
MANAGEMENT SCIENCE
Vol. 53, No. 7, July 2007, pp. 1036–1050
issn 0025-1909 �eissn 1526-5501 �07 �5307 �1036

informs ®

doi 10.1287/mnsc.1060.0625
©2007 INFORMS

Cooperation in Evolving Social Networks
Nobuyuki Hanaki

Doctoral Program in International Political Economy, Graduate School of Humanity and Social Sciences,
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan, hanaki@dpipe.tsukuba.ac.jp

Alexander Peterhansl
Department of Economics, Columbia University, 1022 International Affairs Building, 420 West 118th Street,

New York, New York 10027, ap11@columbia.edu

Peter S. Dodds
Department of Mathematics and Statistics, 203 Lord House, University of Vermont, 16 Colchester Avenue,

Burlington, Vermont 05401, pdodds@uvm.edu

Duncan J. Watts
Institute for Social and Economic Research and Policy, Columbia University, 8th Floor, International Affairs Building,

420 West 118th Street, New York, New York 10027 and Department of Sociology, Columbia University,
413 Fayerweather Hall, 1180 Amsterdam Avenue, New York, New York 10027, djw24@columbia.edu

We study the problem of cooperative behavior emerging in an environment where individual behaviors and
interaction structures coevolve. Players not only learn which strategy to adopt by imitating the strategy of

the best-performing player they observe, but also choose with whom they should interact by selectively creating
and/or severing ties with other players based on a myopic cost-benefit comparison. We find that scalable
cooperation—that is, high levels of cooperation in large populations—can be achieved in sparse networks,
assuming that individuals are able to sever ties unilaterally and that new ties can only be created with the
mutual consent of both parties. Detailed examination shows that there is an important trade-off between local
reinforcement and global expansion in achieving cooperation in dynamic networks. As a result, networks in
which ties are costly and local structure is largely absent tend to generate higher levels of cooperation than
those in which ties are made easily and friends of friends interact with high probability, where the latter result
contrasts strongly with the usual intuition.
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1. Introduction
Cooperation is a widely observed feature of human
and animal societies (Ostrom et al. 1999, Fehr and
Fischbacher 2003), arising even in populations of
nonsentient organisms (Boorman and Levitt 1980).
Although it manifests itself in many versions, the
crux of all cooperation problems is the notion of a
social dilemma: Individuals in a pair, group, commu-
nity, organization, or society are faced with a choice
between two alternative courses of action, one of
which is prosocial (e.g., “cooperation”) and the other
selfish (e.g., “defection”), where the former imposes a
greater direct cost or confers less benefit on the indi-
vidual than the latter. The dilemma arises because
each individual is by definition always better off
behaving selfishly, but when all individuals do so,
the collective outcome is worse for everyone than
if prosocial behavior had prevailed. Several decades
of mathematical modeling and analysis, laboratory
experiments, field studies, and philosophical debates
have yielded a variety of mechanisms by which

prosocial behavior can arise, of which the follow-
ing is but a partial list: reciprocity over repeated
interactions (Axelrod 1984); group selection (Boyd
et al. 2003) and so-called “strong reciprocity” (Bowles
et al. 2003, Bowles and Gintis 2004); altruism as an
observable signal of (unobservable) fitness (Gintis
et al. 2001); reinforcement via stochastic learning (Kim
and Bearman 1997, Macy and Flache 2002), social
networks (Coleman 1988), or formal organizations
(Bendor and Mookherjee 1987); and in public goods
games, the specific shape of the production func-
tion (Oliver and Marwell (1985). All these proposals,
however, focus exclusively on an individual’s choice
of actions with respect to their interaction partners,
treating the choice of partners—the individual’s social
network—as exogenous.
The main contributions of this paper are (1) to

extend the standard modeling framework to include
partner choice (what we call interaction dynamics) as
well as the usual action choice (behavioral dynamics)
in an individual’s repertoire of decisions; and, in
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particular, (2) to examine the effect of a triadic closure
bias (Rapoport 1963)—the tendency of an individual
to connect to a “friend of a friend”—on both inter-
action dynamics and behavioral dynamics. Specifi-
cally, we introduce and study a model of a multiper-
son prisoners’ dilemma game in which agents inter-
act locally with a small subset of partners defined
by a sparse network. Agents not only learn from the
behavior of others by imitating the behavior of the
best-performing player they observe, but also create
and sever relationships over time based on myopic
cost-benefit comparisons. We show that the combina-
tion of network dynamics and learning can, under
some circumstances, resolve what we call the scalabil-
ity problem. The problem is that although decentral-
ized cooperation may be possible in small groups, it
becomes increasingly difficult to sustain in the face of
free-riding (Boyd and Richerson 1988) as the group
size increases. Thus, mechanisms that bring about
cooperation will not necessarily scale with group size1

(Boyd et al. 2003). By contrast, we show that when
players’ interaction partners evolve over time in a
manner we define below, the fraction of cooperating
players in the population tends to be higher in large
networks.
We also present several other findings that sug-

gest new, and in some cases counterintuitive, results
affecting the fraction of cooperating players in large
populations; in particular, that randomness in net-
work dynamics and the lack of information regard-
ing potential partners can have a positive impact
on the level of cooperation. Detailed examination
shows that there is an important trade-off between
local reinforcement and global expansion in achieving
cooperation in dynamic networks. Specifically, while
unilateral tie severance and consensual tie creation
strengthen the local reinforcement of cooperation, tri-
adic closure bias hinders global expansion. These
results may help us to understand phenomena such as
the rapid growth of online markets like eBay. On the
one hand, the feedback mechanism provided by eBay,

1 As Oliver and Marwell (1985) have pointed out, the scalability
problem is not universal. It arises for some classes of public goods,
but not for others. Specifically, if one assumes that the benefit b
returned to each individual by a public good decreases with the
size of the group N at a rate that is faster than any corresponding
decrease in the cost c of contributing (typically models based on
payoff matrices hold c fixed and assume that b decreases inversely
with N ), then invariably there will be a critical group size beyond
which cooperation cannot be sustained. However, if either the ben-
efit of the good is, for example, invariant with respect to group size
(exhibiting what economists call “jointness of supply”) or exhibits
increasing returns to scale, then it is possible for cooperation to
persist in groups of any size, and may in fact become more likely
due to the increased aggregate resources of larger groups. In this
paper, however, we concentrate on the problematic case outlined
above, in which b decreases with N .

as well as members’ freedom to choose with whom
to trade, function as local reinforcement mechanisms
that promote cooperative members to interact among
themselves. On the other hand, the existing mem-
bers’ apparent willingness to trade with new entrants
whose previous, and therefore likely future behav-
ior are unknown to them, acts as a global expansion
mechanism. The remainder of this paper is organized
as follows: §2 motivates the model, distinguishing it
from related prior work; §3 describes the technical
details of the model; §4 presents the results of our
analysis; §5 discusses our findings; and §6 concludes.

2. A Network Model of Cooperation
In this paper, we investigate the implications of the
following two straightforward observations on indi-
viduals’ behavior: (1) While cooperation necessarily
entails interaction between individuals, all individu-
als do not interact equally with all others; rather, they
can be thought of as interacting via a sparse network
of social relationships. (2) Just as individuals alter
their behavior subject to the logic of self-interest, they
may also alter their choice of interaction partners over
time.
Most previous work that considers cooperation on

sparse interaction networks treats the network as
exogenous with respect to the game being played,
representing the network either as some kind of spa-
tial lattice (Nowak and May 1992, Bergstrom and
Stark 1993, Eshel et al. 1998) or, more recently,
as a partly ordered, partly random network (Watts
1999a, b). These studies assume that the network in
question remains fixed for the duration of the game,
and is unaffected by it. In many social situations,
however, individuals choose not only how to interact
with others, but also with whom they interact. Fur-
thermore, these two processes—what we call behav-
ioral dynamics and interaction dynamics, respectively—
coevolve in the sense that an individual’s behavior is
conditioned on the behavior of those with whom he
is interacting (i.e., interactions affect behavior), and
in turn his choice of partners will be conditioned on
some assessment of their past or anticipated behavior
(i.e., behavior also affects interactions).
While some limited work has explored endoge-

nously generated relationships in the context of mul-
tiplayer games (Skyrms and Permantle 2000, Jackson
and Watts 2002), it differs from our own, principally
in that it focuses on coordination games, not social
dilemmas. Furthermore, to the extent that networks
are relevant to the results, quite different aspects of
the networks in question are emphasized. In the case
of Skyrms and Permantle (2000), the results actually
concern the dynamics of pair formation, not networks
in the sense usually intended by sociologists and,



Hanaki et al.: Cooperation in Evolving Social Networks
1038 Management Science 53(7), pp. 1036–1050, © 2007 INFORMS

increasingly, other disciplines as well (Watts 2004).
Jackson and Watts (2002) propose a model of inter-
action dynamics that is similar to ours in the sense
that decisions both to create and sever ties are based
on myopic cost-benefit comparisons. Our model dif-
fers, however, from theirs in that whereas Jackson and
Watts focus on tie formation and termination exclu-
sively between randomly chosen pairs, we explicitly
incorporate features that are thought to be impor-
tant to the evolution of social networks. In particu-
lar, we introduce triadic closure bias (Rapoport 1963,
Granovetter 1973, Watts 1999a among others)—that is,
the tendency for individuals to meet a “friend of a
friend”—into the interaction dynamics. This bias has
two important implications: (1) it makes the evolution
of a network nonrandom, and (2) information regard-
ing potential partners is available when an individual
meets a “friend of a friend,” whereas such informa-
tion may not be available when an individual meets
a stranger.
Because both these works are concerned with

notions of collective behavior and also of networks
that are substantively different from the kind we con-
sider here, the relevant analyses, although quite gen-
eral, cannot easily be extended to our case. Never-
theless, our findings are in agreement with the above
studies in the general sense that they highlight not
only the importance of the coevolution of networks
and behaviors in determining possible outcomes, but
also the relative speeds of the two modes of evolu-
tion (Skyrms and Permantle 2000). Furthermore, we
concur with Jackson and Watts (2002) when they note
(echoing an earlier warning of Oliver and Marwell
2001) that generalizations regarding prosocial behav-
ior must be carefully qualified because the outcome
tends to depend on at least some of the details of
both how network and behavior are updated and, of
course, the game itself.
We explore the coevolution of networks and col-

lective behavior using a stochastic learning approach
(Kim and Bearman 1997, Macy and Flache 2002) in
which individuals attempt to optimize their behavior
based on some limited memory of their past expe-
rience, but are otherwise myopic. Unlike forward-
looking models of rationality, which also work on the
principle of utility optimization, stochastic learning
is a backward-looking approach, and thus assumes
much lighter cognitive capabilities on the part of
individuals than does traditional rationality. Further-
more, stochastic learning also lends itself naturally
to a decision framework in which individuals must
choose both actions and interactions in a mutually
interdependent manner. That is, each individual eval-
uates his performance not only relative to his past

performance, but also relative to the performance of
his neighbors, where performance is now a func-
tion both of the payoff derived from participating
in dyadic interactions, and also the cost of main-
taining the interactions themselves. In keeping with
the spirit of stochastic learning, individuals can sever
relationships, but they do so selfishly and myopically,
based solely on the relative costs and payoffs of each
relationship.

3. Model Description
We consider a population of N players, each of
whom repeatedly engages in a multiperson prisoners’
dilemma game with an evolving subset of other play-
ers. We denote by �i� t the set of partners with whom
player i interacts in period t �=1�2�3� 	 	 	
. We assume
that players observe their own payoffs as well as both
their partners’ payoffs and strategies. Based on this
information, players learn over time which strategy
to use by occasionally mimicking the strategy of the
best-performing player they observe (§3.1). Players
are also allowed to change with whom they interact
by selectively breaking ties or attempting to create
them (§3.2). Players stochastically update their strate-
gies and networks at the end of each time step with
probabilities � ∈ �0�1
 and � ∈ �0�1
, respectively.2

3.1. Behavioral Dynamics
In each time step, each player i can choose either to
cooperate C or to defect D with respect to its neigh-
bors, where we assume that players are restricted to
using one strategy with respect to their entire neighbor-
hood (i.e., one cannot cooperate with one neighbor
and defect with respect to another). We also assume
that each member j ∈ �i� t is also in either one of the
same two states; thus, the strategic environment faced
by i can be described in terms of the potential payoffs
experienced by i and its neighbors. These payoffs can
be summarized in the standard manner by the payoff
matrix

i� j C D

C R, R S, T

D T , S P , P

�

where i and j are the row and column players, respec-
tively (i.e., if i cooperates and j defects, i receives pay-
off S, and j receives payoff T ). Writing ��ai� aj
 as the

2 An update probability of less than one implies that all updates
are asynchronous, i.e., not everyone updates at the same time. See
Huberman and Glance (1993) for a critique of models with syn-
chronous updating.
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payoff for player i using strategy ai when partner j’s
strategy is aj , then

��C�C
=R� ��C�D
= S�

��D�C
= T � and ��D�D
= P	

For the game to embody a social dilemma, we require
T > R > P > S as well as 2R > �T + S
. The first con-
dition ensures that defection gives players a higher
payoff regardless of what the opponent’s strategy is.
Therefore, if the game were to be played only once by
rational players, who care only about their own mate-
rial payoff, all players would defect and the resulting
outcome would be socially suboptimal. The second
condition implies that mutual cooperation is always
better in the sense that it generates a higher aggregate
payoff than all other cases.
Each period, players sum their payoffs over all

interactions. To account for the burden of the interac-
tions themselves, we reduce total payoffs by a quan-
tity ��k
, the total cost of interacting with k partners.
The total net payoff (henceforth payoff) for player i
obtained in period t is then

�i�t =
∑

j∈�i� t

��ai� t� aj� t
−��ki� t
� (1)

where ��k
 is an increasing function of k. Here, we
assume the specific form ��k
 = ck�, where � ≥ 13
and 0 ≤ c ≤ P . When players update their strategies
(with probability �), they copy the strategy of the
player in their neighborhood (including themselves)
who obtained the highest payoff in the last period.4

For players who do not have any partners (such “iso-
lates” inevitably appear as a result of the partner
update process), their strategies are randomly set to
cooperation or defection.5 Thus, the requirement c ≤ P
above, by allowing defectors to interact among them-
selves, prevents a spuriously high fraction of coopera-
tors arising on account of defectors becoming isolated
and then randomly switching to cooperation. Further-
more, we assume that all updates are subject to some
error (or noise), that is, with a small probability �,
players adopt the opposite of what the rule specifies.
An important property of this construction is that

in the case of all players interacting with each other

3 Although it is possible to set � < 1, this choice would correspond
to a diminishing marginal cost of friendship, which seems implau-
sible. Furthermore, as we show in §4, even networks with � = 1
generate little cooperation; thus, decreasing � further would not
yield any additional insight.
4 This assumption regarding updating players’ behavior has been
considered in a static network by Nowak and May (1992).
5 We have also experimented with the alternative assumption that
isolates do not change their strategies. The random alteration of
isolates’ strategies does not affect the main results presented here.

equally (i.e., in an all-to-all network), and with the
strategy update rule just described, defection will
always generate a higher individual payoff, and so
players will inevitably learn to defect. Thus, for coop-
erative behavior to survive at all in our model, inter-
actions must be local; that is, players must interact
with only a small subset of the population. It is
also true that for cooperative behavior to survive,
interactions should in some way promote assortative
matching between cooperators (Bergstrom 2002), thus
enabling cooperators to benefit from each other, while
limiting defectors’ opportunities to exploit them. Pre-
cisely how these properties can be generated by an
interaction structure, and therefore which interaction
structures represent optimal mechanisms for fostering
cooperation, is an outstanding problem that we do
not solve in full generality. Instead, what we will con-
sider is a model of interaction dynamics that may, but
will not necessarily, generate such interaction struc-
tures based on myopic processes of tie formation, sev-
erance, and learning.

3.2. Interaction Dynamics
At the end of each period, players also attempt to alter
their local network with probability �. Players ran-
domly choose, with equal probability, either to break
a tie with an existing partner or to create a tie with
a new player. If their attempt fails, they then try the
opposite action (e.g., if a player fails to break a tie,
they then attempt to create one). Players can thus ini-
tiate at most one change to their local network,6 but
more than one change to a player’s neighborhood can
occur in a single period due to other players making
their own changes.7

3.2.1. Termination of a Relationship. Both deci-
sions—to break or create a tie—are based on myopic
comparisons between (expected) marginal benefit and
marginal cost of making the change. For the case in
which player i attempts to break a tie, we assume
that i first randomly chooses an existing partner j .8

6 Instead of players choosing whether to terminate a relationship or
to create a new one with equal probability, we have also considered
a model in which players always attempt one of the two first. The
order in the ways in which players attempt to update their partners
has a minor effect on the results: Models in which players always
try to terminate a relationship before attempting to create a new
one are slightly more likely to support cooperation than models in
which the order is reversed.
7 We require, however, that a relationship cannot be modified twice
in the same period. For example, players cannot break a tie that
has just been created by another player.
8 We have also considered a stronger assumption that players
always select a defecting partner to terminate. Such an assumption
is conducive for sustaining a higher level of cooperation, although
it weakens the expansion effect that we discuss in §5.
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Figure 1 Interaction Dynamics

Partner-Updating Algorithm

Player i

Cut the tie

Create the tie

Do nothing

Create the tie
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Success

Success

Success

Success

Attempt to create a tie;
see Eqs. (3) and (4)

Attempt to create a tie;
see Eqs. (3) and (4)

Attempt to cut a tie;
see Eq. (2)

Attempt to cut a tie;
see Eq. (2)

Notes. Each time period, a player decides with probability � whether to cut or create a tie, choosing each with probability 1/2. If the player’s chosen action
fails, he tries the other, as shown. To cut a tie, a player proceeds by randomly choosing a partner and then comparing the cost and benefit of cutting that tie
(Equation (2)). To create a tie, a player first decides whether to seek out a friend of a friend or a stranger with probabilities PT and �1− PT �, respectively. For
the creation of any new tie, mutual consent is required so that the initiating player and the potential partner both perform the same cost-benefit calculations.
In the case that a friend of a friend is sought out, a player chooses a candidate among his friends of friends according to a probability proportional to the
number of shared mutual partners, and cost-benefit calculations (Equations (3) and (4)) are carried out under the full-information condition (Equation (5)). In
the alternate case, a stranger is chosen randomly from the population. Cost-benefit calculations are carried out under the no-information condition based on
players’ trust (Equations (5) and (6)).

Player i then decides to terminate a tie with j if the
gain from doing so is greater than the loss, i.e.,

���ki
−��ki − 1

−��ai� t� aj� t
 > 0� (2)

where ��ki
 − ��ki − 1
 is the gain due to the reduc-
tion in interaction cost by having one less partner,
and ��ai� t� aj� t
 is the expected loss from stopping
the interaction. Here we assume that players naively
believe that the partner will continue to act in the
same manner, an assumption we maintain for the cre-
ation of a new tie as well. Termination is a unilateral
decision, and no consent by the partner is required.9

3.2.2. Creation of a Relationship. Following Rap-
oport (1963) and others (Granovetter 1973, Watts
1999b), we view the creation of new network ties as
a trade-off between two opposing forces: order and
randomness. Order is defined in terms of a triadic clo-
sure bias (Rapoport 1963), i.e., the tendency of an indi-
vidual to connect to a friend of a friend. Random-
ness means that new acquaintances are to be selected
by drawing uniformly from the population at large.
Specifically, we introduce a tunable bias parameter
PT , such that when player i seeks a new partner,
with probability PT a candidate is chosen from the
set of i’s partners’ partners (

⋃
j∈�i� t

�j� t\�i� t); and with

9 With a small probability �, the “incorrect” decision is made.

probability 1− PT , a candidate is instead chosen ran-
domly from the population. When a candidate is cho-
sen from the set of i’s partners’ partners, the proba-
bility of any particular player being chosen is propor-
tional to the number of mutual partners shared by i
and the player.10 Regardless of their method of choos-
ing each other, player i and the candidate j will com-
mence a relationship if both their expected payoffs
from interacting exceed their respective costs incurred
by adding one more neighbor:

E���ai� t� aj� t

− ���ki + 1
−��ki

 > 0� and (3)

E���aj� t� ai� t

− ���kj + 1
−��kj

 > 0� (4)

where in calculating the expected payoff, E���ai� t�
aj� t

, players must make a prediction about their
potential partner’s future action. The decision rules
implicit in the interaction dynamics are summarized
in Figure 1.

3.2.3. Trust. When player i meets a friend of a
friend j , we assume that i and j are informed by
their mutual acquaintance of each other’s most recent
action; hence, i’s expected payoff from the interaction

10 In each period, we allow players to initiate at most one new tie,
and the decision to create a tie is subjected to a small amount of
noise.
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is simply the payoff he would have obtained if he
had interacted with j in the current period.11 By con-
trast, when players meet randomly chosen strangers,
they possess no information about the past behavior
of their potential partner. Thus, when players inter-
act randomly, their expected payoff must in part be a
function of their trust in others ��i� t ∈ �0�1 
, that is,
their belief about the likelihood of others to cooperate.
In these two circumstances—which we call the full-
information and no-information cases, respectively—the
expected gain for player i from interacting with a can-
didate player j becomes

E���ai� t� aj� t

 =





��ai� t� aj� t
� full information�

�i� t��ai� t�C
+ �1− �i� t
��ai� t�D
�

no information	

(5)

In a state of universal defection, players should
clearly hold little trust in each other, while when
everyone cooperates, players can be fully trusting
without fear of being exploited by defectors. The opti-
mal level of trust therefore depends on the environ-
ment, where players have to learn how much they
should trust strangers. To capture this behavior, we
allow a player’s trust to be updated every period as a
weighted average of his previous level of trust, on the
one hand, and his immediately preceding experiences
with other players, on the other. The trust update rule
for some player i is thus

�i� t =!�i� t−1+ �1−!
Ri� t−1� (6)

where ! ∈ �0�1
 is a weighting factor and Ri� t−1 is a
measure of player i’s experience with others.12

A final question remains, however: who the rel-
evant other players are from whom an individual
learns how trusting to be.13 In this paper, we consider
two alternate conditions: (1) Open: A player’s trust
is adjusted according to his experience with ongoing
partners (friends) as well as new contacts (strangers),
that is, Ri� t−1 is the fraction of i’s total interactions that
have been with cooperators in period t − 1. (2) Suspi-
cious: Trust depends only on a player’s experiences in

11 We assume, as we do in the termination of relationships, that
each player naively believes others will continue with their current
strategy. We also have experimented with a stronger assumption,
i.e., when a player meets a friend of friend, instead of meeting a
randomly chosen one, he selectively chooses a cooperating player
among them. This stronger assumption, however, does not qualita-
tively change the main results presented in this paper.
12 With a small probability �, �i� t , is set to a random value between
zero and one.
13 If a player is isolated, we leave their trust unchanged, i.e., we set
Ri� t−1 = �i� t−1.

Table 1 Summary of Model Parameters Along with Values Assigned
for Experiments

Parameter Description (Range of values used in reported experiments)

N Population size �100≤ N ≤ 1�000�
R Rewarding payoff �R= 1
0�
S Sucker’s payoff �S= 0
0�
T Temptation payoff �1
0≤ T ≤ 2
0�
P Punishment payoff �P = 0
1�
ck� Cost of interacting with k partners �0
0≤ c ≤ P �=0
1�

and 1
0≤ �≤ 2
0�
�/� Partner update rate/strategy update rate �0
01≤ �/�≤ 100�
PT Triadic closure bias �0
0≤ PT ≤ 1
0�
� Trust update rule weight �0
0≤ �≤ 1
0�
� Error rate for strategy, partner, and trust update processes

��= 0
005�

Notes. In addition, we have two conditions for trust evolution: (1) Open con-
dition: A player’s trust is adjusted according to his experience with ongoing
partners (friends) as well as new contacts (strangers). (2) Suspicious con-
dition: Trust depends only on a player’s experiences in new encounters.

new encounters, that is, we define Ri� t−1 as the frac-
tion of i’s contacts exclusively with strangers that have
been cooperators in period t − 1.14 All parameters in
our model, and their associated ranges, are summa-
rized in Table 1.

4. Results
On account of the relative complexity of our model,
and thus its limited analytical tractability, we have
adopted an experimental approach to study its behav-
ior, exploring different parameter configurations via
numerical simulation. In all simulations, each mem-
ber of the population is assumed to start with no part-
ners, and is assigned a random initial state (cooper-
ate versus defect, each with probability 0.5) and trust
level (uniform on �0�1 ). We let each simulation run
for 10,000 units of time, thus allowing the initial tran-
sient behavior to run its course, and then record aver-
age statistics (e.g., level of cooperation, network den-
sity, etc.) over a subsequent 5,000 periods, which we
take to be representative of the population’s long-run
state.

4.1. Scalable Cooperation
Our first concern is to explore the level of coopera-
tion in our model as a function of the population size
N , recalling that in traditional models of social dilem-
mas (i.e., in the absence of network evolution), coop-
eration levels diminish as N increases. Figure 2 dis-
plays, for certain specific choices of parameter values,

14 Because new relationships can be instigated, there can be more
than one relationship created in period t − 1 that involves player i
even though player i himself can initiate the change at most once.
If there have been no new relationships in the period, then Ri� t−1 is
not defined. In this case, we assume that Ri� t−1 = �i� t−1.
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Figure 2 Steady-State Fraction of Cooperators, fc, as a Function of Population Size N for Various Values of Temptation T and Relative Update Rate �/�

T = 1.2
Low relative partner update rate
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75� are in gray. For all plots, the triadic closure
bias PT = 0
5, the weighting for the past trust and recent experience is equal ��= 0
5�, and trust evolves under the suspicious condition.

the fraction of cooperators as a function of increasing
population size. For small populations �N = 100
, our
model generates low levels of cooperation, but as N

increases, the level of cooperation rises dramatically
before appearing to reach an asymptote around N =
1�000. Thus, the choice of N = 1�000 seems sufficiently
high to capture the behavior of large populations, but
not so high that we cannot run the required number
of simulations. We can also conclude that the frac-
tion of cooperators in very large evolving networks
appears to be invariant with respect to the population
size; that is, the most favorable scaling relationship
possible. Therefore, at least for some parameter val-
ues of our model, high levels of cooperation are not
only possible in very large populations, but actually
appear to benefit from increasing population size. In
the remainder of this paper, we attempt to specify
more precisely which parameter ranges are more con-
ducive to cooperation, and why.

4.2. Cooperation Requires Sparse Networks
Figure 3 displays a discrete probability distribution
of steady-state cooperation levels for a fixed popula-
tion size N = 1�000 for 10,000 different combinations
of the parameters "T ������� c�PT # and our two trust
evolution rules, where the combinations are sampled

uniformly15 from the full ranges of all the parame-
ters (as summarized in Table 1). There are two strik-
ing features of this distribution: (a) there is a large
spike at zero cooperation, and (b) there is a long tail
that extends over the entire range of possible steady-
state values. These observations suggest that without
any restrictions on the parameter space, the introduc-
tion of interaction dynamics cannot on its own con-
sistently generate high levels of cooperation. Here we
note that varying the tie cost parameters c and �
through their respective ranges is analogous to mov-
ing from a part of the parameter space in which new
ties can be added to the network virtually free of cost
(i.e., when c 	 0) to one in which the cost of adding
a new tie rapidly exceeds even the maximum benefit
that an additional relationship can deliver (effectively
imposing an upper limit on the degree of nodes).
Thus, by varying c and �, we can examine the effect
of increasing tie cost and, indirectly, network density.
This effect can be seen in Figure 4, which splits the fre-
quency distribution of Figure 3 into two distributions,
corresponding to high-cost (1	5 < � ≤ 2	0 and 0	01 <
c ≤ 0	1) and low-cost (1	0 < � ≤ 1	5 or 0≤ c ≤ 0	01)

15 For �/�, we first choose either � or � with equal probabil-
ity from the range �0	1�0	5 ; the other is then chosen from the
range �0	01%�% (where % ∈ "���#
. For each set of randomly drawn
parameter values, we run two separate simulations, corresponding
to the open and suspicious conditions, respectively.
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Figure 3 Distribution of the Steady-State Fraction of Cooperators fc
over 10,000 Randomly Sampled Parameter Sets

1.00.2 0.4 0.6 0.8
fc

0.1

0.2

Note. Average cooperation level 
fc� = 0
274.

regimes, respectively. The average level of coopera-
tion in the high network cost regime is much higher
than in the low-cost regime, with the latter possess-
ing the majority of the zero cooperation outcomes
observed in Figure 3. Thus, the sustainability of coop-
eration in our model depends not only on the network
being dynamic, but also being sparse.
Because the effect of very low network cost is so

pronounced, the other network-related effects in our

Figure 4 Distribution of Steady-State Fraction of Cooperators fc for
High Tie Cost Regime (1
5 ≤ � ≤ 2
0 and 0
01 ≤ c ≤ 0
1)
and Low Tie Cost Regime (1
0 ≤ � < 1
5 or 0 ≤ c < 0
01),
Respectively

High tie cost regime
(1.5 ≤ α ≤ 2.0 and 0.01 ≤ c ≤ 0.1)

Low tie cost regime
(1.0 ≤ α < 1.5 or 0 ≤ c < 0.01)
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0.1
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Note. Average levels of cooperation and number of observations are, for
the high-cost regime, 
fc� = 0
374 and 4,490, and, for the low-cost regime,

fc� = 0
192 and 5,510.

model are substantially minimized in low-cost re-
gimes. These effects, however, remain of interest once
we restrict our attention to high-cost (i.e., sparse)
dynamic networks. We explore more systematically
the variation in steady-state levels of cooperation gen-
erated by our model over the parameter space sam-
pled within the high-cost regime by using regression
analysis. Although regression analysis is relatively
uncommon in simulation studies, it is not unprece-
dented (Marwell et al. 1988, Kim and Bearman 1997),
and is useful in this case for the same reason that
it is useful in analyzing empirical data: because it
can be applied to high-dimensional data for which
the underlying model is unknown or (as in this case)
intractable, and can identify general trends that are
not easily discernible to the eye in straightforward
plots or cross-tabulations. We emphasize that because
the behavior of our model is, in general, nonlin-
ear, our conclusions must be interpreted with some
caution, and should only be considered valid in a
qualitative sense. As we show below, however, our
qualitative conclusions do hold up under a simple
robustness check. The output of our regression anal-
ysis is summarized in Table 2, in which we consider
three main dependent variables of interest: (1) the
average proportion of cooperating players in the pop-
ulation; (2) the volatility of cooperation, i.e., the stan-
dard deviation of the fraction of the cooperating
players; and (3) the average trust in the population.

Table 2 Result of Regression Analysis: High Network Cost Regime
(1
5≤ �≤ 2
0 and 0
01≤ c ≤ 0
1) Only

Independent variables Cooperation Volatility Trust

Temptation �T � −0
829 −0
065 −0
637
�0
005� �0
003� �0
005�

Network cost 1 �c� 0
316 −1
963 −0
035∗

�0
056� �0
029� �0
054�
Network cost 2 ��� 0
048 −0
277 0
021∗

�0
010� �0
005� �0
010�
Relative network update rates ��/�� 0
0022 −0
0011 0
0016

�0
0002� �0
0001� �0
0002�
Triadic closure bias �PT � −0
110 −0
006∗ −0
027

�0
005� �0
003� �0
005�
Weight on current trust ��� 0
044 0
034 0
131

�0
005� �0
003� �0
005�
Open trust evolution�1� −0
051 −0
006 0
086

�0
003� �0
001� �0
003�
Constant 1
563∗ 0
771∗ 1
238

�0
020� �0
010� �0
019�

R-squared 0
74 0
46 0
66

Notes. Number of observations is 10,000 (5,000 realizations for each of the
two trust evolution conditions). Parameters are randomly sampled from the
range shown in Table 1, except for the restriction placed on network costs:
1
5≤ �≤ 2
0 and 0
01≤ c ≤ 0
1.

�1�The dummy variable takes value one (zero) if trust evolves under open
(suspicious) condition.

∗Not statistically significant at the 1% level.
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Figure 5 Examples of Dynamic Fluctuations in Cooperation for High
Network Cost ���k�= 0
05k2� and Low Network Cost ���k�=
0
025k1
75�
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Note. For these simulations, PT = 0
5 (partial triadic closure), the trust con-
dition is suspicious, low temptation payoff is low �T = 1
2�, the relative part-
ner update rate �/� is 10, and the weight in the trust update rule is one-half
��= 0
5�.

These results are all taken from the last 5,000 periods
of our simulations.

4.3. Positive Effect of Tie Cost
The positive effect of tie cost on the level of cooper-
ation (demonstrated above) is also confirmed in the
regression analysis, with positive coefficients for �
and c. In addition, cooperation is less volatile when
ties are costly, as shown by the negative coefficients
for � and c in the volatility column of Table 2. This
result is also shown in Figure 5, which shows the
time evolution of the fraction of cooperators for two
network costs. In both time series,16 there are peri-
ods where almost all players are cooperating; how-
ever, when interaction costs are lower, the popula-
tion experiences repeated “crashes” in the level of
cooperation. We explain these cooperation crashes at
lower network costs by recalling that players occa-
sionally make a mistake when updating their strategy;

16 These time series are taken from the last 5,000 periods of simula-
tion.

that is, there is a small chance � that players choose
the opposite of what the strategy update rule spec-
ifies. This “random shock” is present in the higher
network cost case as well. The more partners some
defector i has, however, the greater the benefit of
defection is to i, and the less likely it is that all of i’s
cooperating partners will successfully break their ties
with i before they themselves “learn” (from i) that
defection delivers a higher payoff, and begin defect-
ing. Thus, a single defection spreads more rapidly
and easily in highly connected networks (in particu-
lar from highly connected individuals), and is harder
to contain than in poorly connected networks. By two
measures, therefore—average cooperation and volatil-
ity around the mean—high-cost, hence sparse, net-
works support cooperation.17 This result may also
explain why higher cooperation can be achieved in
a larger population: For a given interaction cost, the
larger the population size, the sparser the network
becomes.

4.4. Positive Effect of Updating Partners
Table 2 also shows that more frequent partner updat-
ing tends to generate higher levels of cooperation (i.e.,
the coefficient for �/� is positive), indicating that uni-
lateral termination of (or players walking away from)
unproductive relationships is effective in sustaining
global cooperation. This conclusion agrees with ear-
lier findings by, for example, Orbell and Dawes (1993),
and is also analogous to strategies such as ostracism
that are often employed in models of group selec-
tion. In general, the ability of players to terminate an
undesirable relationship can be seen as a punishment
strategy that can support cooperation (Fudenberg and
Tirole 1991) by lowering the excluded partner’s pay-
off. However, in this case the punishment aspect
of cutting ties is at best indirect because—unlike
in the case of ostracism—any player excluded from
one relationship can avoid being punished simply by
choosing new partners. Furthermore, our implemen-
tation of stochastic learning prevents individuals from
responding deterministically to punishment; hence,
even if being excluded from some particular inter-
action can be construed as punishment, it does not
mean that the excluded individual will necessarily
learn to cooperate. In fact, as we discuss in §5, some
additional mechanism for recruiting new cooperators
is also required. Thus, partner updating, although in
some ways analogous to punishment, is more subtle

17 The higher average proportion of cooperating players does not
necessarily mean that the population average payoff is higher. In
particular, when the network cost is high, the payoff net of inter-
action cost can be lower even though there are more cooperating
players in the population. Nevertheless, the average proportion of
cooperating players and the population average payoff are posi-
tively correlated with the coefficient of correlation being 0.48.
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and indirect, but is still apparently an effective mech-
anism for encouraging cooperation.
“Walking away” is also critical to the scalability

of cooperation (i.e., its persistence as network size
increases), not only because it acts as a way of pun-
ishing defectors, albeit indirectly, but because as an
enforcement mechanism it too is scalable. Because
individuals need only make decisions about the part-
nerships in which they themselves are participating,
and from which they personally stand to gain or
lose, then the burden associated with monitoring and
enforcement (i.e., tie severance) grows only with the
degree (number of neighbors) of each node; thus, it
is invariant with respect to the size of the popula-
tion. Unilateral tie severance is therefore not only an
effective way of maintaining scalable cooperation, but
also one that is simpler than other sanctioning sys-
tems, such as ostracism, which typically require either
group-level coordination or else the resolution of a
second-order dilemma problem (Oliver 1980).

4.5. Negative Effect of Triadic Closure Bias
In light of Coleman’s (1988) observation that tri-
adic closure in social networks should facilitate coop-
erative behavior, and subsequent simulation results
(Watts 1999b) that support the same conclusion in a
static network, perhaps our most surprising result is
that when new contacts are made via referrals from
existing partners—that is, through triadic closure—
the average global fraction of cooperators is less
than when individuals choose new partners randomly
from the population at large (i.e., the coefficient of PT

in Table 2 is negative).
There are two possible effects of triadic closure bias

that could account for this result: a structural effect,
and an informational effect. The former comes from the
observation that triadic closure generates networks
with high clustering coefficients (Watts and Strogatz
1998), and the latter comes from the assumption that
when meeting friends of friends, individuals have full
information about one another, and no information
when meeting random strangers. We note that neither
effect seems a likely candidate for impeding global
cooperation, as local clustering is generally thought
to improve the potential for cooperation in a static
network (i.e., through local reinforcement), and full
information of the previous actions of others enables
individuals to better avoid “bad risks.” While these
intuitive arguments are plausible, neither turns out to
be true in our model, with the opposite effect per-
taining in each case. After presenting these additional
results, we will discuss the reason behind these coun-
terintuitive results in §5.
We first separate the structural and informational

effect of triadic closure bias by running the model with
and without information transmission about potential

Table 3 Triadic Closure With and Without Information Transmission

Independent variables Cooperation Volatility Trust

Temptation �T � −0
843 −0
056 −0
644
�0
004� �0
002� �0
004�

Network cost 1 �c� 0
124 −1
705 −0
183
�0
043� �0
018� �0
040�

Network cost 2 ��� 0
007∗ −0
249 −0
004∗

�0
008� �0
003� �0
007�
Relative network update rates ��/�� 0
0027 −0
001 0
0012

�0
0002� �0
0001� �0
0002�
Triadic closure bias

Structural effect �PT � −0
092 −0
027 −0
042
�0
004� �0
002� �0
004�

Information effect�1� �PT × I� −0
066 0
032 −0
003∗

�0
004� �0
002� �0
004�
Weight on current trust ��� 0
016 0
020 0
125

�0
004� �0
002� �0
004�
Open trust evolution�2� −0
126 −0
016 0
038

�0
002� �0
001� �0
002�
Constant 1
747 0
700 1
233

�0
015� �0
007� �0
014�

R-squared 0
72 0
45 0
64

Notes. The number of observations is 20,000 (5,000 realizations for each
of the two trust evolution conditions and information conditions). Parame-
ters are randomly sampled from the range shown in Table 1, except for the
restriction placed on network costs: 1
5≤ �≤ 2
0 and 0
01≤ c ≤ 0
1.

�1�The dummy variable I takes value one (zero) if expected payoff is cal-
culated under full (no)-information condition when players meet friends of
friends.

�2�The dummy variable takes value one (zero) if trust evolves under the
open (suspicious) condition.

∗Not statistically significant at the 1% level.

partners who are currently “a friend of a friend” (i.e.,
without information transmission, the past behavior
of all potential partners is unknown). In the regres-
sion analysis reported in Table 3, we introduce a
dummy variable I , which takes the value one for
experiments with information transmission and zero,
otherwise. The coefficients of PT and PT × I together,
−0	092− 0	066=−0	158, capture the effects of triadic
closure bias—both structural and informational—on
the dependent variable. The result shows that approx-
imately two-fifths of the negative effect of triadic clo-
sure derives from better information being provided
about potential partners, while the structural effect
(i.e., local clustering) accounts for the other three-
fifths. Thus, both the information and network struc-
ture aspects of triadic closure impede cooperation.
The informational effect apparent in triadic clo-

sure can also be investigated in isolation from the
structural effect by studying a variant of our model
without triadic closure bias (i.e., with PT = 0), and
comparing cases in which individuals updating their
(randomly chosen) partners are always informed of
a potential partner’s previous action (full informa-
tion) with those in which they never receive such
information (no information). As Table 4 shows, the
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Table 4 Information Transmission Without Triadic Closure �PT = 0�

Independent variables Cooperation Volatility Trust

Temptation �T � −0
771 −0
045 −0
621
�0
008� �0
004� �0
008�

Network cost 1 �c� 0
586 −1
495 0
656
�0
093� �0
039� �0
088�

Network cost 2 ��� 0
007∗ −0
237∗ −0
007∗

�0
017� �0
007� �0
016�
Relative network update rates ��/�� 0
0010 −0
0013∗ 0
00003∗

�0
0004� �0
0002� �0
00004�
Information effect�1� −0
091 0
030∗ 0
177∗

�0
005� �0
002� �0
005�
Weight on current trust ��� −0
010∗ 0
008∗ 0
048

�0
008� �0
003� �0
008�
Open trust evolution�2� −0
108 0
001∗ −0
085

�0
005� �0
002� �0
005�
Constant 1
645 0
631∗ 1
278

�0
034� �0
014� �0
032�

R-squared 0
71 0
43 0
68

Notes. The number of observations is 4,000 (1,000 realizations for each of
the four combinations of trust evolution and information conditions). Param-
eters are randomly sampled from the range shown in Table 1, except for the
restriction placed on network costs: 1
5 ≤ � ≤ 2
0 and 0
01 ≤ c ≤ 0
1, as
well as triadic closure bias being zero.

�1�The dummy variable I takes value one (zero) if expected payoff is calcu-
lated under full (no)-information condition.

�2�The dummy variable takes value one (zero) if trust evolves under the
open (suspicious) condition.

∗Not statistically significant at the 1% level.

effect of having information about previous behavior
is the same strength and sign as in the comparisons
involving triadic closure bias, that is, in our model,
lack of information about potential contact in decid-
ing whether to start interacting has a positive effect
on the level of cooperation, regardless of the network
structure.

4.6. Positive Effect of Suspicion
Because populations in which individuals have no
information about strangers appear to sustain higher
levels of cooperation than populations in which they
have full information, it is interesting to investigate,
for the no-information case, the effect of varying trust
between strangers on cooperation. Not surprisingly,
we find that open communities, in which the dis-
tinction between friends and strangers is overlooked,
develop higher levels of trust than suspicious com-
munities, in which individuals compute trust levels
solely in terms of past interactions with strangers
(“Trust” column in Tables 2 and 3). Surprisingly, how-
ever, cooperation is much higher in suspicious com-
munities than in open ones (Tables 2–4)—to such an
extent, in fact, that the average level of trust in a
suspicious community is lower than it would be if
it were based on the actual average behavior of the
population.

How can trust be lower in suspicious communi-
ties that at the same time achieve a higher level of
cooperation? The answer depends on the players’ ten-
dency to maintain ties with cooperating partners and
sever ties with defectors. Consequently, defectors are
more likely than cooperators to be looking for new
partners, and so when players are seeking partners,
contacts with strangers are more likely to be with
defectors than with other cooperators. Suspicious
players who base their trust solely on past encoun-
ters with strangers will therefore estimate the likeli-
hood of encountering a cooperator more accurately
than open players who, by including their experi-
ences with ongoing partners, will tend to overesti-
mate it. A lower trust in suspicious communities, in
turn, results in a higher level of cooperation because it
limits the number of partners players have (cf. Equa-
tion (5)). As we have seen above in the discussion
on the positive effect of interaction costs, a higher
level of cooperation can be achieved when players
have a smaller number of partners. Our results there-
fore suggest an intriguing contrast between informa-
tion about the past behavior of strangers and trust in
their future behavior: Limited information appears to
enhance cooperation, but so does limited trust.

4.7. A Simple Robustness Check
Considering the strong nonlinearity generally preva-
lent in networks, one might reasonably suspect the
robustness of these results, based as they are on lin-
ear regression analysis. It is possible, for example,
that triadic closure bias has varying effects on the
level of cooperation, depending on the proportion of
cooperating players in the population, taking a nega-
tive value when most of the players are cooperating
and a positive value when the majority of players are
defecting.18 Given the potential for nonlinear behav-
ior, we have performed a simple robustness check
on our conclusions by separating our data into four
subsets (based on the average proportion of cooperat-
ing players in the population, 
fc�
, and running the
same basic regression that we reported in Table 2 sep-
arately for each subset. Table 5 reports the results of
this exercise. The table shows that the coefficient of
triadic closure bias is negative and significant for all
the subsets except for the case reported in the sec-
ond column, 0	25 < 
fc� ≤ 0	5, where the coefficient
is not significantly different from zero. Notably, the
fits (as measured by R2) are lower than those of the
original regressions, which use the entire sample; nev-
ertheless, they suggest that in spite of the possible
presence of nonlinearity in the behavior of the model,
our conclusions regarding the negative effect of tri-
adic closure are robust—at least qualitatively. Similar

18 We thank an anonymous referee for pointing out this possibility.
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Table 5 Result of Regression Analysis for Four Different Ranges of Average Proportion of Cooperating
Players in the Population, 
fc�

Average fraction of cooperating players in the population
Independent variables
Subsample 0
0< 
fc� ≤ 0
25 0
25< 
fc� ≤ 0
5 0
5< 
fc� ≤ 0
75 0
75< 
fc� ≤ 1
0

Temptation �T � −0
88 −0
25 −0
28 −0
33
�0
004� �0
01� �0
01� �0
015�

Network cost 1 �c� 0
95 −0
30 0
86 0
33
�0
03� �0
06� �0
06� �0
06�

Network cost 2 ��� 0
01∗ −0
03 0
12 0
09
�0
006� �0
01� �0
01� �0
01�

Relative network update 0
0008 −0
001 0
0008 0
002
rates ��/�� �0
0002� �0
0002� �0
0003� �0
0002�

Triadic closure bias �PT � −0
01 0
002∗ −0
066 −0
013
�0
003� �0
005� �0
006� �0
005�

Weight on current trust ��� 0
03 −0
0002∗ −0
032 −0
007∗

�0
003� �0
005� �0
005� �0
005�
Open trust evolution�1� −0
002∗ −0
025 −0
048 −0
009

�0
002� �0
003� �0
003� �0
003�
Constant 0
19 0
94 0
78 1
05

�0
01� �0
02� �0
02� �0
02�

R-squared 0
25 0
28 0
28 0
31
Number of observations 4,771 2,013 1,797 1,419

Note. Parameters are randomly sampled from the range shown in Table 1, except for the restriction placed on
network costs: 1
5≤ �≤ 2
0 and 0
01≤ c ≤ 0
1.

�1�The dummy variable takes value one (zero) if trust evolves under open (suspicious) condition.
∗Not statistically significant at the 1% level.

conclusions also apply to the other parameters of our
model.

5. Discussion
While some of our results regarding the emergence
of cooperation in dynamic networks are surprising,
we are nevertheless able to account for them, at least
qualitatively, in terms of a trade-off between two con-
flicting forces: local reinforcement and global expansion.
Both forces have clear implications: Mechanisms that
enhance local reinforcement tend to result in assorta-
tive matching of cooperators, which is well known to
support cooperation (Axelrod 1984, Bergstrom 2002);
and mechanisms that promote global expansion of
cooperation clearly raise the level of cooperation,
at least to the extent that they do not undermine
local reinforcement. What is less clear is how myopic
processes of network evolution can generate both
effects simultaneously, especially as they do tend to
undermine one another. That is, expansion requires
cooperators to interact with defectors (thus diminish-
ing assortativity), and local reinforcement discourages
exploration (thus impeding expansion). Investigating
this trade-off uncovers two mechanisms at work, both
of which depend on the evolution of network ties:
(1) exclusion as a means of reinforcing cooperative
behavior, and (2) recruiting of defectors as a means of
expanding cooperation.

5.1. Exclusion as Local Reinforcement
For static networks, one way to bring about assorta-
tive matching is to build in local network structure
(Coleman 1988, Watts 1999b), such that if a cooperator
is interacting with other cooperators, those coopera-
tors will also interact preferentially with others, thus
creating a self-reinforcing cluster of cooperation capa-
ble of resisting outside attack. However, in dynamic
networks—where individuals can make and break
ties—assortativity can be generated even in networks
with no local structure through pure pairwise exclu-
sion. Furthermore, our results suggest that pairwise
exclusion alone, based on unilateral severance and
consensual tie creation, generates enough assortativ-
ity that structure-generating processes like triadic clo-
sure, even if they further enhance assortativity, do
not do so sufficiently to overcome their debilitating
impact on expansion.

5.2. Expansion via Recruitment of Defectors
The second key insight required to understand the
expansion of cooperative behavior is that defectors
can be recruited by direct exposure to cooperating
partners, in spite of the apparent temptation to defect.
The mechanism is best understood graphically, as dis-
played in Figure 6. At time t, a new tie is formed
between a cooperator, who we assume is connected
to other cooperators, and a defector, who we assume
is otherwise isolated. Because Player A—the white
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Figure 6 A Schematic of the Recruitment of a Defector by a Cooperator

T–γ (1)

R–γ (1) R–γ (1)

R–γ (1)

S+3R–γ (4)

B

A

Notes. White nodes are cooperators and the black node is currently a defec-
tor. According to the payoff matrix described in §3.1, the node in the cen-
ter (A) will receive a combined payoff of S + 3R − ��4�, while the other
cooperators will each receive R− ��1� and the lone defector (B) will receive
T − ��1�. While the defector thus outscores three of the four cooperators,
he is exposed only to one, who by virtue of his other interactions receives a
greater payoff. Thus, the defector is persuaded that cooperation pays better
than defection, and is thereby converted.

player in the center of the figure—receives payoffs
from four interactions, while Player B—the black
player at the top of the figure—receives a payoff from
only one interaction, then B observes that A’s pay-
off exceeds his own, even though A’s average pay-
off per interaction is lower than B’s. Furthermore,
B has no other partner with whom to compare A’s
payoff. Thus, when B has an opportunity to revise
his behavior, he will switch to cooperation—a ratio-
nal decision in the sense that B is merely adopting a
strategy observed to deliver greater payoffs than his
own. Note, however, that if B were also connected to
A’s other neighbors—that is, if local clustering were
present—B would outscore all others, and so would
continue to defect.

5.3. The Importance of Sparseness
For cooperation to survive, it is therefore critical (a)
that individuals do not interact equally with all others
(i.e., that the network be sparse globally); and (b) that
the partners with which an individual interacts do not
all interact with each other (i.e., that the network be
sparse locally as well). The reason is twofold. First, as
discussed in §3.1, if a defector and a cooperator have
the same set of interaction partners, then the defec-
tor will always outscore the cooperator, and so every-
one will eventually learn to defect. It matters, in other
words, that individuals learn from others who do not,
in turn, learn from each other. Thus, cooperation in
evolving networks fares better in networks with low
clustering (Watts 1999a), i.e., networks rich in struc-
tural holes, and scales well with the network size
because large networks are more likely to be sparsely
connected than small ones. Second, high clustering
may also compromise cooperation by making net-
works harder to disconnect. Random networks, for

Figure 7 Locally, a Large, Sparse, Random Network Will Resemble
a Pure Branching Network, as Shown Here; Thus,
Defectors Can Be Isolated Easily Through Dyadic
Exclusion (Tie Severance)

example, exhibit a local structure that looks like a
branching tree, as shown in Figure 7. The absence of
cycles (i.e., clustering) renders the network vulnerable
to disconnection by severing only a few ties—a fea-
ture that is generally viewed negatively because such
networks are not robust (Albert et al. 2000, Callaway
et al. 2000, Dodds et al. 2003), but which can be desir-
able if what is spreading is (collectively) undesirable.

5.4. The Importance of Heterogeneity
Coupled with global sparseness and low network
clustering, the success of cooperation as a strategy
depends on cooperators having, on average, more
partners than defectors, and thus being able to profit
from more interactions. The combination of vary-
ing connectivity and learning is permitted by the
dynamic nature of the network ties: Because coop-
erators will tend to sever ties with defectors, then
(a) cooperators will be more likely than defectors
to interact with other cooperators, thus supporting
assortative matching, and in turn local reinforcement
of cooperators; and (b) defectors will be more likely
than cooperators to be isolated (or have low degree),
thus inclining them to imitate, and hence be recruited
by, successful cooperators who “accidentally” link to
them. As demonstrated in §4, however, while differ-
ences in connectivity are central to sustaining and
expanding cooperation, too much heterogeneity can
be counterproductive. When, for example, the cost of
creating additional ties is low, individuals who are
initially cooperators will tend to accrue large num-
bers of partners, at which point their benefit from
defecting will be correspondingly large. Therefore, if a
highly connected individual defects, even rarely (say
by a random fluctuation), their high connectivity will
have the greatest possible impact on other individuals
(because they expose many others to their negative
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influence, and also because they are hard to isolate),
thus destabilizing global cooperation as well.

6. Conclusion
In recent years, both the collective action and the net-
works literatures have considered, on the one hand,
the evolution of different kinds of behavior on static
networks (May et al. 1995; Watts 1999a, b; Strogatz
2001; Newman 2002); and on the other hand, the evo-
lution of networks both with (Skyrms and Permantle
2000, Jackson and Watts 2002) and without (Albert
and Barabasi 2002) strategic behavior. As yet, how-
ever, the coevolution of networks and behavior has
not received as much attention as it deserves. In this
paper, we have investigated a specific, but important,
case of this very general problem area by introduc-
ing, simulating, and analyzing a dynamic network
model of a multiplayer social dilemma in which play-
ers can modify both their actions and their interac-
tions through stochastic learning.
Our model admits a number of insights that appear

to surmount the details of the model itself. Our
main result is that cooperation can persist in sparse,
dynamic networks of effectively unlimited size, and
in fact tends to fare better in large networks than
in small ones. Furthermore, if players imitate oth-
ers’ behavior, networks in which an individual’s inter-
action partners do not themselves interact—that is,
networks that are rich in structural holes (Burt 1992)—
appear to support higher levels of cooperation than
networks in which local density (or clustering, Watts
1999a) is high. This last finding is precisely the oppo-
site of the standard intuition regarding cooperation
and network structure.
Although counterintuitive, most of our results,

including the main one of scalable cooperation, can
be understood in terms of a trade-off between two
effects: expansion versus reinforcement. Roughly speak-
ing, this principle states that the maintenance of a
high global level of cooperation requires that two
conditions be satisfied: (a) cooperation is reinforced
by assortative matching of cooperators; and (b) the
cooperative community must expand by “recruiting”
defectors. However, these conditions tend to work
against each other, as the former works, in effect, by
shielding cooperators from defectors, while the lat-
ter works precisely by exposing cooperators to defec-
tors, anticipating that the latter will learn to cooperate
as well. Thus, overall cooperation can only be max-
imized by seeking some trade-off between the two.
A relatively high rate of tie updating, for example,
along with a high cost of adding ties and a suspi-
cion of strangers, are all reinforcement mechanisms,
whereas ignorance of strangers and a preference for
random interactions over referrals by mutual friends
both favor expansion.

In this paper, we have considered only a very
simple behavioral rule—players can either cooper-
ate or defect against all of their partners—and our
description of the social network formation process
is equally simplistic; thus, many obvious extensions
are easily conceivable. As we have seen, however,
even such a simple model can generate consider-
able complexity at the level of collective dynamics—a
result that suggests such extensions and complica-
tions should be approached with caution. Neverthe-
less, the coevolution of interaction and behavioral
dynamics does appear to have new and counterintu-
itive consequences for collective outcomes, and thus
is worthy of further development.
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