periodic, since the state space {0, 1}N is finite.

With the introduction of noise, the system is no longer
eventually periodic. Fluctuations at the node level allow
a greater exploration of state space, and the behavior is
comparable to that of the general class of discrete-time
maps. Roughly speaking, the mean-field theory we de-
velop in Section IV becomes more accurate as we intro-
duce more stochasticity.

We introduce randomness in two parts of the model:
the network and response functions. Allowing for the
network and responses to be either fixed for all time or
resampled each time step and taking all possible combi-
nations yields four different designs (see Table I).

1. Rewired networks

First, the network itself can change every time step.
This is the rewiring (R), as opposed to fixed (F), net-
work case. For example, we could draw a new network
from G(N, kavg/N) every time step. This amounts to
rewiring the links while keeping the degree distribution
fixed, and it is alternately known as a mean field, an-
nealed, or random mixing variant as opposed to a fixed
network or quenched model [7].

2. Probabilistic responses

Second, the response functions can change every time
step. This is the probabilistic (P), as opposed to the de-
terministic (D), response function case. For our social
contagion example, there needs to be a well-defined dis-
tribution P (φon, φoff) for the thresholds. This amounts to
having a single response function, the expected response
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function

f̄(φ) =

∫

dφon

∫

dφoff P (φon, φoff)f(φ;φon, φoff). (3)

We call f̄ : [0, 1] → [0, 1] the probabilistic response func-

tion. Its interpretation is the following. For an updating
node with a fraction φ of active neighbors at the current
time step, then, at the next time step, the node assumes
the active state with probability f̄(φ) and the inactive
state with probability 1− f̄(φ).

3. Temperature in the system

In this paper, the network and response functions are
either fixed for all time or resampled every time step.
One could tune smoothly between the two extremes by
introducing rates at which these reconfigurations occur.
These rates are inversely related to quantities that behave
like temperature (one for the network and another for the
response functions). Holding the network or response
functions fixed corresponds to zero temperature, since
there are no fluctuations. The stochastic and rewired
cases correspond to high or infinite temperature, because
reconfigurations occur every time step.

C. Update synchronicity

Finally, we introduce a parameter α for the probabil-
ity that a given node updates. When α = 1, all nodes
update each time step, and the update rule is said to be
synchronous. When α ≈ 1/N , only one node is expected
to update with each time step, and the update rule is
said to be effectively asynchronous. This is equivalent to
a randomly ordered sequential update. For intermediate
values, α is the expected fraction of nodes which update
each time step.

III. FIXED NETWORKS

Consider the case where the response functions and
network are fixed (D-F), but the update may be syn-
chronous or asynchronous. Extend the definition of xi(t)
to now be the probability that node i is in the active state
at time t. Note that this agrees with our previous defini-
tion as the state of node i when xi(t) = 0 or 1. Then the
xi follow the master equation

xi(t+ 1) = αfi

(

∑N
j=1 Aijxj(t)
∑N

j=1 Aij

)

+ (1 − α)xi(t), (4)

which can be written in matrix-vector notation as

x(t+ 1) = α f (Tx(t)) + (1− α)x(t). (5)

Here T = D−1A is sometimes called the transition prob-
ability matrix (since it also occurs in the context of a

random walker), D is the diagonal degree matrix, and
f = (fi) [15]. If α = 1, then x(t) ∈ {0, 1}N and we re-
cover the fully deterministic response function dynamics
given by (1) and (2).

A. Asynchronous limit

Here, we show that when α ≈ 1/N , time is effectively
continuous and the dynamics can be described by an ordi-
nary differential equation. This is similar to the analysis
of Gleeson [16]. Consider Eqn. 5. Subtracting x(t) from
both sides and setting ∆x(t) = x(t+1)−x(t) and ∆t = 1
yields

∆x(t)

∆t
= α (f(Tx(t)) − x(t)) . (6)

Since α is assumed small, the right hand side is small,
and thus ∆x(t) is also small. Making the continuum ap-
proximation dx(t)/dt ≈ ∆x(t)/∆t yields the differential
equation

dx

dt
= α (f(Tx)− x) . (7)

The parameter α sets the time scale for the system. Be-
low we see that, from their form, similar asynchronous,
continuous time limits apply to the dynamical equations
in the densely connected case, Eqn. (8), and in the mean-
field theory, Eqns. (11) and (12).

B. Dense network limit for Poisson random

networks

The following result is particular to Poisson random
networks, but similar results are possible for other ran-
dom networks with dense limits. The normalized Lapla-
cian matrix is defined as L ≡ I −D−1/2AD−1/2, where
I is the identity [17]. So T = D−1/2(I − L)D1/2. By
Oliveira [18], when kavg is Ω(logN) there exists a typical
Laplacian matrix Ltyp = IN − 1N1

T
N/N such that the

actual L ≈ Ltyp in the induced 2-norm with high proba-
bility [1N is the length-N column vector of ones]. In this
limit, if we approximate the degrees as uniform, ki ≈ kavg
for all i ∈ V , then T ≈ T typ = 1N1

T
N/N . So T effectively

averages the node states: Tx(t) ≈
∑N

i=1 xi(t)/N ≡ φ(t).
Without a subscript, φ(t) denotes the active fraction of
the network at time t. We make the above approxima-
tion in Eqn. 5 and average that equation over all nodes,
finding

φ(t+ 1) = αf̄(φ(t)) + (1 − α)φ(t) ≡ Φ(φ(t);α), (8)

where we have assumed that N is large and the aver-

age of nodes’ individual response functions
∑N

i=1 fi/N
converges in a suitable sense to the stochastic response
function f̄ , Eqn. (3). This amounts to assuming a law
of large numbers for the response functions, i.e., that the
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sample average converges to the expected function. Note
that α tunes between the probabilistic response function
Φ(φ; 1) = f̄(φ) and the line Φ(φ; 0) = φ. Also, the fixed
points of Φ are fixed points of f̄ , but their stability will
depend on α. When the network is dense, it ceases to
affect the dynamics, since each node sees a large number
of other nodes. Thus the network is effectively the com-
plete network. In this way we recover the map models of
Granovetter and Soong [19].

IV. MEAN-FIELD THEORY

Making a mean-field calculation refers to replacing
the complicated interactions among many particles by
a single interaction with some effective external field.
There are analogous techniques for understanding net-
work dynamics. Instead of considering the |E| interac-
tions among the N nodes, network mean-field theories
derive self-consistent expressions for the overall behavior
of the network after averaging over large sets of nodes.
These have been fruitful in the study of random Boolean
networks [20] and can work well when networks are non-
random [21].
We derive a mean-field theory, in the thermodynamic

limit, for the dynamics of the general model by blocking
nodes according to their degree class. This is equivalent
to nodes retaining their degree but rewiring edges every
time step. The model is then part of the well-known
class of random mixing models with non-uniform con-
tact rates. Probabilistic (P-R) and deterministic (D-R)
response functions result in equivalent behavior for these
random mixing models. The important state variables
end up being the active density of stubs, i.e. half-edges
or node-edge pairs. In an undirected network without
degree-degree correlations, the state is described by a
single variable ρ(t). In the presence of correlations we
must introduce more variables {ρk(t)} to deal with the
relevant degree classes.

A. Undirected networks

To derive the mean-field equations in the sim-
plest case—undirected, uncorrelated random networks—
consider a degree k node at time t. The probability that
the node is in the active state at time t+1 given a density
ρ of active stubs is

Fk(ρ; f̄) =

k
∑

j=0

(

k

j

)

ρj (1− ρ)
k−j

f̄ (j/k) , (9)

where each term in the sum counts the contributions from
having 0, 1, . . . , k active neighbors. Now, the probability
of choosing a random stub which ends at a degree k node
is qk = kpk/kavg in an uncorrelated random network [9].
This is sometimes called the edge-degree distribution. So

if all of the nodes update synchronously, the active den-
sity of stubs at t+ 1 will be

g(ρ; pk, f̄) =

∞
∑

k=1

qkFk

(

ρ; f̄
)

=

∞
∑

k=1

kpk
kavg

Fk

(

ρ; f̄
)

. (10)

Finally, if each node only updates with probability α, we
have the following map for the density of active stubs:

ρ(t+ 1) = α g
(

ρ(t); pk, f̄
)

+ (1− α)ρ(t)

≡ G
(

ρ(t); pk, f̄ , α
)

.
(11)

By a similar argument, the active density of nodes is
given by

φ(t+ 1) = αh
(

ρ(t); pk, f̄
)

+ (1− α)φ(t)

≡ H
(

ρ(t), φ(t); pk, f̄ , α
)

,
(12)

where

h (ρ; pk, f) =

∞
∑

k=0

pkFk

(

ρ; f̄
)

. (13)

Note that the edge-oriented state variable ρ contains all
of the dynamically important information, rather than
the node-oriented variable φ.

B. Analysis of the map equation

The function Fk(ρ; f̄) is known in polynomial approx-
imation theory as the kth Bernstein polynomial (in the
variable ρ) of f̄ [22]. Bernstein polynomials have im-
portant applications in computer graphics due to their
“shape-preserving properties” [23]. The Bernstein oper-
ator Bk takes f̄ 7→ Fk. This is a linear, positive operator
which preserves convexity for all k and exactly interpo-
lates the endpoints f̄(0) p and f̄(1). Immediate conse-
quences include that each Fk is a smooth function and

the kth derivatives F
(k)
k (x) → f̄ (k)(x) where f̄ (k)(x) ex-

ists. For f̄ concave down, such as the tent or logistic
maps, then Fk is concave down for all k and Fk increases
to f̄ (Fk ր f̄) as k → ∞. This convergence is typically
slow. Importantly, Fk ր f̄ implies that g

(

ρ; pk, f̄
)

≤ f̄
for any degree distribution pk.
In some cases, the dynamics of the undirected mean-

field theory given by ρ(t + 1) = G (ρ(t)), Eqn. (11),
are effectively those of the map Φ, from the dense limit
Eqn. (8). We see that g, Eqn. (10), can be seen as the
expectation of a sequence of random functions Fk under
the edge-degree distribution qk. Indeed, this is how it
was derived. From the convergence of the Fk’s, we ex-
pect that g(ρ; pk, f̄) ≈ f̄(ρ) if the average degree kavg
is “large enough” and the edge-degree distribution has
a “sharp enough” peak about kavg (we will clarify this
soon). Then as kavg → ∞, the mean-field coincides with
the dense network limit we found for Poisson random net-
works, Eqn. 8. Some thought leads to a sufficient condi-
tion for this kind of convergence: the standard deviation
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σ(kavg) of the degree distribution must be o(kavg). In
Appendix A we prove this as Lemma 1.
In general, if the original degree distribution pk is char-

acterized by having mean kavg, variance σ
2, and skewness

γ1, then the edge-degree distribution qk will have mean
kavg+σ2/kavg and variance σ2[1+γ1σ/kavg− (σ/kavg)

2].
Considering the behavior as kavg → ∞, we can conclude
that requiring σ = o(kavg) and γ1 = o(1) are sufficient
conditions on pk to apply Lemma 1. Poisson degree dis-

tributions (σ =
√

kavg and γ1 = k
−1/2
avg ) fit these criteria.

C. Generalized random networks

In more general random networks, nodes can have both
undirected and directed incident edges. We denote node
degree by a vector k = (k(u), k(i), k(o))T (for undirected,
in-, and out-degree) and write the degree distribution
as pk ≡ P (k). There may also be correlations between

node degrees. We encode correlations of this type by the
conditional probabilities

p
(u)
k,k′ ≡ P (k, undirected|k′)

p
(i)
k,k′ ≡ P (k, incoming|k′)

p
(o)
k,k′ ≡ P (k, outgoing|k′),

the probability that an edge starting at a degree k′ node
ends at a degree k node and is, respectively, undirected,
incoming, or outgoing relative to the destination degree
k node. We introduced this convention in a series of pa-
pers [24, 25]. These conditional probabilities can also be
defined in terms of the joint distributions of node types
connected by undirected and directed edges. We omit
a detailed derivation, since it is similar to that in Sec-
tion IVA and similar to the equations for the time evo-
lution of a contagion process [24, Eqns. (13–15)] [see also
26].

The result is a coupled system of equations for the density of active stubs which now may depend on node type (k)
and edge type (undirected or directed):

ρ
(u)
k

(t+ 1) = (1− α)ρ
(u)
k

(t) + α
∑

k′

p
(u)
k,k′

k(u) ′

∑

ju=0

k(i)′

∑

ji=0

(

k(u)
′

ju

)(

k(i)
′

ji

)

×
[

ρ
(u)
k′ (t)

]ju [

1− ρ
(u)
k′ (t)

](k(u) ′−ju) [

ρ
(i)
k′ (t)

]ji [

1− ρ
(i)
k′ (t)

](k(i) ′−ji)

× f̄

(

ju + ji

k(u)
′
+ k(i)

′

)

,

(14)

ρ
(i)
k
(t+ 1) = (1− α)ρ

(i)
k
(t) + α

∑

k′

p
(i)
k,k′

k(u) ′

∑

ju=0

k(i)′

∑

ji=0

(

k(u)
′

ju

)(

k(i)
′

ji

)

×
[

ρ
(u)
k′ (t)

]ju [

1− ρ
(u)
k′ (t)

](k(u) ′−ju) [

ρ
(i)
k′ (t)

]ji [

1− ρ
(i)
k′ (t)

](k(i)′−ji)

× f̄

(

ju + ji

k(u)
′
+ k(i)

′

)

.

(15)

The active fraction of nodes at a given time is

φ(t + 1) = (1− α)φ(t) + α
∑

k

pk

k(u)
∑

ju=0

k(i)
∑

ji=0

(

k(u)

ju

)(

k(i)

ji

)

×
[

ρ
(u)
k

(t)
]ju [

1− ρ
(u)
k

(t)
](k(u)−ju) [

ρ
(i)
k
(t)
]ji [

1− ρ
(i)
k
(t)
](k(i)−ji)

× f̄

(

ju + ji
k(u) + k(i)

)

.

(16)

Because these expressions are very similar to the undi-
rected case, we expect similar convergence properties to
those in Sec. IVB. However, an explicit investigation of
this convergence is beyond the scope of the current paper.

V. LIMITED IMITATION CONTAGION MODEL

As a motivating example of these networked map dy-
namics, we study an extension of the classical threshold
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models of social contagion [such as 12, 13, 27–29, among
others]. What differentiates our limited imitation conta-
gion model from the standard models is that the response
function includes an off-threshold, above which the node
takes the inactive state. We assign each node i ∈ V
an on-threshold φon,i and an off-threshold φoff,i, requir-
ing 0 ≤ φon,i ≤ φoff,i ≤ 1. Node i’s response function
fi(φi) = fi(φi;φon,i, φoff,i) is 1 if φon,i ≤ φi ≤ φoff,i and
0 otherwise. See Figure 1 for an example on-off threshold
response function.

This is exactly the model of Granovetter and Soong
[19], but on a network. We motivate this choice with
the following [also see 19]. (1) Imitation: the on state
becomes favored as the fraction of active neighbors sur-
passes the on-threshold (bandwagon effect). (2) Non-
conformity: the on state is eventually less favorable with
the fraction of active neighbors past the off-threshold (re-
verse bandwagon, snob effect). (3) Simplicity: in the
absence of any raw data of “actual” response functions,
which are surely highly context-dependent and variable,
we choose arguably the simplest deterministic functions
which capture imitation and non-conformity.

A crucial difference between our model and many re-
lated threshold models is that, in those models, an acti-
vated node can never reenter the susceptible state. Glee-
son and Cahalane [26] call this the permanently active
property and elaborate on its importance to their anal-
ysis. Such models must eventually reach a steady state.
When the dynamics are deterministic, this will be some
fixed fraction of active nodes. The introduction of the off-
threshold builds in a mechanism for node deactivation.
Because nodes can now recurrently transition between
on and off states, the deterministic dynamics can exhibit
a chaotic transient (as in random boolean networks [7]),
and the long time behavior can be periodic with poten-
tially high period. With stochasticity, the dynamics can
be truly chaotic.

The networks we consider are Poisson random net-
works from G(N, kavg/N). The thresholds φon and φoff

are distributed uniformly on [0, 1/2) and [1/2, 1), respec-
tively. This distribution results in the probabilistic re-
sponse function (see Figure 2)

f̄(φ) =

{

2φ if 0 ≤ φ < 1/2,

2− 2φ if 1/2 ≤ φ ≤ 1.
(17)

The tent map is a well-known chaotic map of the unit in-
terval [30]. We thus expect the limited imitation model
with this probabilistic response function to exhibit simi-
larly interesting behavior.

0 0.5 1

0

0.2

0.4

0.6

0.8

1

φ

f(
φ;

 φ
on

, φ
of

f)

φ
on

φ
off

FIG. 1. An example on-off threshold response function.
Here, φon = 0.33 and φoff = 0.85. The node will “activate” if
φon ≤ φ ≤ φoff , where φ is the fraction of its neighbors who
are active. Otherwise it takes the “inactive” state.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

f̄
(ρ

)

 

 
k

avg
=1

      10
     100

g(ρ; k
avg

)

FIG. 2. The tent map probabilistic response function f̄(ρ),
Eqn. (17), used in the limited imitation contagion model.
This is compared to the edge maps g(ρ;kavg) = g(ρ; pk, f̄),
Eqn. (10), shown for kavg = 1, 10, 100. These pk are Poisson
distributions with mean kavg . As kavg increases, g(ρ;kavg)
increases to f̄(ρ).

A. Analysis of the dense limit

When the network is in the dense limit (Section III B),
the dynamics follow φ(t+ 1) = Φ(φ(t);α), where

Φ(φ;α) = αf̄(φ) + (1 − α)φ

=

{

(1 + α)φ if 0 ≤ φ < 1/2,

(1− 3α)φ+ 2α if 1/2 ≤ φ ≤ 1.

(18)

Solving for the fixed points of Φ(φ;α), we find one at
φ = 0 and another at φ = 2/3. When α < 2/3, the
nonzero fixed point is attracting for all initial conditions
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FIG. 3. Bifurcation diagram for the dense map Φ(φ;α),
Eqn. (18). This was generated by iterating the map at 1000
α values between 0 and 1. The iteration was carried out with
3 random initial conditions for 10000 time steps each, dis-
carding the first 1000. The φ-axis contains 1000 bins and the
invariant density, shown by the grayscale value, is normalized
by the maximum for each α. With α < 2/3, all trajectories
go to the fixed point at φ = 2/3.

except φ = 0. When α = 2/3, [1/2, 5/6] is an interval
of period-2 centers. Any orbit will eventually land on
one of these period-2 orbits. When α > 2/3, this inter-
val of period-2 centers ceases to exist, and more compli-
cated behavior ensues. Figure 3 shows the bifurcation
diagram for Φ(φ;α). From the bifurcation diagram, the
orbit appears to cover dense subsets of the unit interval
when α > 2/3. The bifurcation diagram appears like
that of the tent map (not shown; see [10, 30]) except the
branches to the right of the first bifurcation point are
separated here by the interval of period-2 centers.

The effect of conformsits, an aside

Suppose some fraction c of the population is made up
of individuals without any off-threshold (alternatively,
each of their off-thresholds φoff = 1). These individ-
uals are conformist or “purely pro-social” in the sense
that they are perfectly happy being part of the majority.
For simplicity, assume α = 1. The map Φ(φ; c) = 2φ for
0 ≤ φ < 1/2 and 2−2(1−c)φ for 1/2 ≤ φ ≤ 1. If c > 1/2,
then the equilibrium at 2/3 is stable. Pure conformists,
then, can have a stabilizing effect on the process. We
expect a similar effect when the network is not dense.

B. Mean-field

Here we show how we compute the mean-field maps
derived in Section IV. In this specific example, we can
write the degree-dependent map Fk(ρ; f̄) in terms of in-
complete regularized beta functions Iz(a, b) [31]. Since f̄
is understood to be the tent map, we will write Fk(ρ; f̄) =
Fk(ρ). We find that

Fk(ρ) = 2ρ− 4ρIρ(M,k −M), (19)

where we have let M = ⌊k/2⌋ for clarity (⌊·⌋ and ⌈·⌉
are the floor and ceiling functions). The details of this
derivation are given in Appendix B.
The map g(ρ; pk, f̄) is parametrized here by the net-

work parameter kavg, since pk is fixed as a Poisson dis-
tribution with mean kavg and f̄ is the tent map, and we
write it as simply g(ρ; kavg). To evaluate g(ρ; kavg), we
compute Fk(ρ) using Eqn. (19) and constrain the sum
in Eqn. (10) to values of k with ⌊kavg − 3

√

kavg⌋ ≤

k ≤ ⌈kavg + 3
√

kavg⌉. This computes contributions to
within three standard deviations of the average degree
in the network, requiring only O(

√

kavg) evaluations of
Eqn. (19). The representation in Eqn. (19) allows for
quick numerical evaluation of Fk(ρ) for any k, which we
performed in MATLAB.
In Figure 2, we show g(ρ; kavg) for kavg = 1, 10,

and 100. We confirm the conclusions of Section IVB:
g(ρ; kavg) is bounded above by f̄(ρ), and g(ρ; kavg) ր
f̄(ρ) as kavg → ∞. Convergence is slowest at ρ = 1/2,
where the kink exhibited by the tent map has been
smoothed out by the effect of the Bernstein operator.

C. Simulations

We performed stochastic simulations of the limited im-
itation model for the D-F, P-F, and P-R designs, in the
abbreviations of Table I. Unless otherwise noted, N =
104. For all of the bifurcation diagrams, the first 3000
time steps were considered transient and discarded, and
the invariant density of ρ was calculated from the follow-
ing 1000 points. For plotting purposes, the invariant den-
sity was normalized by its maximum at those parameters.
For example, in Figure 3 we plot P (φ|α)/maxφ P (φ|α)
rather than the raw density P (φ|α).
To compare the mean-field theory to those simula-

tions, we numerically iterated the edge map ρ(t + 1) =
G (ρ(t); kavg, α) for different values of α and kavg. We
then created bifurcation diagrams of the possible behav-
ior in the mean-field as was done for the simulations.

D. Results

To provide a feel for the deterministic dynamics, we
show the result of running the D-F model on a small net-
work in Figure 4. Here, N = 100 and kavg = 17. Starting
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FIG. 4. Deterministic (D-F) dynamics on a small network.
Here, N = 100 and kavg = 17. On the left, we plot the
state evolution over time. The upper plot shows individual
node states (black = active) sorted by their eventual level of
activity, and the lower plot shows the total number of active
nodes. We see that the contagion takes off, followed by a
transient period of unstable behavior until time step 80, when
the system enters a macroperiod-4 orbit. Note that individual
nodes exhibit different microperiods (see Sec. VD). On the
right, we show the network itself with the initial seed node in
black in the lower right.

from a single initially active node at t = 0, the active pop-
ulation grows monotonically over the next 6 time steps.
From t = 6 to t = 80, the transient time, the active frac-
tion varies in a similar manner to the dynamics in the
stochastic and mean-field cases. After the transient, the
state collapses into a period-4 orbit. We call the overall
period of the system its “macroperiod,” while individual
nodes may exhibit different “microperiods.” Note that
the macroperiod is the lowest common multiple of the
individual nodes’ microperiods. In Figure 4, we observe
microperiods 1, 2, and 4 in the timeseries of individual
node activity. In other networks, we have observed up
to macroperiod 240 [10]. A majority of the nodes end
up frozen in the on or off state, with approximately 20%
of the nodes exhibiting cyclical behavior after collapse.
The focus of this paper has been the analysis of the on-
off threshold model, and the D-F case has not been as
amenable to analysis as the stochastic cases. We offer a
deeper examination through simulation of the determin-
istic case in [10].

We explore the mean-field dynamics by examining the
limiting behavior of the active edge fraction ρ under the
map G (ρ; kavg, α). We simulated the map dynamics for
a mesh of points in the (kavg, α) plane. We plot the 3-
dimensional (3-d) bifurcation structure of the mean-field
theory in Figure 5. We also show 2-d bifurcation plots for
fixed kavg and α slices through this volume in Figures 6
and 7. For more visualizations of this bifurcation struc-
ture, see Appendix C. In all cases, the invariant density
of ρ is normalized by its maximum for that (kavg, α) pair
and indicated by the grayscale value.

FIG. 5. The 3-dimensional bifurcation diagram computed
from the mean-field theory. The axes X = average degree kavg,
Y = update probability α, and Z = active edge fraction ρ. The
discontinuities of the surface are due to the limited resolution
of our simulations. See Figure 6 for the parameters used. This
was visualized using Paraview, and a file is available in the
online Appendix.

The mean-field map dynamics exhibit period-doubling
bifurcations in both parameters kavg and α. Visualiz-
ing the bifurcation structure in 3-d (Figure 5) shows in-
terlacing period-doubling cascades in the two parame-
ter dimensions. These bifurcations are more clearly re-
solved when we take slices of the volume for fixed pa-
rameter values. The mean-field theory (Figure 6) closely
matches the P-R simulations (Figure 7). The first deriva-
tive ∂G

∂ρ (ρ; kavg, α) <
∂Φ
∂ρ (ρ;α) for any finite kavg, so the

bifurcation point α = 2/3 which we found for the dense
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FIG. 6. Mean-field theory bifurcation diagram slices for various fixed values of kavg and α. The top row (a–c) shows slices for
fixed kavg. As kavg → ∞, the kavg-slice bifurcation diagram asymptotically approaches the bifurcation diagram for the dense
map, Figure 3. Note that the first bifurcation point, near 2/3, grows steeper with increasing kavg . The bottom row (d–f) shows
slices for fixed α. The resolution of the simulations was α = 0.664, 0.665, . . . , 1, kavg = 1, 1.33, . . . , 100, and ρ bins were made
for 1000 points between 0 and 1.

FIG. 7. Bifurcation diagram from fully stochastic (P-R) simulations, made in the same way as Figure 6. The bifurcation
structure of these stochastic simulations matches that of the mean-field theory (Figure 6), albeit with some blurring.
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map Φ is an upper bound for the first bifurcation point
of G. The actual location of the first bifurcation point
depends on kavg, but α = 2/3 becomes more accurate
for higher kavg (it is an excellent approximation in Fig-
ures 6c and 7c, where kavg = 100). When α = 1, the first
bifurcation point occurs at kavg ≈ 7.
The bifurcation diagram slices resemble each other and

evidently fall into the same universality class as the lo-
gistic map [32, 33]. This class contains all 1-d maps with
a single, locally-quadratic maximum. Due to the prop-
erties of the Bernstein polynomials, Fk(ρ; f̄) will univer-
sally have such a quadratic maximum for any concave
down, continuous f̄ [22]. So this will also be true for
g(ρ; kavg, f̄) with kavg finite, and we see that kavg par-
tially determines the amplitude of that maximum in Fig-
ure 2. Thus kavg acts as a bifurcation parameter. The
parameter α tunes between G (ρ; kavg, 1) = g(ρ; kavg, f̄)
and G (ρ; kavg, 0) = ρ, so it has a similar effect. Note
that the tent map f̄ and the dense limit map Φ are
kinked at their maxima, so their bifurcation diagrams
are qualitatively different from those of the mean-field.
The network, by constraining the interactions among the
population, causes the mean-field behavior to fall into a
different universality class than the individual response
function map.

VI. CONCLUSIONS

We have described a very general class of synchronous
or asynchronous, binary state dynamics occuring on net-
works. We obtained an exact master equation and
showed that, when random networks are sufficiently
dense, the networked dynamics approach those of the
fully-connected case. We developed a mean-field theory
and found that it also predicted the same limiting behav-
ior. The convergence of the mean-field map to the aver-
age response function is related to the Bernstein poly-
nomials, allowing us to employ many previous results in
order to analyze the mean-field map equation. We also
extended those mean-field equations to correlated ran-
dom networks.
The general model we describe was motivated by the

the limited imitation model of social contagion. We see
that including an aversion to total conformity results in
more complicated, even chaotic dynamics, as opposed to
the simple spreading behavior typically seen in the single
threshold case. The theory developed for the general case
successfully captured the behavior of the stochastic net-
work dynamics. We have focused on the rich structure of
bifurcations as the two parameters, update synchronicity
α and average degree kavg, were varied. We see that the
universality class of the dynamics matches those of the
logistic map. Using the mean-field theory, we can un-
derstand this as a result of the smoothing effect of the
Bernstein polynomials on the tent map average response
function. However, this universality class will appear for
any unimodular, concave down response function.

The deterministic case, which we have barely touched
on here, merits further study [see 10]. In particular,
we would like to characterize the distribution of periodic
sinks, how the collapse time scales with system size, and
how similar the transient dynamics are to the mean-field
dynamics.
Furthermore, the model should be tested on realistic

networks. These could include power law or small world
random networks, or real social networks gleaned from
data. In a manner similar to Melnik et al. [21], one could
evaluate the accuracy of the mean-field theory for real
networks.
Finally, the ultimate validation of this model would

emerge from a better understanding of social dynamics
themselves. Characterization of people’s “real” response
functions is therefore critical [some work has gone in this
direction; see 5, 6, 34, 35]. Comparison of model output
to large data sets, such as observational data from social
media or online experiments, is an area for further experi-
mentation. This might lead to more complicated context-
and history-dependent models. As we collect more data
and refine experiments, the eventual goal of quantifiably
predicting social behavior, including fashions and trends,
seems achievable.
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Appendix A: Proof of Lemma 1

Lemma 1. For k ≥ 1, let fk be continuous real-valued

functions on a compact domain X with fk → f uni-

formly. Let pk be a probability mass function on Z
+

parametrized by its mean µ and with standard deviation

σ(µ), assumed to be o(µ). Then,

lim
µ→∞

(

∞
∑

k=0

pkfk

)

= f.

Proof. Suppose 0 ≤ a < 1 and let K = ⌊µ− µa⌋. Then,

g =

∞
∑

k=0

pkfk =

K
∑

k=0

pkfk +

∞
∑

k=K+1

pkfk. (A1)

Since fk → f uniformly as k → ∞, for any ǫ > 0 we can
choose µ large enough that

|fk(x)− f(x)| < ǫ (A2)
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for all k > K and all x ∈ X . Without loss of generality,
assume that |fk| ≤ 1 for all k. Then,

|g − f | ≤

(

σ

µa

)2

+ ǫ.

The σ/µa term is a consequence of the Chebyshev in-
equality [14] applied to the first sum in (A1). Since
σ grows sublinearly in µ, this term vanishes for some
0 ≤ a < 1 when we take the limit µ → ∞. The ǫ term
comes from using (A2) in the second sum in (A1), and it
can be made arbitrarily small.

Appendix B: Beta function representation of Fk

We now show how, when f̄ is the tent map (17), the
degree-k map Fk(ρ; f̄) can be written in terms of incom-
plete regularized beta functions. First, use the piecewise

form of Eqn. (17) to write

Fk(ρ) =

M
∑

j=0

(

k

j

)

ρj(1− ρ)k−j

(

2j

k

)

+

k
∑

j=M+1

(

k

j

)

ρj(1− ρ)k−j

(

2−
2j

k

)

= 2− 2ρ− 2

M
∑

j=0

(

k

j

)

ρj(1− ρ)k−j

+

(

4

k

) M
∑

j=0

(

k

j

)

ρj(1 − ρ)k−jj. (B1)

We have used the fact that the binomial distribution
(

k
j

)

ρj(1 − ρ)k−j sums to one and has mean kρ. For

n ≤ M , we have the identity

M
∑

j=0

(j)n

(

k

j

)

ρj(1−ρ)k−j = ρn(k)nI1−ρ(k−M,M−n+1)

(B2)
where Ix(a, b) is the regularized incomplete beta function
and (k)n = k(k−1) · · · (k−(n−1)) is the falling factorial
[31, 36]. This is an expression for the partial (up to M)
nth factorial moment of the binomial distribution with
parameters k and ρ. Note that when n = 0 we recover
the well-known expression for the binomial cumulative
distribution function. From Eqns. (B1) and (B2), we
arrive at Eqn. (19).

Appendix C: Online material

To better explore the 3-d mean field bifurcation
structure, we created movies of the the kavg and α
slices as the parameters are dialed. We also provide
a VTK file with the 3-d bifurcation data, view-
able in Paraview or other software. Videos of the
individual-node dynamics for small networks in the
D-F and P-F cases are shown for some parameters
which produce interesting behavior. The D-F, P-F,
and P-R cases were implemented in Python, and we
provide our code. All of the above is available from
http://www.uvm.edu/storylab/share/papers/harris2013a/.
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