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The study of social influence in decision-making has a long history in social
science, dating back at least a century, to when economic philosophers like Rae
(1905) and Veblen (1912) became concerned with what Veblen labeled ‘conspicuous
consumption’—a form of consumption whose primary purpose is to signal wealth
to others. Although one could, in principal, signal wealth in very direct ways—
say by burning piles of cash in public—Rae and Veblen noted that the wealthy
typically prefer to purchase mansions and luxury items. To be acceptable, in other
words, conspicuous consumption depends not only on the scarcity of the goods
in question, but also on their social desirability (Robinson 1961)—an elusive and
at times arbitrary-seeming quality that, like clothing fashions (Barber and Lobel
1952; Simmel 1957; Crane 1999), is driven by individual tendencies of both imitation
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and also differentiation. Analogous connections between micro-level social influ-
ence and macro-level social change have been made subsequently to account for
a wide range of phenomena, including scientific trends (Sperber 1990), business
management (Blumer 1969), consumer and cultural fads (Johnstone and Katz 1957;
Aguirre, Quarantelli, and Mendoza 1988); voting behavior (Lazarsfeld, Berelson,
and Gaudet 1968), the diffusion of innovations (Katz and Lazarsfeld 1955; Coleman,
Katz and Menzel 1957; Bass 1969; Valente 1995; Strang and Soule 1998; Young 2006)
and word-of-mouth marketing (Gitlin 1978; Weimann 1994; Earls 2003).

A separate—and even earlier—root of social-influence studies appears to have
been inspired by the observations of crowd behavior by early writers like Charles
Mackay (1852), Gustave Le Bon (1895), and Gabriel Tarde (1903). At the risk of over-
simplification, we suggest that this early work inspired at least two broad streams
of productive research that have continued along different lines, and in different
academic disciplines, to the present. The first such stream, carried out largely
within experimental social psychology, deals with the micro-level psychological
mechanisms leading to social conformity, as well as its converse, differentiation.
The second stream, meanwhile, has focused on the more macroscopic question of
collective action—for example, the dynamics of social movements or the provision
of public goods—and has been largely the domain of sociologists, economists, and
political scientists. We comment briefly on each of these fields in turn.

Since the 1930s, social psychologists (Sherif 1937; Asch 1953; Bond and Smith 1996;
Cialdini and Goldstein 2004) have investigated the origins and effects of majority
influence over individual members of the minority, as well as the converse problem
(minority influence over the majority). The various manifestations of conformity
and compliance, moreover, have been attributed to a multiplicity of psychological
mechanisms (Deutsch and Gerard 1955; Cialdini and Goldstein 2004)—principally,
desire for accuracy; desire to affiliate; and desire for positive self-image. In practice,
it is usually unclear which of these mechanism is responsible for observed behavior,
or even if the different mechanisms are analytically distinct (Cialdini and Goldstein
2004). Nevertheless, the tendency (whether conscious or unconscious) of individ-
uals to conform to group norms and behavior has been invoked to account for a
wide range of social phenomena, including local variability in crime rates (Glaeser,
Sacerdote, and Scheinkman 1996; Kahan 1997), economic conventions (Young and
Burke 2001), ‘bystander inactivity’ (Cialdini 2001), obedience to authority (Milgram
1969), residential segregation (Schelling 1971), and herd behavior in financial mar-
kets (Shiller 2000; Welch 2000).

The related literature on collective action is concerned less with the individual-
level psychology of group participation, and more with the conditions under
which groups of individuals can coordinate to achieve collective goals. As a result,
collective-actions studies tend to be theoretical, rather than experimental, and are
often framed in terms of the relative costs and benefits of coordinated action,
rather than in terms of conformity per se. Nevertheless, the same psychological
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mechanisms of social influence, such as desire to affiliate with a cause, and inferring
its likely success from the participation of others, appear to be at least in part
responsible for individual decisions to join in, or abstain from, collective action.
Variations on these arguments, therefore, have been invoked to account for the
success or failure of social movements (Kim and Bearman 1997), political uprisings
(Kuran 1991; Lohmann 1994), contributions to public goods (Oliver and Marwell
1985; Ostrom et al. 1999), and other forms of collective action (Granovetter 1978;
Chwe 1999; Macy and Flache 2002).

Finally, while much of the social-influence literature is concerned with non-
market behavior, such as social movements, conformity to reference groups, and
fashion, a related body of work that has attracted the attention of economists deals
with a class of technology markets that exhibit what have been called ‘network
externalities’ (Katz and Shapiro 1985), or somewhat more generally ‘network effects’
(Liebowitz and Margolis 1998). Both terms are meant to imply that the utility to an
individual of a particular product (e.g. a fax machine) or skill (e.g. a language)
is positively related to the number of other compatible products in use; that is,
the size of the relevant ‘network’ associated with the product or skill. Katz and
Shapiro (1985) further differentiated ‘direct’ from ‘indirect’ network effects, where
the former refers to physical networks, such as the telephone network, which can
presumably be owned, and the latter refers to virtual or metaphorical networks,
like the population of users of some particular computer-operating system for
whom availability of auxiliary products like compatible software, as well as support
services, may influence purchasing decisions.

Social influence is thus not a singular phenomenon, or even (yet) a well-defined
family of phenomena, but rather a blanket label for a loose congregation of social,
psychological, and economic mechanisms, including: identifying with, or distanc-
ing oneself from, certain social groups; avoiding sanctions; obeying authority;
reducing the complexity of the decision-making process; inferring otherwise inac-
cessible information about the world; gaining access to a particular network; or
reaping the benefits of coordinated action. Precisely what these different mecha-
nisms have in common, and to what extent their differences, when they exist, can
be overlooked for the purpose of constructing models of individual choice, ought
therefore to be a matter of considerable interest to ‘analytical sociology’.

20.1. Social-influence
and threshold models

..........................................................................................................................................

Answering this question in general, however, is extremely difficult—the class of
decisions under consideration is simply too broad to tackle all at once. In order to
make some concrete progress, therefore, we restrict our analysis of social influence
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to the class of ‘binary choices’, by which we mean choices between precisely two
discrete alternatives. Although simple, binary-choice models can illuminate the
dynamics of a surprising range of decisions, from the trivial (to dress in cos-
tume for the party or to dress normally; to cross the street or to wait for the
walk sign) to the consequential (to join a strike or to keep working; to leave a
neighborhood or to remain). Even decisions that involve choices between more
than two alternatives—for example, which car to buy or which movie to see—
may sometimes be represented as a sequence of binary choices (Borghesi and
Bouchaud 2006)—say, to buy a car or not; to look for new or used cars; to buy
through a dealer or privately; to prefer sedans to SUVs; and so on. Moreover,
as Schelling (1978) argued, even quite complex decision-making processes, such
as drafting a treaty on climate change, often culminate in binary choices—for
example, to sign or not to sign. Binary choices have therefore received considerably
more theoretical attention than other kinds of choices, and a wide range of models
have been proposed by sociologists and economists; for example, diffusion models
(Bass 1969); segregation models (Schelling 1971); coordination models (Schelling
1973; Morris 2000); social-learning models (Bikhchandani, Hirshleifer, and Welch
1992); threshold models (Granovetter 1978), and generalized contagion models
(Dodds and Watts 2004, 2005).

Unfortunately, this proliferation of models has not yet produced an equivalently
encompassing theoretical framework; thus, it is often unclear how one should
relate the assumptions or findings of similar-sounding models to one another. For
example, some social-influence models (e.g. Friedkin 1998) assume, in effect, that
when A influences B the total quantity of opinion between A and B is conserved
(in the manner of a gas diffusing between chambers); thus A’s strength of opinion
must diminish in order for B’s to increase. Other models, meanwhile, are motivated
instead by analogy with the spread of an infectious disease (e.g. Bass 1969); thus,
A can ‘infect’ B with a new opinion, while A’s strength of opinion remains undimin-
ished. Either one of these assumptions may or may not be justified in any particular
circumstance, but both models cannot be valid descriptions of the same process.
Likewise, models of social learning that are typically studied in the ‘information
cascade’ literature in economics (Bikhchandani, Hirshleifer, and Welch 1992) are
formally quite different from the class of threshold models that have been studied by
Granovetter (1978) and others—in a nutshell, the former assume that the particular
order in which an individual observes the actions of others is important, whereas
the latter assumes that it is not. Once again, in any given situation, it is either
the case that the order of signals matters (in which case an information-cascade
model is appropriate) or it does not (in which case an influence-response function
is)—both models cannot be equally relevant to the same application. In practice,
however, authors consistently invoke the same motivating examples—crowd behav-
ior, group conformity, voting, diffusion of innovations, social movements, and
herding in financial markets—regardless of what kind of model they then proceed
to analyze.
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Clarifying what assumptions are required in order for any given model to be a
valid representation of the phenomenon in question, and how the various assump-
tions of different models can be related would therefore be extremely helpful steps
towards a theoretically consistent and substantively interpretable theory of social-
influence processes. Recently, Lopez-Pintado and Watts (2008b) have proposed that
a number of mechanism-specific models are equivalent in the sense that they can
all be described in terms of an ‘influence-response function’—a one-dimensional
function that maps the number of others choosing alternative A versus B into a
probability that the focal actor i will choose A. By making explicit the assumption
that signal order is unimportant, this framework excludes certain existing classes
of models (e.g. social-learning models), and presumably also certain interesting
phenomena (i.e. those in which signal order does matter). In restricting itself to
certain phenomena and not others, however—by identifying clearly what it cannot
explain—the explanatory power of the approach is arguably increased. For exam-
ple, it can be shown that superficially quite different kinds of choices—inferring
quality from observations of others versus deciding whether or not to contribute
to a public good—can be shown to correspond to similar influence-response func-
tions, and therefore may result in similar kinds of collective dynamics.

In other recent work Dodds and Watts (2004, 2005) have further partitioned the
class of influence-response functions according to the importance of interactions
between successive signals. In epidemiological models of contagion, for example—
models that have been invoked by Bass (1969) and others as models of the diffusion
of innovations—successive contacts between ‘infected’ and ‘susceptible’ individuals
result in a new infection with constant probability; thus, infection ‘events’ are
treated independently of one another. In threshold models, by contrast—models
that are also used to model the diffusion of innovations—the probability that an
additional positive signal will trigger adoption depends extremely sensitively on
how many other signals have been observed: just below the threshold, a single
observation can increase the adoption probability from near zero to near one, where
otherwise it will have little effect. Epidemiological and threshold models of con-
tagion are therefore quite distinct with respect to their (again, typically unstated)
assumptions regarding the mechanism by which influence spreads from one person
to another. What Dodds and Watts showed was that these differences can be cap-
tured in the shape of the influence-response function, and that, in fact, an entire
family of contagion models can be specified in between the two cases. The shape
of the influence-response function, moreover, can have important consequences
for the conditions under which contagious entities, whether diseases, products, or
ideas, can spread.

Whether or not a particular domain-specific example of social influence can
be adequately described in terms of an influence-response function, say, and
if so what the shape of the corresponding function should be, are ultimately
empirical questions. Although empirical progress in this area is limited, some



978–0–19–921536–2 Hedstrom-Main-drv (Typeset by SPi, Chennai) 480 of 734 March 7, 2009 22:49

480 duncan watts & peter dodds

recent progress is promising. By reanalyzing aggregate-diffusion curves (Griliches
1957), for example, Young has recently suggested that the diffusion of hybrid corn
in the USA during the 1940s is better explained by a threshold model of adoption
than by a Bass-style model of diffusion (Young 2006). Leskovec, Adamic, and
Huberman (2007), moreover, have attempted to reconstruct the individual-level
influence-response functions themselves, using online recommendations for books
and movies. In general, such experiments are extremely difficult to perform;
thus, it is still the case that formal models of social influence suffer from a dearth
of realistic psychological assumptions. Nevertheless, a successful experimental
program must be predicated on asking the right empirical questions, and in this
respect a systematic formal-modeling approach of the kind we describe here is
worth pursuing, if only as a means to focus empirical attention on the assumptions
and parameters of greatest importance.

Bearing in mind this last objective, the subspace of social-influence models
that can be represented as influence-response-functions influence models in turn
exhibits a number of dimensions that ought to be of interest to the field of analytical
sociology. Early work by Schelling (1978), and later Granovetter and Soong (1983),
for example, indicated that binary decisions for which the corresponding decision
‘externality’ is negative—that is, when others’ choice of A makes one less likely
to choose A—generate qualitatively different dynamics than when the influence is
positive—a result that has been studied in greater detail recently (Lopez-Pintado
and Watts 2008b). Models of social influence, moreover, tend to assume (often
implicitly) that all actors involved are of the same kind, whereas in reality individu-
als may be influenced by a variety of actors—for example, peers, role models, media
organizations, and high-profile individuals like critics, celebrities, or increasingly
‘bloggers’—each of which may exert a different kind of influence, and may in
turn be influenced differently.1 Bloggers, for example, exploit online media to share
information and opinions with a potentially global audience, yet frequently engage
in two-way, unfiltered conversations with readers; thus, they may be expected to
exert influence that is neither like word of mouth, nor like mass media. Some recent
modeling work (Lopez-Pintado and Watts 2008a) has begun to consider the effects
of combined media and interpersonal influence, but this aspect of social-influence
modeling is as yet poorly explored.

Another important yet understudied element of social influence—and the one
that we focus on here—is that of influence networks. If it matters that people
pay attention to one another, in other words, then surely it might also matter
who pays attention to whom. Unfortunately, in spite of recent interest in the topic
(Newman, Barabási, and Watts 2006), it is still the case that little is known about
the structure of large-scale social networks, let alone how influence propagates on
them. Kossinets and Watts (2006), for example, have studied the evolution of a
relatively large network of email exchanges among the members of a university
population. But this network is, at best, a representation of who talks to whom—it
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tells us very little about who pays attention to whom, or with respect to what. Similar
problems arise with other empirical examples of social networks, which typically
utilize some proxy for social interaction, like comembership of corporate boards
(Davis 1991) or coauthorship of a scientific paper (Newman 2004), rather than the
social interactions themselves. It is plausible, in other words, that two people who
sit on a board together might influence one another’s opinions, but it is equally
plausible that they do not, or that they do so with respect to only some issues, or
that they are also influenced by numerous other unrecorded social relations. In the
absence of relevant empirical data, therefore, we instead posit a series of theoretical
models of networks, all of which are simple and unrealistic, but some of which are
more realistic than others.

In order to make progress, we further narrow our focus to a special case of
influence-response functions—namely, deterministic-threshold functions, accord-
ing to which individuals adopt a new ‘state’ (e.g. wearing seat belts or joining
a political uprising) based on the perceived fraction of others who have already
adopted the same state. We choose to study threshold models for the practical
reason that the collective dynamics of threshold models is already well understood
in certain limiting cases—in particular, the ‘all-to-all approximation’ (Granovetter
1978), in which all individuals are influenced equally by the states of all others.
Although the main purpose of this chapter is to consider the dynamics of social
influence on networks, it is nevertheless helpful to anchor our results by reviewing
the main features of Granovetter’s model (Sect. 20.2). In the spirit of analytical
sociology, we then proceed systematically up the chain of complexity, reviewing
first the dynamics of ‘cascades’ of influence on random networks (Watts 2002)
in which each individual i is exposed only to a fixed neighborhood of k others,
drawn randomly from the population. We then introduce two models of networks
that advance on the random-network model by including some simple notions of
group structure (Sect. 20.3), and consider how these changes affect the likelihood
of cascades for different seeding strategies. Although with each step up this chain
the tractability of the corresponding models decreases, we are nevertheless able to
make progress by leveraging our understanding of the simpler models that we have
already considered.

20.2. Influence cascades on complete
and random networks

..........................................................................................................................................

Inspired by Schelling’s seminal work on neighborhood segregation and coordina-
tion games (1969, 1973), Granovetter (1978) proposed a novel method for analyzing
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the outcomes of collective action when individuals are faced with a choice to adopt
some new (‘active’) state—a behavior, belief, or even an innovation—or else to
remain in their existing, (‘inactive’) state. Granovetter illustrated the model with
the example of a hypothetical crowd poised on the brink of a riot. Because all
involved are uncertain about the costs and benefits associated with rioting, each
member of the crowd is influenced by his peers, such that each of them can be
characterized by some threshold rule: ‘I will join a riot only when sufficiently many
others do; otherwise I will refrain’. Granovetter did not specify an explicit theory
of human decision-making from which the threshold model could be derived, and,
as we have discussed, other kinds of rules are clearly possible (Dodds and Watts
2004; Lopez-Pintado and Watts 2008b). For the purpose of this analysis, however,
we will accept Granovetter’s informal reasoning that under some circumstances at
least, a threshold rule is a plausible rule of thumb for an individual to follow, and
instead focus on the consequences for collective dynamics of changing the influence
network—that is, who pays attention to whom.

20.2.1. Granovetter’s ‘all-to-all’ model

With respect to this last question, Granovetter made the simplest possible
assumption—namely, that every individual in the population pays attention equally
to all others—which in network terms corresponds to a ‘complete’ or an ‘all-to-
all’ network. He then completed the model by allocating to each individual in the
population a threshold ˆi , according to some probability distribution f (ˆ) (see
Figs. 20.1a and 20.1b for an example), where the value of ˆi is assumed to capture all
the relevant psychological attributes of individual i with respect to the particular
decision at hand, and the distribution f (ˆ) represents both the average tenden-
cies and also the heterogeneity present in the population. Lowering or raising the
mean of f (ˆ), for example, would therefore correspond to lowering or raising the
general susceptibility of the population, while increasing or decreasing the variance
would correspond to an increase or decrease in variability in susceptibility across
individuals.

Commencing in a population in which some fraction a0 is assumed to have
been activated by some exogenous process (and the remainder of the population
1 − a0 is therefore inactive), at each subsequent time step t, each individual i
compares at−1, the active fraction of the population during time step t − 1, with
their own threshold fi , becoming (or remaining) active if at−1 ≥ ˆi . The fraction
of the population at that is active at any time t can then be described simply in
terms of the active fraction at the previous time step, at−1, and the one-dimensional
‘map’ at = F (at−1), shown in Figure 20.1(c). The function F can be derived easily
by observing that at any point in time t, at is just the fraction of the population
whose thresholds fall below at−1; thus F is given by F (at−1) =

∫ at−1

ˆ=0 f (ˆ)dˆ, which
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Fig. 20.1. Granovetter’s threshold model of collective action

is simply the cumulative-distribution function of f (the threshold distribution)
evaluated at at−1.

Once the system has been represented in this manner, its dynamics and equilib-
rium properties are surprisingly easy to compute using a simple graphical technique
known as a ‘cobweb’ diagram—a common technique from the field of nonlinear
dynamics (Strogatz 1994). Starting from any initial condition, a0, the fraction of
active individuals at the next time step, t = 1, is a1 = F (a0) which can be found by
drawing a vertical line on Figure 20.1(c) to intersect F (ˆ) at a0. This fraction now
becomes the input for the next ‘iteration’ of the map, which is achieved graphically
by drawing a horizontal line from the map to the diagonal, also shown in Fig-
ure 20.1(c). The process now repeats, thus generating values for a2 = F (a1), a3 =
F (a2), . . . , and so on until some equilibrium value a∞ is reached, at which no
further changes occur; that is, a∞ = F (a∞).

Equilibrium values of the map F are easy to identify graphically, as they are
simply the points at which F intersects with the diagonal (i.e. where it maps
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onto itself). Figure 20.1(c), for example, exhibits three equilibria—one at F (0) = 0,
one at F (1) = 1, and one at an intermediate value F (a∗) = a∗. The last of these
equilibria, however, is different from the first two: as can be verified using the
cobweb technique, any initial condition will eventually converge on one of the
first two equilibria, but will diverge from the intermediate value no matter how
close to it one starts. The two extreme equilibria are therefore stable, whereas the
intermediate value a∗ is unstable. The equilibrium at a∗ therefore acts as a kind of
switch—small changes in the initial condition near a∗ can result in polar-opposite
outcomes, whereas away from a∗ even large changes in the initial condition will
converge on the same outcome.

Although extremely simple, this model already yields an important insight: that
in the presence of social influence collective outcomes are not easily intuited from
the individual attributes of the population itself.2 In his hypothetical example of a
crowd poised on the brink of a riot Granovetter observed that if the distribution
of thresholds is precisely uniform—that is, one person will riot spontaneously, one
person will join in when he observes one other rioter, another will join when he
observes two others, and so on—the entire crowd will end up in the riot. This result,
however, is exceedingly fragile with respect to perturbations in the distribution
of thresholds (which in turn alters the number and nature of the corresponding
equlibria). If, for example, no one has a threshold of three, and instead two individ-
uals have a threshold of four, then the cascade will terminate after only three people
have joined in. The two crowds would be indistinguishable in terms of their individ-
ual attributes, but their collective behavior could not be more different: rather than
witnessing an all-out riot, an observer would see just three troublemakers jostling
an otherwise orderly crowd. Consequently, small changes in individual preferences
may lead to large and unpredictable system-level changes (a point that has also been
made by Kuran 1991).

20.2.2. Extension to random networks

Recently, Watts (2002) has adapted Granovetter’s threshold model to a net-
work framework where, in contrast to the all-to-all assumption of Granovet-
ter’s model, individuals are assumed to be influenced directly only by a small
subset of immediate ‘neighbors’—a more realistic assumption for large popula-
tions. As with Granovetter’s model, Watts (2002) considered a population of N
individuals that is initially in a state of universal inactivity, and in which each
individual i is randomly assigned a threshold ˆ∗

i , drawn from the distribution
f (ˆ). Each individual is then assigned ki neighbors, whom it both influences
and is influenced by, where ki is drawn at random from the distribution pk . For
the purpose of tractability, Watts considered networks in which neighbors were
drawn at random—an unrealistic assumption in light of what is known about
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real social networks, but one that provided a natural first step away from the all-
to-all case. In the simplest case that Watts considered—that is, where all indi-
viduals have the same threshold—the population can therefore be characterized
completely by just three parameters: N, ˆ∗, and k, where k is the mean degree
(i.e. the average number of neighbors influenced directly by each individual).
Even in such a simple case, however, the analysis is nontrivial and the results are
counterintuitive.

At time t = 0 Watts assumed that the population would be ‘shocked’ by choosing
some individual i0 to be activated exogenously, meaning that their state is switched
from inactive to active regardless of their threshold ˆ∗

i0
or their degree of influence

ki0 . If as a result of i0’s activation any of its neighbors’ thresholds are now exceeded,
those neighbors will also activate in the next time step, after which their neighbors
may, in turn, activate, and so on, thus generating a ‘cascade’ of adoptions. At
some time T > 0, where T is the duration of the cascade, some fraction of the
population S ≤ 1 will have been activated, and no more activations will be possible.
(Once an individual is activated, we assume they remain so for the duration of the
cascade.) Thus, the impact of every cascade can be quantified by its size S. Repeating
this numerical experiment many times, it is possible to study the distribution of
cascade sizes g (S) for any particular population (as defined by the parameters
N, ˆ∗, and k), and also to study the properties of g (S) as a function of N,
ˆ∗, and k.

Watts’s (2002) main finding is illustrated in Figure 20.2: On random networks,
‘global’ cascades of influence can only take place within a certain region of the
(ˆ∗, k) parameter space, called the ‘cascade window’, whereas outside this region
cascades are typically small.3 The extra condition of the cascade window is a major
difference between Granovetter’s all-to-all approximation and the more realistic
case of sparse-influence networks, as now the success of a cascade depends not only
on the individual attributes of the population (as captured by Granovetter in the
threshold distribution), but also on the connectivity of the influence. Who pays
attention to whom, in other words, is potentially every bit as important as how
susceptible individuals are to a particular innovation or idea. The cascade window,
moreover, has a particular shape, which Watts also explained in a manner that is
illustrated in Figure 20.3. In brief, a cascade in its early stages can only spread via
‘vulnerable’ individuals who can be activated by only a single active neighbor. In
order for a cascade to spread globally, therefore, the population must contain a
connected network of vulnerable individuals that ‘percolates’, in the sense that it
‘reaches’ the entire population even though it may only be a small subset of the
total (Stauffer and Aharony 1992). Global cascades can therefore occur if and only
if the network contains what Watts called a ‘percolating vulnerable cluster’ (Watts
2002), but which might also be thought of as a ‘critical mass,’ meaning a relatively
small population that, once activated, triggers a disproportionately large change in
public opinion.4
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Fig. 20.3. Spread of influence throughout a network via vulnerable nodes.
Black indicates a node or edge is active, and gray indicates inactive. All nodes
in this example have a threshold ˆ∗ = 0.18, which means they are vulnerable
if they have degree k ≤ 5. At time t = 1 node a becomes active, as do its
outgoing edges. At time t = 2 nodes e and c register that their thresholds
have been exceeded and also become active. Node b, a nonvulnerable, switches
on in time step t = 3, since now 2/8 = 25% of its neighbors are active

Since an individual’s threshold is exceeded only when a specified fraction of
its network neighbors are activated, the condition to be vulnerable is ˆ∗

i < 1/ki ,
where ki is the degree of node i , Thus, influential (i.e. high-ki ) nodes are less
likely than low-ki nodes to be vulnerable. However, in order to propagate influ-
ence, an individual must be capable both of being influenced (which requires at
least one neighbor) and also of influencing someone other than the source of
the influence (requiring at least one additional neighbor); thus, only individuals
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with ki ≥ 2 can contribute to the initial spread of influence. The upshot of these
countervailing requirements is that a percolating vulnerable cluster—hence a crit-
ical mass—will only exist, and global cascades occur, when the average density
k of the influence network is neither too low nor too high. For low k, although
most nodes are vulnerable in the sense defined above, no large connected clus-
ters exist, and cascades are confined to the small, isolated clusters in which they
begin. On the other hand, when k is sufficiently large, the network will always
exhibit a globally connected cluster (in graph-theoretic language, a giant com-
ponent: Bollobas 2001), but too few of these nodes will be vulnerable. Lying in
between these extremes is the cascade window, within which global cascades are
possible.5

20.3. Cascades in networks
with group structure

..........................................................................................................................................

As interesting as they are from an analytical perspective, random networks are prob-
ably poor approximations of real social networks, for the simple reason that ran-
domness overlooks the obvious importance of groups (Breiger 1974; Feld 1981; Blau
and Schwartz 1984). People come together in well-defined, localized contexts—
workplaces, schools, places of worship, clubs, and so on—that enhance the for-
mation and maintenance of social connections. One might therefore expect not
only that networks of influence relations will exhibit numerous characteristics of
group structure, but also that these properties will have important consequences for
the transmission of social influence across a network.6 In this section we describe
and analyze two models that emphasize, in different ways, the importance of social
groups in the formation of influence networks.

20.3.1. Random-group networks

Consistent with our modeling strategy, our first class of networks with group
structure constitutes only a modest departure from standard random networks
(Newman, Strogatz, and Watts 2001), thus permitting us to test the effects of
incorporating groups, while benefiting from our understanding of cascades on
random networks. To build a random-group network we first create a standard
random network with an average degree kg (see Fig. 20.4). In two stages, we then
replace each node in this network with a group of ng nodes and then add edges
between nodes: first, within each group, each pair of individuals is connected with
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Fig. 20.4. Example of a random-group network. The gray
disks and edges represent the underlying random network
of groups

probability p, as per the typical construction of a standard random graph; and
second, links between each pair of nodes that belong to adjacent groups on the
underlying random network are created with probability q .

20.3.2. Generalized-affiliation networks

Our second class of networks with group structure is based on a model, first intro-
duced by Watts, Dodds, and Newman (2002), that captures the effects of homophily
(McPherson, Smith-Lovin, and Cook 2001) and group affiliation (Feld 1981) in
determining social networks. In this model, each individual is allocated coordinates
in each of H ‘social dimensions’ such as profession or geographic location, and
‘social distance’ d between two individuals is taken to be the minimum of all
distances between their attributes. (For any given dimension, the distance between
two attribute values is measured as the number of levels to the lowest common
ancestor.) For example, in Figure 20.5 nodes i and j belong to the same group in
the h = 2 attribute but are maximally far apart in the h = 1 attribute. The social
distance di j is therefore 1 (we define two nodes sharing the same group to be a
distance 1 apart) because i and j match in at least one attribute. Two individuals
being socially ‘close’ is assumed to make a connection more likely; thus, for a
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h = 1 L = 4
b = 2

h = 2

i j

i j

Fig. 20.5. Example of the generalized-
affiliation model, where each node has
attributes in two dimensions

population of individuals with identities assigned as above we realize a network
by connecting each pair of individuals with probability e−·d where d is social
distance as defined above, and · is defined as the ‘homophily parameter’—for
high ·, ties are almost always made between people who strongly match on at least
one attribute, and for low ·, ties may be made between more distant individuals.
Finally, we depart from the original Watts, Dodds, and Newman (2002) formulation
by allowing individuals who share a common acquaintance to connect with each
other with probabilities ‚1 and ‚2, within and across groups respectively. The more
acquaintances in common, the greater the chance of connection (Kossinets and
Watts 2006); thus, we assume that any pair of unconnected individuals that are
affiliated with the same group and have m mutual acquaintances within that group
will have a connection probability of 1 − (1 − ‚1)m.

20.3.3. Cascade-seeding strategies

In Figure 20.6 we show cascade windows for random-group networks, and
generalized-affiliation-model networks, where, for purposes of comparison, we
overlay the cascade windows of standard random networks (solid line) on those
of the two networks with group structure. Our main interest here concerns seed-
ing strategies that target multiple individuals simultaneously, in part because it
is artificial to restrict seeding to a single individual, and in part because single-
individual seeds do not exploit the presence of group structure. Nevertheless, we
include the single-seed strategy in order to provide a direct comparison between
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networks with group structure and the random networks studied previously. Fig-
ures 20.6a and 20.6d therefore show cascade windows for random-group networks
and generalized-affiliation-model networks, for cascades that are triggered by a
single-seed node, where the gray scale indicates the average size of cascades gener-
ated by a single, random node activated at time t = 0 (i.e. darker shade corresponds
to larger cascades).

We find that both classes of networks involving group structure yield cascade
windows different to that for standard random networks. For both classes of net-
works we see that the upper boundary of the cascade window exceeds that of
standard random networks; that is, group-based networks can be vulnerable to acti-
vation cascades even when their average degree is significantly higher than that of
the most vulnerable node. By enabling close-knit clusters of nodes to reinforce each
others’ adoptions, the introduction of groups therefore serves to push the upper
bound of k well beyond its previous limit, where insufficiently many vulnerable
nodes existed to form a critical mass. At the lower limit of the cascade window,
however, we observe that the two classes of networks with group structure begin
to differ: generalized-affiliation-model networks are similar to ordinary random
networks; but, for reasons that we do not yet fully understand, the lower boundary
for random-group networks is raised considerably.

The clear increase in the width of the cascade window in the presence of group
structure also suggests a further question: Can seeds consisting of entire (albeit
still small) groups trigger global cascades even under conditions where single-node
seeds would fail? Figure 20.6 therefore also shows results for two other seeding
strategies: (1) a random set of ng nodes (Figs. 20.6b and 20.6e), and (2) a cohesive
group of ng nodes (Figs. 20.6c and 20.6f ). A cohesive-group seed is a natural choice
of seed in the current context as it uses the structure of the underlying network in
an obvious manner—a marketer, for example, might provide a close-knit group of
people with some free samples, or pay a team to use or endorse a particular product.
It is also natural, however, to target an equal-size set of ng individuals but scattered
randomly throughout the network. Because it is not a priori obvious which of these
two strategies will perform better, we compare them directly.7 In both cases we also
include (again for comparison purposes) the outline of the cascade window for the
same seeding strategy employed on ordinary random networks (i.e. those studied
previously).

On ordinary random networks the addition of larger seeds—created by first
selecting a random node and then adding ng − 1 of its nearest neighbors to the
seed—can easily be shown to increase the frequency of global cascades when
the network is inside the cascade window. It is also easy to show, however, that
for standard random networks all three types of seed choices—cohesive-group,
random-set, or a lone individual—lead to exactly the same cascade windows
(Figs. 20.6(a)–(f )). The reason is that a random network either does or does not
have a vulnerable cluster, and a finite seed in a random network with no vulnerable
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Fig. 20.6. Mean size of activation events for random-group networks and
generalized-affiliation networks for three seeds: (a) single randomly chosen
node; (b ) a random set of ng = 10 nodes; and (c) a cohesive group of ng = 10
nodes. The solid line indicates the equivalent cascade window for standard
random networks

cluster cannot generate a cascade. Within the boundaries of the cascade window,
a larger seed, be it a cohesive group or a random set, has a better chance of
hitting the percolating vulnerable cluster; thus, when global cascades are possible,
the probability of generating a cascade is increased for larger seeds. At the same
time, however, the nature of any finite seed does not alter the possibility of a
cascade occurring in the first place; thus, the window remains invariant for random
networks regardless of seeding strategy.

In networks with group structure the situation is different. First, we observe
that for our two types of group-based networks activation cascades are generally
more likely to occur over a broad range of k when the initial seed is a randomly
chosen cohesive group of size ng (Figs. 20.6c and 20.6f ) as opposed to a randomly
chosen set of ng individuals (Figs. 20.6b and 20.6e). In particular, Figures 20.6c and
20.6f show that for both classes of networks, cohesive-group seeds can generate
spreading when the average degree is an order of magnitude greater than that of
the most connected vulnerable individual. Networks with group structure may
therefore be highly vulnerable to influences initiated by cohesive groups, even when
they are extremely resilient to social contagion, as we have modeled it here, when
initiated by single seeds. Moreover, since we have assumed little knowledge of the
networks in our simulations—only at the level of group membership—our results
suggest easily implemented methods for increasing the spread of an influence in
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real populations. Rather than targeting individuals who are thought to be influ-
ential (Katz and Lazarsfeld 1955; Weimann 1994), for example, a more successful
strategy may be to target cohesive groups. Finally, these results also indicate that
spreading is possible in group-based networks even when there are relatively few
or even no vulnerable individuals (i.e. those individuals who are activated when
only one neighbor is active), and certainly when there is no percolating vulnerable
cluster.

Social influence in group-based networks therefore spreads in a way that is qual-
itatively distinct from spreading in all-to-all and random-network versions where,
respectively, a nonzero vulnerable fraction and a percolating vulnerable cluster are
needed for activation to spread. In the case of random networks, the largest vulnera-
ble cluster can be interpreted as the critical mass of the system: when an individual in
this cluster is activated, the rest of the cluster begins to follow in short order, where-
upon nonvulnerables are also activated. Clearly, however, the vulnerable-cluster
notion of critical mass on a network is insufficient to understand the dynamics
of cascades in the presence of groups. Rather, it appears that when groups are the
medium of transmission it is important to think of a critical mass in terms of the
arrangement of vulnerable versus nonvulnerable groups, not individuals—a kind
of ‘renormalized’ version of the previous conception. If an initial group is acti-
vated, the process within that group becomes self-reinforcing, since high levels of
clustering within groups naturally maintain activation. Providing that neighboring
groups have sufficient connections between them, activation will be able to spread,
even when the individuals in question—when examined in isolation—would not
appear vulnerable in the previous sense of being susceptible to activation by a single
neighbor.

The vulnerability of group-based networks to social contagion is as yet a poorly
understood phenomenon, but it clearly opens up new research questions as well as
suggesting new possibilities for triggering, or preventing, cascades of social influ-
ence. As the results presented in this chapter make clear, changing the connectivity
and topology of the influence network—even in possibly quite subtle ways—can
have important implications both for the scale of cascades that may propagate
throughout a population, and also the manner in which those cascades may be
seeded. In addition to pursuing experimental studies of social influence at the level
of individuals, therefore, we would argue that sociology in the analytical tradition
espoused in this volume requires a more comprehensive theoretical understanding
of the dynamics of social-influence networks—advanced, for example, through a
systematic program of formal modeling—along with a tighter coupling between
theory development and empirical testing. Aside from its interest to sociologists,
moreover, a better understanding of the structure and dynamics of social-influence
networks could be of value to marketers, public-health authorities, and indeed any-
one concerned with affecting or understanding changes in public opinion, cultural
beliefs, or social norms.
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Notes

1. A number of diffusion models (e.g. Strang and Tuma 1993, Myers 2000) incorpo-
rate spatial and temporal heterogeneity; however, here we are making the somewhat
different point that the actors involved in the diffusion process can themselves be
heterogeneous.

2. At the broadest level, this insight is essentially the same as that derived from Schelling’s
much earlier work on residential segregation and coordination games (Schelling 1969,
1978). Nevertheless, Granovetter’s model was considerably more transparent than
Schelling’s, allowing for individual heterogeneity and easy computation of equilibria;
thus, it is Granovetter’s model that we generalize here.

3. Strictly speaking, a ‘global’ cascade is one that occupies a finite fraction of the entire
population in the theoretical limit of the population size N → ∞, whereas nonglobal
cascades are always finite in size. In practice, however, global cascades can be detected
in finite populations simply by considering only cascades that exceed a prespecified
cutoff size (where the precise choice of cutoff is unimportant).

4. Our use of the term is thus broadly consistent with Rogers (1995) definition as ‘the
point at which enough individuals have adopted an innovation so that the innovation’s
further rate of adoption becomes self-sustaining’ (p. 313), but adds analytic power
to the concept by specifying precise conditions under which a critical mass exists,
regardless of whether any successful cascade is actually observed.

5. Recently, Whitney (2007) has shown that global cascades can also occur in a narrow
region just above the upper limit of the cascade window, and that these cascades—
which according to Watts’s calculations should not take place—are driven by a slightly
different mechanism than the one Watts proposed. Specifically, Whitney showed that
cascades can occur outside of the theoretical cascade window as a consequence of
triadic structures that he calls ‘motifs’, which can arise in sufficiently dense random
networks. The local clustering implied by motifs can cause otherwise stable nodes to be
vulnerable to the combined influence of two neighbors—a situation that does not arise
in less dense random networks until the entire vulnerable cluster has been activated.
Because motifs appear to matter only in a narrow region outside the cascade window,
Whitney’s findings are largely consistent with Watts’s. Nevertheless, they suggest that
even small variations away from pure randomness can lead to considerable additional
complexity in the dynamics of social influence—a point we also make in Section 20.3.

6. Chwe (1999) has, in fact, made precisely this point in the context of somewhat smaller
simulated networks than we consider here.

7. To ensure comparisons are fair, in all simulated networks the population size is N = 104,
all groups are of size ng = 10, and individuals have a uniform threshold of fi = 0.15
(meaning nodes of degree six or less are vulnerable). The parameters for the generalized
affiliation networks shown are H = 2, b = 10, L = 4, fi = 2, b1 = b2 = 0.5.
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