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Abstract

We present a model of contagion that unifies and generalizes existing models of the spread of social influences and

microorganismal infections. Our model incorporates individual memory of exposure to a contagious entity (e.g. a rumor or disease),

variable magnitudes of exposure (dose sizes), and heterogeneity in the susceptibility of individuals. Through analysis and simulation,

we examine in detail the case where individuals may recover from an infection and then immediately become susceptible again

(analogous to the so-called SIS model). We identify three basic classes of contagion models which we call epidemic threshold,

vanishing critical mass, and critical mass classes, where each class of models corresponds to different strategies for prevention or

facilitation. We find that the conditions for a particular contagion model to belong to one of the these three classes depend only on

memory length and the probabilities of being infected by one and two exposures, respectively. These parameters are in principle

measurable for real contagious influences or entities, thus yielding empirical implications for our model. We also study the case

where individuals attain permanent immunity once recovered, finding that epidemics inevitably die out but may be surprisingly

persistent when individuals possess memory.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Contagion, in its most general sense, is the spreading
of an entity or influence between individuals in a
population, via direct or indirect contact. Contagion
processes therefore arise broadly in the social and
biological sciences, manifested as, for example the
spread of infectious diseases (Murray, 2002; Daley and
Gani, 1999; Anderson and May, 1991; Brauer and
Castillo-Chávez, 2001; Diekmann and Heesterbeek,
2000; Hethcote, 2000) and computer viruses, the
diffusion of innovations (Coleman et al., 1966; Valente,
1995; Rogers, 1995), political upheavals (Lohmann,
1994), and the dissemination of religious doctrine
(Stark, 1996; Montgomery, 1996). Existing mathema-
tical models of contagion, while motivated in a variety
e front matter r 2004 Elsevier Ltd. All rights reserved.
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of ways depending on the application at hand, fall into
one of only two broad categories, where the critical
distinction between these categories can be explained in
terms of the interdependencies between successive
contacts; that is, the extent to which the effect of an
exposure to a contagious agent is determined by the
presence or absence of previous exposures.
The standard assumption in all mathematical models

of infectious disease spreading (for example, the classic
SIR model, Kermack and McKendrick, 1927; Murray,
2002), and also in some models of social contagion
(Goffman and Newill, 1964; Daley and Kendall, 1965;
Bass, 1969), is that there is no interdependency between
contacts; rather, the infection probability is assumed to
be independent and identical across successive contacts.
All such models fall into a category that we call
independent interaction models. By contrast, what we
call threshold models assert that an individual can only
become infected when a certain critical number of
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exposures has been exceeded, at which point
infection becomes highly probable. The presence of a
threshold corresponds to interdependencies of an
especially strong nature: contacts that occur when an
individual is near its threshold are extremely consequen-
tial while others have little or no effect. Threshold
models are often used to describe social contagion
(e.g. the spreading of fads or rumors), where individuals
either deterministically (Schelling, 1973; Granovetter,
1978; Watts, 2002) or stochastically (Bikhchandani et
al., 1992; Banerjee, 1992; Morris, 2000; Brock and
Durlauf, 2001) ‘‘decide’’ whether or not to adopt a
certain behavior based in part or in whole on the
previous decisions of others.
An alternative way to think about the interdepen-

dence of successive events is in terms of memory:
threshold models implicitly assume the presence of
memory while independent interaction models assume
(again implicitly) that the infection process is memory-
less.1 Neither class of model, however, is able to capture
the dynamics of contagion processes that possess an
intermediate level of interdependency, or equivalently a
variable emphasis on memory. Furthermore, the rela-
tionship between interdependent interaction models,
threshold models, and any possible intermediate models
is unclear. Motivated by these observations, our model
seeks to connect threshold and independent interaction
models both conceptually and analytically, and explore
the classes of contagion models that lie between them.
Such an analysis is clearly relevant to the problems of
social contagion, in which memory of past events
obviously plays some role, but one that may be less
strong than is assumed by most threshold models.
However, it may also be relevant to biological disease
spreading models, which, to our knowledge, have
previously not questioned the assumption of indepen-
dence between successive exposures. While the indepen-
dence assumption is indeed plausible, it has not
been demonstrated empirically, and little enough is
understood of the dynamics of immune system response
that the alternative—persistent sub-critical doses of an
infectious agent combining to generate a critical dose—
cannot be ruled out. Furthermore, memory effects are
known to be inherent to certain kinds of immune system
responses, such as allergic response. Hence if, as we
indeed show, only a slight departure from complete
independence is required to alter the corresponding
collective dynamics, then our approach may also shed
light on the spread of infectious diseases.
1Note that independent interaction models typically incorporate a

state of immunity, which reflects a type of memory, but not the kind

with which we are chiefly concerned here—namely, the memory of a

contagious influence or entity prior to an infection occurring.
2. Description of model

Our model, aspects of which we have reported in brief
elsewhere (Dodds and Watts, 2004), comprises a
population of N individuals, each of which is
assumed to occupy one of three states: susceptible (S);
infected (I); or removed (R). Fig. 1 provides a schematic
representation of our model which we describe as
follows. At each (discrete) time step t, each individual i

comes into contact with another individual chosen
uniformly at random from the population. If the
contact is infected—an event that occurs with prob-
ability ft; the fraction of infectives in the population—
then with probability p, i receives a ‘dose’ d drawn
from a fixed dose-size distribution f; else i receives a
dose of size 0. We call a successful transmission of
a positive dose an exposure and p the exposure

probability. Individuals carry a memory of doses
received from their last T contacts and we denote the
sum of individual i’s last T doses (i’s dose count) at the
tth time step by

Dt;i ¼
Xt

t0¼t�Tþ1

dt0;i: (1)

If i is in the susceptible state, then it becomes infected
once Dt;i exceeds i’s dose threshold d�

i ; where d�
i is drawn

from a given distribution g (dose thresholds do not
change with time). Note that we differentiate
exposure from infection, the latter being the possible
result of one or more exposures and only occurring once
a susceptible individual’s threshold has been equaled or
exceeded. Having become infected, an individual re-
mains in state I until its dose count drops below its
threshold, at which point it recovers with probability r

at each time step. Once recovered, an individual returns
to being susceptible with probability r; again at each
time step.
The probability Pinf that a susceptible individual who

comes into contact with K infected individuals in T time
steps will become infected is therefore given by

Pinf ðKÞ ¼
XK

k¼1

K

k

� �
pkð1� pÞK�kPk; (2)

where K ¼ 1; . . . ;T ; and

Pk ¼

Z 1

0

dd�gðd�
Þ

Z 1

d¼d�

dd f k%
ðdÞ: (3)

Both Pinf ðKÞ and Pk are important quantities in our
model. The quantity Pk is the expected fraction of a
population that will be infected by k exposures, where
the distribution f k%

ðdÞ; the k-fold convolution of f, is the
probability that the sum of k doses will be equal to d.
The infection probability Pinf ðKÞ gives, in effect, a
dose–response curve (Haas, 2002) averaged over all
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Fig. 1. (a) Representation of how an individual’s dose at time t is

determined. At each time step, each individual, regardless of its state,

contacts one other randomly chosen individual. The probability that

individual i contacts an infective is then ft; i.e. the current fraction of
infectives in the population. If the contact is infected then with

probability p, i is exposed to the contagious entity and receives a dose d

drawn from a fixed distribution f. Otherwise and also if the contacted

individual is not infected in the first place (occurring with probability

1� ft), i receives a dose of zero size. (b) Individual i then updates its

dose count Dt;i by ‘forgetting’ the dose it received T þ 1 time steps ago

and incorporating the current dose [Eq. (1)]. (c) Transition probabil-

ities for individual i cycling through the three states S (susceptible), I

(infected), and R (recovered). If i is in the susceptible state, it becomes

infected with probability 1 once its dose count Dt;i exceeds its threshold

d�
i ; otherwise it remains susceptible. If i becomes infected, then

whenever i’s dose count drops below its threshold, it has a probability r

of recovering in each time step. Once i is in state R (where it is immune

to infection), it becomes susceptible again with probability r again in
each time step. Note that if r ¼ r ¼ 1; infected individuals whose dose
count falls below their threshold immediately return to the susceptible

state.
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members of the population and also the distribution of
dose sizes (where we note that K contacts with infected
individuals will result in k actual exposures with
probability ðK

k
Þpkð1� pÞK�k). Fig. 2 shows examples of

dose–response curves, calculated from Eq. (2) for
four configurations of the model. The plots correspond
to (a) independent interaction, (b) deterministic
threshold, and, in both (c) and (d), stochastic
threshold models. For the independent interaction
example, a single exposure is needed to generate an
infection and so exposures effectively act independently.
The deterministic threshold example incorporates
uniform dose sizes and thresholds, and when the
probability of an exposure is set to p ¼ 1; the response
becomes deterministic (individuals are always infected
when their dose count is met or exceeded and never
otherwise); but now the threshold can only be exceeded
by multiple infections. The two stochastic cases general-
ize the deterministic case by allowing (c) dose sizes to be
heterogeneous, and (d) both dose sizes and thresholds to
be heterogeneous.
We explore the behavior of our model with respect to

three qualitative types of dynamics: (1) permanent
removal (r ¼ 0) dynamics, analogous to so-called SIR
models in mathematical epidemiology in which indivi-
duals either die or acquire permanent immunity; (2)
temporary removal (14r40) dynamics, analogous to
SIRS models where recovered individuals become
susceptible again after a certain period of immunity;
and (3) instantaneous replacement (r ¼ 1) dynamics,
analogous to SIS models, where infected individuals
immediately become susceptible again upon recovery.
Chicken pox, for example, would correspond to SIR-
type contagion, while the common cold resembles the
SIRS case. Because of its simplicity, we obtain the
majority of our analytic results for the somewhat special
SIS case (r ¼ 1). However, our main findings for the SIS
case have analogs in the more complicated SIRS and
SIR cases which we investigate with numerical simula-
tions. Furthermore, while the assumption of instanta-
neous re-susceptibility is probably not appropriate in the
case of contagious biological agents (where recovery is
generally associated with some period of immunity), it
may well be approximately true for contagious social
influences, such as ‘‘social smoking,’’ where an indivi-
dual, having quit, can restart immediately. A summary
of the main parameters of the model and their
definitions is provided in Table 1.
We structure the remainder of the paper as follows. In

Section 3, through analysis and simulations, we examine
in detail the SIS ðr ¼ 1Þ version of the model for a
homogeneous population, where by ‘‘homogeneous,’’
we mean that all doses are equal and of unit size [i.e.
f ðdÞ ¼ dðd � 1Þ], and that all individuals have the same
threshold [i.e. gðd�

Þ ¼ dðd�
� d̄�

Þ]. For homogeneous
populations, we find that only two universal classes of
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Fig. 2. Examples of dose–response, i.e. Pinf ðKÞ; the probability an individual becomes infected due to K exposures in the last Tð¼ 12Þ time steps [see

Eq. (2)]. The plots correspond to (a) independent interaction (or disease-like) models with homogeneous dose sizes and thresholds [p ¼ 0:25; dose
distribution f ðdÞ ¼ dðd � 1Þ; and threshold distribution gðd�

Þ ¼ dðd�
� 1Þ]; (b) deterministic threshold models with homogeneous dose sizes and

thresholds [p ¼ 1; f ðdÞ ¼ dðd � 1Þ; and gðd�
Þ ¼ dðd�

� 5Þ]; (c) stochastic threshold models with heterogeneous doses and homogeneous thresholds

[p ¼ 0:9; doses distributed lognormally with unit mean and standard deviation 0:5; and gðd�
Þ ¼ dðd�

� 5Þ]; and (d), same as (c) but with heterogeneity

in thresholds introduced via a lognormal distribution with mean of 5 as per (c) and standard deviation of 10.

Table 1

Summary of main model parameters and definitions

T Length of memory window

p Probability of exposure given contact with infective

r Probability of moving from infected to recovered state

r Probability of moving from immune to susceptible state

f ðdÞ Distribution of dose sizes d

gðd�
Þ Distribution of individual thresholds d�

d̄� Uniform threshold of homogeneous population

ft Fraction of population infected at time t

f� Steady-state fraction of population infected
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dynamics are possible: (1) epidemic threshold dynamics,2

according to which initial outbreaks either die out or
else infect a finite fraction of the population, depending
on whether or not the infectiousness p exceeds a specific
critical value pc; and (2) critical mass dynamics according
to which a finite fraction of the population can only ever
be infected in equilibrium if the initial outbreak size
2In this paper, we use the word ‘threshold’ in two terms: ‘threshold

models’ and ‘epidemic threshold models.’ At the risk of some

confusion, we have done so to maintain consistency with the two

distinct literatures we are connecting, sociology and mathematical

epidemiology. Threshold models of sociology refer to individual level

thresholds whereas the term epidemic threshold refers to the critical

reproduction number of a disease, above which an outbreak is assured.
itself constitutes a finite ‘‘critical mass.’’ Although
homogeneity is a restrictive assumption for biological
or social contagion, it provides a useful special case in
that it illuminates the basic intuitions required to
understand the more general, heterogeneous case. In
Section 4, we relax the homogeneity assumption and
move to the richer and more realistic case of arbitrarily
distributed dose sizes and individual thresholds. Here,
we find that three universal classes of contagion models
are possible. In addition to the epidemic threshold and
critical mass classes that carry over from the homo-
geneous case, we also find an intermediate class of
vanishing critical mass dynamics in which the size of the
required critical mass diminishes to zero for po1:
Furthermore, we determine where the transitions
between these classes occur and also the conditions
required for more complicated kinds of contagion
models to arise. Subsequently, in Section 5, we explore
the SIRS and SIR versions of the model, finding
behavior that in many ways resembles that of the
simpler SIS case. In the SIR case, for example, it is
necessarily true that all epidemics eventually burn
themselves out (because for r ¼ 0; the removed condition
is an absorbing state). However, we find that the presence
of memory may cause an epidemic to persist for a
surprisingly long time. In Section 6, we conclude our
analysis, discussing briefly the implications of our
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findings for stimulating or retarding different contagion
processes. Finally, in the appendices we provide detailed
derivations of the analytical results from Sections 3 and 4.
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Fig. 3. Fixed point curves for an example epidemic threshold model.

The stable fixed point curves shown are from simulation (circles) and

Eq. (6) (line) for d̄�
¼ 1; T ¼ 2; and t ¼ 1=r � 1 ¼ 1: Unstable fixed

points are indicated by the dashed line. The trajectories of three initial

conditions are shown to illustrate how the level of an epidemic evolves

for different values of p. The epidemic threshold pc ¼
1
3
is as predicted

by pc ¼ ðT þ tÞ�1; Eq. (11). For the simulation, the population size
N ¼ 105; the number of time steps Nt ¼ 10

3; each data point

represents the average value of f�
ðpÞ over the last Ns ¼ 100 time

steps, and the initial condition is that all are infected.
3. Homogeneous SIS contagion models

3.1. Epidemic threshold models

We begin our analysis with a simple non-trivial case
of our model, for which we assume that individuals are:
identical (i.e. the population is homogeneous); have no
memory of past interactions ðT ¼ 1Þ; and, upon
recovery from infection, immediately return to the
susceptible state (i.e. r ¼ 1). In this limit our model
coincides with the SIS version of the traditional
Kermack–McKendrick model (Kermack and McKen-
drick, 1927; Murray, 2002), as individuals with no
memory necessarily become infected upon exposure to a
single infected individual [gðd�

Þ ¼ dðd�
� 1Þ]. For a

specified recovery time ðrp1Þ (which again is identical
across all individuals), the fraction of infected indivi-
duals at time t, ft; evolves according to

ftþ1 ¼ pft þ ftð1� pftÞð1� rÞ: (4)

The first term on the right is the fraction of individuals
newly infected between time t and t þ 1; regardless of
whether or not they were infected beforehand (the
model allows for individuals to recover and be reinfected
within one time step). The second term is the fraction of
individuals who were infected in the preceding time step,
were not infected between time t and t þ 1; and did not
recover.
Setting ft ¼ f� in Eq. (4), we find the stable fixed

points of the model as a function of p are given by

f�
¼

0 for 0pppr;

1� r=p

1� r
for ropp1:

8<
: (5)

Furthermore, a single unstable set of fixed points is
found along f�

¼ 0 for ropp1: Thus, the standard
memoryless SIS model exhibits an epidemic threshold

(Murray, 2002) at p ¼ pc; as displayed graphically in
Fig. 3: for pppc ¼ r no infection survives (f�

	 0) while
for p4pc ¼ r; a stable, finite fraction of the population
will become infected (f�40). In the language of
dynamical systems theory, the epidemic threshold is a
transcritical bifurcation (Strogatz, 1994) which lies at
the intersection of two fixed point curves, where the
stable curve changes to unstable at the intersection and
vice versa (in statistical mechanics, such behavior is
referred to as a second-order or continuous phase

transition, where ðpc; 0Þ is called the critical point

(Goldenfeld, 1992)). For the choice of parameters
above, one branch of the transcritical bifurcation is
the p-axis which is stable to the left of pc and unstable to
the right (imagining the unphysical extension of f� to
f�o0; the other branch may be seen to extend from
below the p-axis where it is unstable to above the p-axis
where it is stable).
We observe this kind of bifurcation structure (i.e.

where the rising branch has positive slope and comprises
stable equilibria) to be a robust feature with respect to a
range of parameter choices, and we classify all such
models as epidemic threshold models. As we show below,
the same qualitative equilibrium behavior is present in
all homogeneous models with dose thresholds set at
d�

¼ 1; even with arbitrary memory TX1 and recovery
rate rp1:While some details of the dynamics do change
as T and r are varied, the existence of a single
transcritical bifurcation depends only on the assumption
that all individuals exhibit ‘‘trivial thresholds:’’ gðd�

Þ ¼

dðd�
� 1Þ:

First, allowing memory to be arbitrary (T41) but
keeping r ¼ 1; we observe that the individuals who are
infected at some time t are necessarily those who have
experienced at least one infectious event in the preceding
T time steps; thus we obtain the following implicit
equation for f�:

f�
¼ 1� ð1� pf�

Þ
T : (6)

As with the T ¼ 1 case above, the equilibrium behavior
exhibits a continuous phase transition and therefore also
falls into the epidemic threshold class. While we can
no longer find a general, closed-form solution for f�;
Eq. (6) can be rearranged to give p as an explicit
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Fig. 4. Comparison between simulation (circles) and theory (lines, Eq.

(13)) for T ¼ 12; d̄�
¼ 3; and r ¼ 1: For d̄�41; the homogeneous SIS

contagion model exhibits a saddle-node bifurcation. Shown are the

non-zero stable and unstable points. For the theoretical curves, solid

lines represent stable points and dashed ones unstable points. All

points on the line f�
¼ 0 are stable points. The arrows show

trajectories of the system for three example initial conditions.

Simulations details are as per Fig. 3. The location of the unstable

fixed point curve is determined by binary search.
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function of f�:

p ¼ f��1
½1� ð1� f�

Þ
1=T

�: (7)

Taking the limit of f�
! 0 in either Eq. (6) or Eq. (7),

we find pc ¼ 1=T : Thus, receiving at least one exposure
from the last T contacts is analogous to the zero
memory (T ¼ 1), variable r case where recovery occurs
on a time-scale 1=r ’ T :
Next, we also allow the recovery rate to be arbitrary

ðro1Þ: To find the fixed point curves, we modify Eq. (6)
to account for the fraction of individuals that have not
experienced a single exposure for at least the last T

time steps but have not recovered from a previous
infection. We first write down the probability that an
individual last experienced an infectious event m time
steps ago and has not yet recovered. Denoting the
sequence of a positive unit dose followed by m 0’s as
Hmþ1; we have

PðinfectedjHmþ1Þ ¼ pf�
ð1� pf�

Þ
m
ð1� rÞm�Tþ1: (8)

The first term on the right-hand side of the Eq. (8) is the
probability of a successful exposure; the second term is
the probability of experiencing no successful exposures
in the subsequent m time steps; and the final term is the
probability that, once the memory of the initial single
exposure has been lost after T time steps, the individual
remains infected. Since we are only concerned with
individuals who have ‘forgotten’ the source of the
infection, we have mXT : Summing over m, we obtain
the total probability that an individual was infected at
least T time steps ago and has not yet recovered:

X1
m¼T

PðinfectedjHmþ1Þ ¼
pf�

ð1� pf�
Þ
T
ð1� rÞ

1� ð1� pf�
Þð1� rÞ

: (9)

Adding this fraction to the right-hand side of Eq. (6)
then gives

f�
¼ 1� ð1� pf�

Þ
T 1�

pf�
ð1� rÞ

1� ð1� pf�
Þð1� rÞ

� 	

¼ 1�
rð1� pf�

Þ
T

1� ð1� pf�
Þð1� rÞ

: ð10Þ

Fig. 3 shows a comparison between the above equation
and simulation results for T ¼ 2; r ¼ 1

2; and d̄�
¼ 1:

Taking the limit of small f� in Eq. (6) we find the
epidemic threshold to be

pc ¼
r

1þ rðT � 1Þ
¼

1

T þ 1=r � 1
: (11)

Checking the special cases of the preceding calculations,
we find pc ¼ r when T ¼ 1 and pc ¼ 1=T when r ¼ 1:
Denoting the mean time to recovery of an infected,
isolated individual by t; we observe t ¼ 1=r � 1 and
Eq. (11) becomes

pc ¼
1

T þ t
: (12)
The time-scales T and t can thus both be thought of as
corresponding to two different kinds of memory, the
sum of which—the total characteristic time-scale of
memory in the model—determines the position pc of the
epidemic threshold. Qualitatively, therefore, all homo-
geneous models that possess trivial individual thresholds
exhibit the same kind of equilibrium dynamics. Varying
the thresholds, however, produces equilibrium behavior
of a quite distinct nature, as we show in the next section.
3.2. Critical mass models

When individuals of a homogeneous population
require more than one exposure to become infected—
that is, when gðd�

Þ ¼ dðd�
� d̄�

Þ and d̄�41—the
closed-form expression for the fixed points f� in the
case of r ¼ 1 is

f�
¼
XT

i¼d̄�

T

i

� �
ðpf�

Þ
i
ð1� pf�

Þ
T�i: (13)

We now observe a fundamentally different behavior of
the model: the transcritical bifurcation that is character-
istic of epidemic threshold models is absent and is
replaced by a saddle-node bifurcation (Strogatz, 1994),
an example of which is illustrated in Fig. 4. We call
models whose equilibrium states are determined in this
manner critical mass models because, as indicated by the
arrows in Fig. 4, an epidemic will not spread from an
infinitesimal initial outbreak, requiring instead a finite
fraction of the population, or ‘‘critical mass’’ (Schelling,
1978), to be infected initially. Saddle-node bifurcations
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(or backwards bifurcations) have also been observed in
a number of unrelated epidemiological multi-group
models, arising from differences between groups and
inter-group contact rates (Hadeler and Castillo-Chávez,
1995; Hadeler and van den Driessche, 1997; Dushoff et
al., 1998; Kribs-Zaleta and Velasco-Hernandez, 2000;
Greenhalgh et al., 2000; Kribs-Zaleta, 2002).
Although it is not generally possible to obtain an

expression for f�
ðpÞ from Eq. (13), we are able to write

down a closed-form expression involving the position of
the saddle-node bifurcation ðpb;f

�
bÞ (see Appendix A for

details):

0 ¼
XT

i¼d̄�

T

i

� �
zi�d̄�

ð1� zÞT�i�1
½i � 1� zðT � 1Þ�; (14)

where z ¼ pbf
�
b: Using Eq. (14), we solve for z by

standard numerical means and then use Eq. (13) to
obtain f�

b and hence pb: Fig. 5 shows positions of saddle-
node bifurcation points computed for a range of values

of T and d̄�: In all cases, as d̄� increases, the bifurcation
point moves upward and to the right of the fixed point

diagram. For small values of d̄� and T, we are able to

determine ðpb;f
�
bÞ exactly. For example, for d̄�

¼ 2 and

T ¼ 3; we find that pb ¼ 8
9
and f�

b ¼ 27
32
and that the

bifurcation is parabolic.
As with epidemic threshold models, the analysis for

critical mass dynamics can be generalized to include a non-
trivial recovery rate ro1: Now, however, we are unable to
find a closed-form expression for the fixed points for
general T and d̄�: The difficulty in making such a
computation lies in finding an expression for the number
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Fig. 5. Bifurcation points for d̄�41; f�41; and r ¼ 1; determined
numerically using Eqs. (13) and (14). The data shown are for T ¼ 3

(�), T ¼ 6 (&), T ¼ 12 (/), T ¼ 24 (.), and T ¼ 96 (n). The solid

lines guide the eye for the range d̄�
¼ 2 to T � 1 with d̄� increasing

with pb: The dashed lines connect to the transcritical bifurcation points
(�) observed for d̄�

¼ 1: Note that no bifurcations occur when d̄�
¼

T41 (the sole fixed point is f�
¼ 1 when p ¼ 1) and when d̄�

¼ T ¼ 1

(the fixed points lie along the line p ¼ 1 and 0pfp1).
of individuals whose dose counts are below threshold but
are still infected since they have not yet recovered. For the
d̄�

¼ 1 case, this was straightforward since the only way to
stay below threshold was to experience a sequence of null
exposures. Nevertheless, for ro1; we can formally modify
the expression for f� given in Eq. (13):

f�
¼ Gðp;f�; r;TÞ þ

XT

i¼d̄�

T

i

� �
ðpf�

Þ
i
ð1� pf�

Þ
T�i; (15)

where the additional term Gðp;f�; rÞ accounts for the
proportion of below threshold individuals who have not
yet recovered. For small values of T and d̄�; exact
expressions for Gðp;f�; rÞ can be derived and then f� can
be solved for numerically. In Appendix B, we consider two
special cases, d̄�

¼ 2 for T ¼ 2 and 3, that illustrate the
process of constructing expressions for Gðp;f�; rÞ:
These results allow us to explore the movement of the
fixed points with decreasing r. Figs. 6A and B show
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Fig. 6. (A) Theory versus simulation for T ¼ 3; d̄�
¼ 2; and varying r.

Solid lines represent theoretically derived stable fixed points, dashed

lines represent unstable ones, and the squares indicate bifurcation

points (using Eqs. (15) and (46)). From left-to-right, we have r ¼

0:01; 0:05; 0:10; 0:15; . . . ; 1:00: The circles correspond to simulation
data for the case r ¼ 0:2 and matches the theoretical curves. (B)
Theoretical fixed point curves for T ¼ 2; d̄�

¼ 2; and varying r.

Bifurcations appear for ro0:3820� 0:0001: Otherwise, ðp;f�
Þ ¼ ð1; 1Þ

is the only fixed point of the system with f�40: The values of r are as

per the T ¼ 3 case in A. Circles correspond to simulation results for

r ¼ 0:1: For all values of r, both of the above systems possess a line of

stable fixed points described by 0ppo1 and f�
¼ 0; i.e. the p-axis.
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comparisons over a range of r between the solutions of Eq.
(15) and simulations for T ¼ 2 and 3, respectively,
confirming that the agreement is excellent.
4. Heterogeneous SIS contagion models

4.1. Distributions of doses and thresholds

In real populations, both in the context of infectious
diseases and also social influences, individuals evidently
exhibit varying levels of susceptibility. Further-
more, contacts between infected and susceptible
individuals can result in effective exposures of variable
size, depending on the individuals in question, as
well as the nature of their relationship and the
circumstances of the contact (duration, proximity,
etc.). Our homogeneity assumption of the preceding
section is therefore unlikely to be justified in any real
application. Furthermore, as we show below, the more
general case of heterogeneous populations, while pre-
serving much of the structure of the homogeneous case,
also yields a new class of dynamical behavior; thus the
inclusion of heterogeneity not only makes the model
more realistic, but also provides additional qualitative
insight.
While in principle all parameters in the model could

be assumed to vary across the population, we focus here
on two parameters—individual threshold d� and dose
size d—which when generalized to stochastic variables,
embody the variations in individual susceptibility and
contacts that we wish to capture. We implement these
two sources of heterogeneity as follows. In the case of
thresholds, each individual is assigned a threshold
drawn randomly from a specified probability distribu-
tion gðd�

Þ at t ¼ 0 which remains fixed for all t. In effect,
this assumption implies that individual characteristics
remain roughly invariant on the time-scale of the
dynamics, rather than varying from moment to mo-
ment. By contrast, in order to capture the unpredict-
ability of circumstance, we assign dose sizes
stochastically, according to the distribution f ðdÞ; in-
dependent both of time and the particular individuals
between whom the contact occurs.
Again considering the more tractable r ¼ 1 version of

the SIS model, we first examine the effect of allowing
dose size d to vary while holding thresholds d� fixed
across the population. In the homogeneous case, k

exposures of a susceptible to infected individuals
resulted in a dose count of k, but the result can be
more complicated when d is allowed to vary continu-
ously. Note that d� also no longer need be an integer.
First, we calculate the probability that a threshold will
be exceeded by k doses. As the distribution of dose size
is now some arbitrary function f, we have that the
probability distribution of the sum of k doses is given by
the k-fold convolution

P
Xk

j¼1

dj ¼ d

 !
¼ f � f � � � � � f ðdÞ ¼ f k%

ðdÞ: (16)

The probability of exceeding d� is then

P
Xk

j¼1

djXd�

 !
¼

Z 1

d¼d�

dd f k%
ðdÞ: (17)

Since, for r ¼ 1; individuals are only infected when their
dose count exceeds their threshold, we have that the
steady-state fraction infected is given by

f�
¼
XT

k¼1

T

k

� �
ðpf�

Þ
k
ð1� pf�

Þ
T�k

Z 1

d¼d�

dd f k%; (18)

where we have averaged over all possible ways an
individual may experience 1pkpT exposures in T

interactions.
Next, in order to account for any variation d�; we

must incorporate another layer of averaging into Eq.
(18) as follows:

f�

¼

Z 1

0

dd�gðd�
Þ
XT

k¼1

T

k

 !
ðpf�

Þ
k
ð1� pf�

Þ
T�k

Times

Z 1

d¼d�

dd f k%
ðdÞ

¼
XT

k¼1

T

k

 !
ðpf�

Þ
k
ð1� pf�

Þ
T�kPk; ð19Þ

where Pk is defined by Eq. (3). An important insight that
can be derived immediately from Eq. (19) is that all
information concerning the distributions of dose sizes
and thresholds is expressed via the fPkg; hence the
details of the functions f and g are largely unimportant.
In other words, many pairs of f and g can be constructed
to give rise to the same fPkg and hence the same fixed
points. For example, any desired fPkg can be realized by
a uniform distribution of unit doses f ðdÞ ¼ dðd � 1Þ;
along with a discrete distribution of thresholds

gðd�
Þ ¼ P1dðd

�
� 1Þ þ

XT�1

k¼1

ðPkþ1 � PkÞdðd
�
� k � 1Þ:

(20)

We observe that for the homogeneous case where

doses and thresholds are fixed at 1 and d̄�; respectively

[i.e. f ðdÞ ¼ dðd � 1Þ and gðd�
Þ ¼ dðd�

� d̄�
Þ], we have

f k%
ðdÞ ¼ dðd � kÞ and the expression for Pk [Eq. (3)]

simplifies to Pk ¼ 0 if kod̄� and Pk ¼ 1 if kXd̄�:
Substituting these conditions into Eq. (19), we recover
our previous expression Eq. (13) for the r ¼ 1 homo-
geneous case.
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4.2. Universal classes of contagion

In the homogeneous version of the model, we
determined the existence of two classes of dynamics—
epidemic threshold and critical mass—with the former
arising whenever d̄�

¼ 1; and the latter when d̄�
X2: In

other words, in homogeneous populations, the condi-
tion for differentiating between one class of behavior
and another is a discrete one. Once heterogeneity is
introduced, however, we observe a smooth transition
between epidemic threshold and critical mass models
governed by a continuous adjustment of the distribu-
tions f and d (or equivalently the fPkg). One consequence
of this now-continuous transition is the appearance of
an intermediate class of models, which we call vanishing

critical mass (see Fig. 7). As with pure critical mass
models, this new class is characterized by a saddle-node
bifurcation, but now the lower unstable branch of fixed
points crosses the p-axis at pc; in other words, the
required critical mass ‘‘vanishes.’’ The collision of the
unstable branch of the saddle node bifurcation with the
horizontal axis also effectively reintroduces a transcri-
tical bifurcation, in the manner of epidemic threshold
models. However, the transcritical bifurcation is differ-
ent from the one observed in epidemic threshold models
because the rising branch of the bifurcation has
negative, rather than positive, slope and comprises
unstable, rather than stable, fixed points. Vanishing
critical mass dynamics are therefore qualitatively
distinct from both previously identified classes of
behavior, exhibiting important properties of each: for
popc; they behave like critical mass models; and for
p4pc; they behave like epidemic threshold models, in
the sense that an infinitesimal initial seed can spread.
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Fig. 7. Fixed point curves for the three main classes of contagion models pro

are determined by numerical solution of Eq. (19) with an error tolerance of

mean 1 and a variance of 0.6 for the underlying normal distribution, and th

main plots correspond to (a) d̄�
¼ 0:4 (class I), (b) d̄�

¼ 1:5 (class II), and (c)
point curves for models at the classes I–II transition (i.e. when P1 ¼ P2=2 w
when pc ¼ 1 which occurs when d̄�

¼ 1:9100 . . .). In all plots except (e), the in
bifurcation. In plots (b), (c), and (e), the second bifurcation is a saddle-node
Our generalized model therefore exhibits behavior
that falls into one of only three universal classes: class I
(epidemic threshold), class II (vanishing critical mass),
and class III (critical mass). As we show below, more
complicated fixed point curves exist (i.e. curves posses-
sing two or more saddle-node bifurcation points) but
nevertheless belong to one of these three universal
classes, since together they include all possible behaviors
of the fixed point curves near p ¼ pc:
In addition to identifying three universal classes of

behavior, it is also possible to specify the conditions that
govern into which class any particular choice of model
parameters will fall. For r ¼ 1; we can calculate when
the transitions between universal classes occur in terms
of the parameters of interest; i.e. the fPkg (viz. f and g)
and T. This exercise amounts to locating the transcri-
tical bifurcation and determining when it collides with
the saddle-node bifurcation. To locate the transcritical
bifurcation, we examine the fixed point equation as
f�

! 0: Since, from Eq. (19),

f�
¼ Tpf�P1 þ Oðf�2

Þ; (21)

we have

pc ¼
1

TP1
: (22)

The position of the transcritical bifurcation is therefore
determined by the memory length T and the fraction of
individuals who are typically infected by one exposure,
P1: We see immediately that the transition between
classes II and III contagion models occurs when pc ¼ 1;
i.e. when

P1 ¼ 1=T : (23)
.5 1

p

0 0.5 1

(c)

0 0.5 1
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duced by the model, along with transitions between classes. All curves

10�10: Here, T ¼ 12; individual doses are lognormally distributed with
resholds are homogeneously distributed with gðd�

Þ ¼ dðd�
� d̄�

Þ: The
d̄�

¼ 3 (class III). The insets plots (d) and (e), respectively, show fixed

hich occurs when d̄�
¼ 0:8600 . . .) and the classes II–III transition (i.e.

tersection between the fixed point curve and the p-axis is a transcritical

bifurcation.
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Table 2

Summary of basic states of the r ¼ 1; heterogeneous version of model
along with the corresponding parameter ranges

I: Epidemic threshold P14P2=2 and P141=T

I–II transition P1 ¼ P2=2 and P141=T

II: Partial critical mass P1oP2=2 and P141=T

II–III transition P1oP2=2 and P1 ¼ 1=T

Pure critical mass P1oP2=2 and P1o1=T

The Pk quantities depend on the distributions of dose size and

individual thresholds, and are given in Eq. (3).

P.S. Dodds, D.J. Watts / Journal of Theoretical Biology 232 (2005) 587–604596
Recalling the homogeneous case, we see that when
d̄�

¼ d ¼ 1; P1 ¼ 1; giving pc ¼ 1=T as before. It
necessarily follows that when d̄�4d ¼ 1; P1 ¼ 0 and
therefore pc ¼ 1; thus confirming our earlier
finding that the homogeneous model with d̄�41
is always in the pure critical mass class (i.e. the
lower, unstable fixed point curve of the saddle node
bifurcation must have f�40 for all pbppp1 since it
only reaches f�

¼ 0 in the limit p ! 1). We also see
that technically all models possess a transcritical
bifurcation somewhere along the p-axis, even though it
may be located beyond pc41 (when P1 ¼ 0; it lies at
pc ¼ 1).
In order to locate the transition between classes I and

II, we determine when the transcritical and saddle-node
bifurcations are coincident, i.e. when df�=dp ¼ 1 at
ðp;f�

Þ ¼ ðpc; 0Þ: In other words, we calculate when the
fixed point curve emanating from p ¼ pc is at the
transition between having a large positive slope (class I)
and a large negative slope (class II). We find the
condition for this first transition is

P1 ¼ P2=2; (24)

where details of this calculation are provided in
Appendix C.
The condition of Eq. (24) is a statement of linearity in

the fPkg; though importantly only for k ¼ 1 and 2.
Providing pco1; if P14P2=2 (i.e. sublinearity holds)
a contagion model is class I whereas if P14P2=2
(i.e. superlinearity holds) it is class II. This condition
means that class II contagion models arise when, on
average, two doses are more than twice as likely as one
dose to cause infection.
When this condition is satisfied exactly, the system’s

phase transition is a continuous one as per those of class
I, but of a different universality class: class I systems
exhibit a linear scaling near the critical point whereas the
scaling when P1 ¼ P2=2 is f

�
/ ðp � pcÞ

1=2 (in Appendix
C, we show that a sequence of increasingly specific
exceptions to this scaling exist depending on the extent
of linearity present in the fPkg).
Thus, for r ¼ 1; the condition that determines whether

a given system is described by an epidemic threshold
model, a critical mass model, or a member of the
intermediate class of vanishing critical mass models,
depends only on T, P1; and P2—a surprising result given
that Eq. (19) clearly depends on all the fPkg: A summary
of the three basic system types, the transitions between
them, and the accompanying conditions is given in
Table 2.
For ro1; the position of the transcritical bifurcation,

Eq. (25), generalizes in the same manner as Eq. (12). We
find

pc ¼
1

P1ðT þ tÞ
; (25)
where we recall that t ¼ 1=r � 1: As we will see in
Section 5, the above statement is also true for ro1 and
thus stands as a completely general result for the model.
We therefore have a condition for the transition between
classes II and III contagion models for a given T and r,
analogous to that for the r ¼ 1 case in Eq. (23): P1 ¼

1=ðT þ tÞ: For ro1; the condition for the transition
between classes I and II contagion models is more
complicated both in derivation and form. We observe
that as r is decreased, class III models must at some
point transition to class II models and class II models
will eventually become class I models, where we
can determined the former transition by setting pc ¼ 1
in Eq. (25) and solving for r:

r ¼
P1

1þ P1 � P1T
: (26)

In Eq. (26) we have assumed P140 and P1To1; since
the r ¼ 1 limit is, by assumption, a class III contagion
model. Fig. 8 presents an example of a model
transitioning from class III through II to I.
4.3. Composite classes of dynamics

Although our main results (three universal classes of
behavior and the conditions that govern the transitions
between the three) involve examples of contagion
models with at most two bifurcations, other more
complicated kinds of equilibrium behavior are possible.
Fig. 9 shows four examples of what can happen for
particular distributions of d� across the population. In
each example, T ¼ 20 and r ¼ 1; all doses are of unit
size, and the population is divided into either two or
three subpopulations with distinct values of d�: The
main features of each system are captured by the
number and locations of the saddle-node bifurcations.
As was the case for the homogeneous model [see
Eq. (14)], we are able to find an expression for z ¼ pbf

�
b:

0 ¼
XT

k¼1

T

k

� �
Pkzk�2ð1� zÞT�k�1

½k � 1� zðT � 1Þ�;

(27)
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Fig. 8. Example of transitions between all three classes of contagion

models occurring as the probability of recovery r changes. Shown are

theoretically derived fixed point curves for a range of r for T ¼ 3 and a

heterogeneous population with threshold distribution gðd�
Þ ¼

0:3dðd�
� 1Þ þ 0:7dðd�

� 2Þ: From left-to-right, the curves correspond
to r ¼ 0:01; 0:05; 0:10; 0:15; . . . ; 1:00: Solid lines indicate stable fixed
points, dashed lines unstable ones, and the squares mark saddle-node

bifurcation points. For r40:75; the system belongs to class III (see Eq.
(26)). Fixed points lying on the p-axis are not indicated in the plot. For

each instance of the model, points on the p-axis to the left of pc (the

intercept of the non-zero fixed point curve with the p-axis) are stable

and points to the right are unstable. The expression used here to

determine the fixed points is formed by appropriately weighting a

combination of Eqs. (6), (15), and (46).
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where the details of this calculation are provided in
Appendix A. In principle, Eq. (27) could be analysed to
deduce which fPkg (and hence which f and g) lead to
what combination of bifurcations. While substantially
more complicated, and thus beyond the scope of this
paper, such a classification scheme would be a natural
extension of our present delineation of the model into
three universal classes of contagion models, based on the
behavior near p ¼ pc: One simple observation, however,
is that Eq. (27) is a polynomial of order T � 2 and hence
a maximum of T � 2 saddle-node bifurcations may
exist. From our investigations this outcome seems
unlikely as nearby bifurcations tend to combine with
or overwhelm one another; in other words, subpopula-
tions with sufficiently distinct d� are required to produce
systems with multiple saddle-node bifurcations.
Furthermore, the distribution of dose sizes f seems
unlikely to be multimodal for real contagious influences
or entities, and the way it enters into the calculation of
the fPkg [Eq. (3)] reduces its effect in producing
complicated systems. Thus, the number of distinct
bifurcations is limited and strong multimodality in the
threshold distribution g appears to be the main
mechanism for producing systems with more than one
saddle-node bifurcation. As a first step in this extended
analysis of the model, we derive in Appendix A the
condition for the appearance of two saddle-node
bifurcations (i.e. one forward and one backward).
5. SIRS and SIR contagion models

As mentioned in Section 2, the SIS class of behavior
that we have analysed exclusively up to now is a special
case of the general contagion process as it assumes that
recovered individuals instantly become re-susceptible.
This assumption renders the SIS case particularly
tractable, and we have taken advantage of this fact in
the preceding sections to make some headway in
understanding the full range of equilibrium behavior
of the model. However, it remains the case that very few,
if any, infectious diseases could be considered to obey
true SIS-type dynamics, as almost all recovery from
infection tends to be associated with some finite period
of immunity. Any purportedly ‘‘general’’ model of
contagion ought therefore to be analysed in a wider
domain of the associated removal period, and any
corresponding classes of behavior labeled ‘‘universal’’
ought to withstand the introduction of at least some
period of immunity to re-infection. Thus motivated, we
now extend our previous analysis to systems where
individuals experience temporary (SIRS, 0oro1) or
permanent removal (SIR, r ¼ 0). We present some
preliminary results for each of these cases in turn,
relying now exclusively on numerical simulation.
For SIRS contagion, we observe that the position of

the transcritical bifurcation ðpc; 0Þ does not change as r
is reduced from 1; however, all non-zero fixed points
move in the positive p direction. Because they remain in
the removed state for a longer time, individuals in
systems with lower r spend relatively less time infected
than those in systems with higher r (this is in contrast to
the effect of reducing r, which prolongs the time
individuals are infected, thereby causing fixed points to
move in the negative p direction). Thus, contagion
models belonging to classes I and III in the r ¼ 1 special
case remain in their respective classes as r decreases.
However, as shown in Fig. 10, class II models will
transition to class I for some ro1:
For the SIR version of the model, recovered

individuals cannot return to the susceptible state, and
no fraction of the population remains infected in the
infinite time limit; hence we can no longer speak of non-
zero fixed point curves, and the fraction of individuals
infected and recovered, fðtÞ and RðtÞ; become the
relevant objects of study. Some defining quantities are
then the maximum fraction of the population infected at
any one time, maxt fðtÞ; the fraction eventually infected,
1� fð1Þ � Rð1Þ; and the relaxation time required for
the epidemic to die out. We focus on the latter here
which we denote by tmax:
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Fig. 9. Fixed point curves involving multiple bifurcations. In all four examples, T ¼ 20 , r ¼ 1; and dose size is uniformly held at unity. The different
curves are obtained by adjusting the threshold distribution g which in turn leads to changes in the fPkg [see Eq. (3)]. The curves correspond to (a)

gðdÞ ¼ 0:2dðd � 1Þ þ 0:8dðd � 6Þ; (b) gðdÞ ¼ 0:15dðd � 1Þ þ 0:4dðd � 5Þ þ 0:45dðd � 12Þ; (c) gðdÞ ¼ 0:075dðd � 1Þ þ 0:4dðd � 2Þ þ 0:525dðd � 12Þ; and
(d) gðdÞ ¼ 0:3dðd � 3Þ þ 0:7dðd � 12Þ: Note that example (d) consists of two separate fixed point curves. The curves were found numerically by
solving for pðf�

Þ using Eq. (19). Solid and dashed lines indicate stable and unstable fixed points, respectively.
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We observe that when individuals possess a memory
of doses (i.e. T41), tmax diverges as p ! 1: Fig. 11
shows tmaxðpÞ for four sample systems with T ¼ 3; 4, 5,
and 6. We find the divergence of tmax near p ¼ 1 to be
well approximated by

tmax / ð1� pÞ�ðT�1Þ; (28)

where fits are shown in the inset of Fig. 11. Eq. (28) also
shows that for a fixed p, the relaxation time increases
exponentially with length of memory T for all p, i.e.

tmax / e
aT ; (29)

where a ¼ � lnð1� pÞ40:
Thus, when r ¼ 0; epidemics, while not ever achieving

a non-zero steady state as in the r40 case, can persist
for (arbitrarily) long periods of time. The introduction
of memory, which allows infected individuals to main-
tain their dose count above their threshold by repeatedly
infecting each other, creates an SIR model with
strikingly different behavior to the standard memoryless
SIR model.
6. Concluding remarks

Our aim here has been to develop and analyse in
detail a model of contagion that incorporates and
generalizes elements of contagion models from both the
social sciences and epidemiology. A key feature of the
current model is that interdependencies between succes-
sive exposures are introduced in a natural way by
varying the length of memory that an individual
maintains of past exposures. Contagion models incor-
porating memory correspond to standard notions of
contagion in the social sciences (although these models
rarely discuss the role of memory explicitly), while
memoryless contagion models correspond to traditional
models of disease spreading. Our model suggests,
however, that in reality these two kinds of contagion
models may not be entirely distinct. We venture the
possibility that some infectious diseases may spread in a
fashion similar to social contagion processes. For
example, two exposures to an agent sufficiently close
in time may infect an individual with higher probability
than would be expected if the exposures acted as
independent events. The response of some individuals
to allergens where separate doses accumulate in the
body may be an example of a disease with memory.
Although allergies are not contagious, they demonstrate
that such a phenomenon is biologically plausible—a
possibility that has largely remained unexamined in the
microorganismal dose–response literature (Haas, 2002).
The main result of our analysis is the identification

of three universal classes of contagion dynamics, along
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Fig. 10. The effect of reducing r (the probability of an immune
individual becoming susceptible) for a contagion model that is class II

when r ¼ 1: Here, N ¼ 105; T ¼ 6; r ¼ 1; dose sizes are fixed at unity,
and gðd�

Þ ¼ 0:25dðd�
� 1Þ þ 0:75dðd�

� 2Þ: From left-to-right, the

plots correspond to r ¼ 1; 0:15; and 0:09: In all cases, pc; the position
of the p-axis intercept, is independent of r: Apart from the intercept at
p ¼ pc and the point ðp;f

�
Þ ¼ ð1; 1Þ; all other points of the curve move

to the right as r decreases. Consequently, as r is reduced, all class II
contagion models will at some point become members of class I.

Contagion models in classes I and III remain unchanged in their

nature. In finding the upper stable branch of f�
ðpÞ; all individuals are

initially infected. A binary search is then used to detect the position of

the lower unstable branch.
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Fig. 11. Time taken for an initially universal infection to die out in the

SIR case (r ¼ 0). Moving from bottom-to-top in both plots, T ¼ 3; 4,
5, and 6. The model parameters used here are d�

¼ 1; unit dose size,
r ¼ 0:2; and population size N ¼ 104: For all systems, p ¼ f ¼ 1 is a

fixed point and hence tmax ¼ 1 at p ¼ 1: The main plot shows the
rapid increase in tmax for p ! 1: The inset shows the behavior of tmax
as a function of ð1� pÞ as plotted on a double logarithmic scale. The

lines have slopes of �ðT � 1Þ indicating that infections are strongly

persistent with tmax / ð1� pÞ�ðT�1Þ:
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with precise conditions for the transitions between these
classes. Given the complexity of the model, these
conditions are surprisingly simple—at least in the SIS
case (r ¼ r ¼ 1; see Table 2)—and present us with
quantities such as T, P1; and P2 that may in principle be
measurable for real epidemics. Furthermore, the depen-
dence of the transition conditions only on P1; P2; and T,
rather than on the full details of the underlying
distributions of thresholds ðgðd�

ÞÞ and doses ðf ðdÞÞ;
suggests a new and possibly useful level of abstraction
for thinking about contagion processes; that is, measur-
ing individuals in terms of their dose–response and
characterizing a population in terms of its fPkg:
For the more complicated and general cases of ro1

(finite recovery period) and ro1 (finite immunity
period), we have confirmed that the same basic three-
class structure persists, and determined the position of
the transcritical bifurcation pc; Eq. (25), that is one of
the two quantities needed to specify the conditions for
transitioning between classes. The other condition,
derived from calculating the slope of the fixed point
curve as it passes through the transcritical bifurcation,
merits further attention. All of these conditions, how-
ever, are ultimately dependent on the distributions f and
g. Our analysis of the model suggests, for example, that
composite fixed point diagrams involving more than one
saddle point node can only result from multimodality in
g, the distribution of thresholds. Exactly how the details
of these two distributions affect P1 and P2 would be
worth further investigation.
Our model suggests that some epidemics may be

prevented or enabled with slight changes in system
parameters (if feasible). For example, knowing that a
potentially contagious influence belongs to class II
and that p is just below pc would indicate that
by increasing inherent infectiousness (i.e. p) or by
creating a sufficiently large enough base of infected
individuals, the contagion could be kicked off with
potentially dramatic results. Alternatively, by increasing
r or reducing T or r; the possibility of undesirable
epidemics may be reduced, as for all these adjustments
fixed point curves are generally moved in the direction
of higher values of p.
Finally, we have focused exclusively in this paper on a

mean field analysis of the model, which is to say, we
have made the standard assumption that individuals in a
population mix uniformly and at random. A natural
generalization would be to consider the model’s
behavior for a networked population of individuals.
Other simulation possibilities would be to consider
distributions of T, p, r, and r: Finally, additional
technical investigation of this model would also include
analysis of the closed-form expression for saddle-node
bifurcations given in Eq. (27), and a derivation of
analytic expressions for the model when ro1 for small
T and d�: We hope that our preliminary investigations
into this interesting and reasonably general class of
contagion models will stimulate other researchers to
pursue some of these extensions.
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Appendix A. Conditions for existence of saddle-node

bifurcation

In Eq. (27), we provided a closed form expression for
z ¼ pbf

�
b where ðpb;f

�
bÞ is the location of a saddle-node

bifurcation. This expression pertains to the heteroge-
neous version of the model for r ¼ r ¼ 1 [the homo-
geneous version is given in Eq. (14)]. As noted in the
main text, this equation has up to T � 2 solutions,
depending on the form of the fPkg: In this Appendix, we
derive Eq. (27) and also find a criterion for the
appearance of two saddle-node bifurcations. All calcu-
lations revolve around determining when the slope of
the fixed point curve f�

ðpÞ becomes infinite, or,
equivalently, finding when dp=df�

¼ 0:
Our starting point is Eq. (19), the general closed form

expression for f� as a function of p, from which we can
calculate dp=df�: We rewrite Eq. (19) as

uðp;f�
Þ ¼ � f�

þ
XT

k¼1

T

k

 !
Pkðpf

�
Þ
k
ð1� pf�

Þ
T�k

¼ f�
�1þ p

XT

k¼1

T

k

 !
Pkðpf

�
Þ
k�1

ð1� pf�
Þ
T�k

" #

¼ f�Uðp;f�
Þ ð30Þ

with the requirement uðp;f�
Þ ¼ 0:

We show that we can use the function U instead of u

to find dp=df� when f�a0: Differentiating uðp;f�
Þ ¼

fUðp;f�
Þ ¼ 0 with respect to f�; we have

@u

@f� þ
dp

df�

@h

@p
¼ U þ f� @U

@f� þ f� dp

df�

@U

@p
¼ 0: (31)

Again, since uðp;f�
Þ ¼ f�Uðp;f�

Þ ¼ 0; we have
Uðp;f�

Þ ¼ 0 when f�a0: When we also require
dp=df�

¼ 0 (i.e. the chief condition for a saddle-node
bifurcation point), Eq. (31) reduces to

@U

@f� ¼ 0 (32)

and so we may find solutions of @U=@f�
¼ 0 instead of

@u=@f�
¼ 0: The benefit of making this observation is

that we find @U=@f� can be expressed in terms of a
single variable (z ¼ pbf

�
b), allowing for simpler analy-

tical and numerical examination (recall that ðpb;f
�
bÞ

denotes the position of a saddle-node bifurcation).
Returning to the definition of U given in Eq. (30), we
find

@U

@f� ¼
XT

k¼1

T

k

 !
Pkpkðk � 1Þðf�

Þ
k�2

ð1� pf�
Þ
T�k

þ
XT

k¼1

T

k

 !
Pkpkðf�

Þ
k�1

ðT � kÞð�pÞ

�ð1� pf�
Þ
T�k�1

þ
dp

df� ð. . .Þ: ð33Þ

Since we require dp=df�
¼ 0; the above simplifies to

@U

@f� ¼
XT

k¼1

T

k

 !
Pkpkðf�

Þ
k�2

ð1� pf�
Þ
T�k�1

�½ðk � 1Þð1� pf�
Þ � pf�

ðT � kÞ�: ð34Þ

Setting @U=@f�
¼ 0 and removing a factor of p2; we find

the positions of all saddle-node bifurcation points satisfy

0 ¼
XT

k¼1

T

k

� �
Pkzk�2ð1� zÞT�k�1

½k � 1� zðT � 1Þ�;

(35)

where z ¼ pbf
�
b: Upon solving Eq. (35) for z (where for

all non-trivial solutions, we require 0ozo1), Eq. (19)
can then be used to find f�

b (since it expresses f
�
b as a

function of z) and hence pb:
In order to determine whether a bifurcation is

forward or backward facing (by forward facing, we
mean branches emanate from the bifurcation point in
the direction of the positive p-axis), we need to compute
d2p=df�2; and examine its sign. (When d2p=df�2

¼ 0;
two saddle-node bifurcations points are coincident,
one forward and one backward facing.) If the fPkg

are parametrized in some fashion (i.e. f and/or g

are parametrized), then we can determine the
relevant parameter values at which pairs of bifurcations
appear. We compute an expression for d2p=df�2

as follows.
Differentiating Eq. (31) with respect to f�; we have

d2u

df�2
¼ 2

dU

df� þ f� d
2U

df�2
¼ 0: (36)

We already have dU=df�
¼ @U=@f�

þ dp=df�@U=@p ¼

0; and so Eq. (36) now gives

d2U

df�2
¼ 0: (37)

Expanding this, we have

0 ¼
@2U

@f�2
þ
dp

df�

@2U

@p@f� þ
d2p

df�2

@U

@p
þ
dp

df
d

dp

@U

@p
: (38)
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The second and fourth terms on the right-hand side
disappear since dp=df�

¼ 0; leaving

0 ¼
@2U

@f�2
þ
d2p

df�2

@U

@p
: (39)

Upon rearrangement, we have

d2p

df�2
¼ �

@2U=@f�2

@U=@p
: (40)

We first compute @U=@p:With U as defined in Eq. (30),
we see that

@Uðp;f�
Þ

@p
¼

@

@p

1

f�

XT

k¼1

T

k

 !
Pkðpf

�
Þ
k
ð1� pf�

Þ
T�k

¼
@

@pf�

XT

k¼1

T

k

 !
Pkðpf

�
Þ
k
ð1� pf�

Þ
T�k

¼
@

@z

XT

k¼1

T

k

 !
Pkzkð1� zÞT�k

¼
XT

k¼1

T

k

 !
Pkzkð1� zÞT�k�1

� ½kð1� zÞ � ðT � kÞz�

¼
XT

k¼1

T

k

 !
Pkzkð1� zÞT�k�1

½k � Tz�: ð41Þ

Using Eqs. (30) and (35) (i.e. that we are at a bifurcation
point), the above yields

@Uðp;f�
Þ

@p
¼
1

p
: ð42Þ

Using this result, Eq. (40) becomes

d2p

df�2
¼ �p

@2U

@f�2
: (43)

Next, we find

@2U

@f�2
¼
XT

k¼1

T

k

 !
Pkzk�3ð1� zÞT�k�2

� ½ðk � 1Þðk � 2Þ � 2zðk � 1ÞðT � 2Þ

þ z2ðT � 1ÞðT � 2Þ�: ð44Þ

As stated above, if the fPkg are parametrized in some
way, and we are interested in finding at what parameter
values two bifurcations appear and begin to separate,
then we need to determine when @U=@f�

¼ 0 [Eq. (35)]
and when @2U=@f�2

¼ 0 [Eq. (44)].
If, however, the fPkg are fixed and we want to find all

bifurcation points along with whether they are forward
or backward bifurcations, then we can check the latter
by finding the sign of d2p=df�2

¼ 0 [Eq. (43)]. Further
analysis of these equations may be possible to find
conditions on f and g, and thereby the fPkg; that would
ensure certain types of model behavior.
Appendix B. Exact solution for ro1; d�
¼ 2; and T ¼ 2

and 3

For ro1; we have individuals whose cumulative dose
is below the threshold d̄� but are still infected because
they have not yet recovered. To find the proportion of
individuals in this category, we must calculate Gm; the
fraction of individuals whose memory count D [number
of successfully infecting interactions, Eq. (1)] last
equaled the threshold m time steps ago and has been
below the threshold since then. The fraction of these
individuals still infected will be ð1� rÞm; i.e. those who
have failed to recover at each subsequent time step. We
write the proportion of infected individuals below the
threshold as

Gðp;f�; r;TÞ ¼
X1
m¼1

ð1� rÞmGmðp;f
�;TÞ: (45)

Once G is determined, a closed form expression for f�
ðpÞ

is obtained by inserting G into Eq. (15). To determine
the fGmg; we explicitly construct all allowable length m

sequences of 1’s and 0’s such that no subsequence of
length T has d�

¼ 2 or more 1’s. The analysis is similar
for both the T ¼ 2 and 3 cases we consider in this
appendix, and a generalization to all T is possible.
Below, we first show the forms of G for the two cases
and then provide details of the calculations involved.
For T ¼ 3; we obtain

Gðp;f�; r;TÞ ¼ ðpf�
Þ
2
ð1� pf�

Þ
2

� 1� r þ
X1
m¼1

ð1� rÞm½wð3Þm�1 þ wð3Þm�2

 

þ 2pf�
ð1� pf�

Þwð3Þm�3

þ pf�
ð1� pf�

Þ
2wð3Þm�4�

!
; ð46Þ

where wðTÞ
m is defined as

wðTÞ
m ðp;f�

Þ ¼
X½m=T �

k¼0

m � ðT � 1Þk

k

� �
ð1� pf�

Þ
m�k

ðpf�
Þ
k:

(47)

Upon inserting G into Eq. (15), we have a closed form
expression for f� involving p and r as parameters. This
expression can then be solved for numerically yielding
the fixed point curves in Fig. 6.
For the T ¼ d̄�

¼ 2 case, we find

Gðp;f�; r;TÞ

¼ ðpf�
Þ
2
ð1� pf�

Þ
X1
m¼1

ð1� rÞm½wð2Þm�1 þ pf�wð2Þm�2�: ð48Þ

We consider the case of d�
¼ 2 and T ¼ 3 first. For

this specification of the model, there are two ways for an
individual to transition to being below the threshold, i.e.
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Dod�: An individual must have two positive signals and
one null signal in their memory and then receive a null
signal while losing a positive signal out the back of their
memory window. The two sequences for which this
happens are

fdn�2; dn�1; dn; dnþ1g ¼ f1; 1; 0; 0g (49)

and

fdn�2; dn�1; dn; dnþ1g ¼ f1; 0; 1; 0g (50)

with the point of transition to being below the threshold
occurring between time steps n and n þ 1: The two other
sequences for which a node will be above the threshold
are f1; 1; 1g and f0; 1; 1g but neither of these can drop
below the threshold of d�

¼ 2 in the next time step. Both
the sequences of Eqs. (49) and (50) occur with
probability ð1� pf�

Þ
2
ðpf�

Þ
2: When m41; dnþ2 may be

either 0 or 1 for the first sequence, but for the second
dnþ2 ¼ 0 or otherwise the threshold will be reached
again:

fdn�2; dn�1; dn; dnþ1; dnþ2g ¼ f1; 0; 1; 0; 0g: (51)

Given these two possible starting points, we now
calculate the number of paths for which Dtþj remains
below d�

¼ 2 for j ¼ 1; . . . ;m: The structure of an
acceptable sequence must be such that whenever a 1
appears, it is followed by at least two 0’s (otherwise, d�

will be exceeded). We can see therefore that every
allowable sequence is constituted by only two distinct
subsequences: a ¼ f0g and b ¼ f1; 0; 0g:
Our problem becomes one of counting how many

ways there are to arrange a sequence of a’s and b’s given
an overall sequence length m and that the length of a is 1
and the length of b is 3.
If we fix the number of subsequences of a and b at Na

and Nb then we must have m ¼ Na � 1þ Nb � 3: Varying
Nb from 0 to ½m=3� (the square brackets indicate the
integer part is taken), we have Na correspondingly
varying from m down to m � 3½m=3� in steps of 3.
Next, we observe that the number of ways of

arranging Na þ Nb subsequences a and b is

Na þ Nb

Na

� �
¼

Na þ Nb

Nb

� �
¼

ðNa þ NbÞ!

Na!Nb!
: (52)

To see this, consider a sequence of slots labeled 1
through Na þ Nb: In ordering the Na a’s and Nb b’s, we
are asking how many ways there are to choose Na slots
for the a’s (or equivalently Nb slots for the b’s). We are
interested in the labels of the slots but not the order that
we select them so we obtain the binomial coefficient of
Eq. (52).
Allowing Nb and Na to vary while holding m ¼

Na þ 3Nb fixed, we find the total number of allowable
sequences to be

X½m=3�

Nb¼0

Nb þ Na

Nb

� �
¼
X½m=3�

k¼0

m � 2k

k

� �
; (53)

where we have replaced Nb with k and Na with
3Nb � m ¼ 3k � m: Noting that the probability of a is
ð1� pf�

Þ and b is pf�
ð1� pf�

Þ
2; the total probability

wð3Þm ðp;f�
Þ of all allowable sequences of length m for

T ¼ 3 follows from Eq. (53):

wð3Þm ðp;f�
Þ ¼

X½m=3�

k¼0

m � 2k

k

� �
ð1� pf�

Þ
m�k

ðpf�
Þ
k: (54)

For general T, wðTÞ
m is defined by Eq. (47).

We must also address some complications at the start
and end of allowable sequences. At the end of a
sequence, we have the issue of 1’s being unable to
appear because our component subsequences are a ¼

f0g and b ¼ f1; 0; 0g: The two endings we need to include
are fdnþmg ¼ f1g and fdnþm�1; dnþmg ¼ f1; 0g:We do this
for each of the two starting sequences and we therefore
have six possible constructions for allowable sequences
of length m. For the starting sequence given in Eq. (49),
we have the following three possibilities for
fdn�2; dn�1; dn; dnþ1; . . . ; dnþmg:

H1 ¼ f1; 1; 0; 0;Ha;b
m�1g; (55)

H2 ¼ f1; 1; 0; 0;Ha;b
m�2; 1g (56)

and

H3 ¼ f1; 1; 0; 0;Ha;b
m�3; 1; 0g; (57)

where Ha;b
m is a length m sequence of a’s and b’s [which

as we have deduced occur with probability wð3Þm ðp;f�
Þ].

For the starting sequence given in Eq. (51), we similarly
have

H4 ¼ f1; 0; 1; 0; 0;Ha;b
m�2g; (58)

H5 ¼ f1; 0; 1; 0; 0;Ha;b
m�3; 1g (59)

and

H6 ¼ f1; 0; 1; 0; 0;Ha;b
m�4; 1; 0g: (60)

The probabilities corresponding to sequences (55)
through (60) are

PrðH1Þ ¼ ðpf�
Þ
2
ð1� pf�

Þ
2wð3Þm�1ðp;f

�
Þ; (61)

PrðH2Þ ¼ ðpf�
Þ
3
ð1� pf�

Þ
2wð3Þm�2ðp;f

�
Þ; (62)

PrðH3Þ ¼ ðpf�
Þ
3
ð1� pf�

Þ
3wð3Þm�3ðp;f

�
Þ; (63)

PrðH4Þ ¼ ðpf�
Þ
2
ð1� pf�

Þ
3wð3Þm�2ðp;f

�
Þ; (64)

PrðH5Þ ¼ ðpf�
Þ
3
ð1� pf�

Þ
3wð3Þm�3ðp;f

�
Þ (65)



ARTICLE IN PRESS
P.S. Dodds, D.J. Watts / Journal of Theoretical Biology 232 (2005) 587–604 603
and

PrðH6Þ ¼ ðpf�
Þ
3
ð1� pf�

Þ
4wð3Þm�4ðp;f

�
Þ: (66)

Summing these will give us the probability Gm but one
small correction is needed for m ¼ 1: By incorporating
dnþ2 ¼ 0 into the sequence of Eq. (51), we considered
only mX2 sequences. So, we must also add in the
probability of the m ¼ 1 sequence given in Eq. (50)
which is ðpf�

Þ
2
ð1� pf�

Þ
2: Combining this additional

quantity with the probabilities in Eqs. (61)–(66), we have

Gmðp;f
�; 3Þ

¼ ðpf�
Þ
2
ð1� pf�

Þ
2
½dm1 þ wð3Þm�1 þ wð3Þm�2

þ 2pf�
ð1� pf�

Þwð3Þm�3 þ pf�
ð1� pf�

Þ
2wð3Þm�4�; ð67Þ

where dij is the Kronecker delta function and we
have suppressed the dependencies of the wð3Þm on p and
f�: Finally, substituting this into Eq. (45), we obtain
Eq. (46).
The calculation for T ¼ 2 follows along the same lines

as above. We now have a ¼ f0g and b ¼ f1; 0g as our
subsequences. There is only one starting sequence,

fdn�1; dn; dnþ1g ¼ f1; 1; 0g; (68)

and one ending sequences to add, fdnþmg ¼ f1g and
fdnþmg ¼ f1g: Defining

wð2Þm ¼
X½m=2�

k¼0

m � k

k

� �
ð1� pf�

Þ
m�k

ðpf�
Þ
k; (69)

the probability of being above the threshold and then
having no reinfections may be written as

Gmðp;f
�; 2Þ ¼ p2f�2

ð1� pf�
Þ½wð2Þm�1 þ pf�wð2Þm�2�: (70)

Using Eq. (70) in Eq. (45) we obtain the form for G
given in Eq. (48).
Appendix C. Transition between classes I and II

contagion models

The transition between classes I and II models of
contagion occurs when a saddle-node bifurcation
collides with the transcritical bifurcation lying on the
p-axis. To find this transition, we must determine when
the slope of the non-zero fixed point curve at the
transcritical bifurcation (i.e. at p ¼ pc and f�

¼ 0)
becomes infinite. For the heterogeneous version of the
model with r ¼ 1 and variable fPkg; we are able to
determine the behavior near p ¼ pc as follows. We first
rearrange the right-hand side of Eq. (19) to obtain a
polynomial in pf�:

f�
¼
XT

k¼1

T

k

 !
Pkðpf

�
Þ
k
ð1� pf�

Þ
T�k

¼
XT

k¼1

T

k

 !
Pkðpf

�
Þ
k
XT�k

j¼0

T � k

j

 !
ð�pf�

Þ
j

¼
XT

k¼1

XT�k

j¼0

T

k

 !
T � k

j

 !
Pkð�1Þ

j
ðpf�

Þ
kþj

¼
XT

l¼1

Xm

k¼1

T

k

 !
T � k

m � k

 !
Pkð�1Þ

m�k
ðpf�

Þ
m

¼
XT

m¼1

Cmðpf
�
Þ
m; ð71Þ

where we have changed the summation over j and k to
one over m ¼ k þ j and k. The coefficients Cm identified
in the above may be written more simply as

Cm ¼ ð�1Þm
T

m

� �Xm

k¼1

ð�1Þk
m

k

� �
Pk; (72)

since

T

k

 !
T � k

m � k

 !
¼

T !

k!ðT � kÞ!

ðT � kÞ!

ðm � kÞ!ðT � lÞ!

¼
T !

m!ðT � mÞ!

m!

k!ðl � kÞ!

¼
T

m

 !
m

k

 !
: ð73Þ

Expanding Eq. (71) to second order about p ¼ pc and
f�

¼ 0; and writing ~p ¼ p � pc; we obtain

f�
’ C1ð ~p þ pcÞf

�
þ C2p

2
cf

�2: (74)

From Eq. (72), C1 ¼ TP1ð¼ 1=pcÞ and C2 ¼ ðT
2
Þð�2P1 þ

P2Þ: Using also that pc ¼ 1=ðTP1Þ; Eq. (74) then yields

f�
’

C1

C2p2c
~p ¼

T2P31
ðT � 1ÞðP1 � P2=2Þ

~p: (75)

Upon requiring df�=dp ¼ 1; the transition condition
of Eq. (24) follows.
If C2 ¼ 0 (i.e. P1 ¼ P2=2), the above calculation is no

longer valid and the system exhibits a continuous phase
transition with a non-trivial exponent at pc: More
generally, when C2 ¼ C3 ¼ � � � ¼ Cn ¼ 0; we find for
small f� and ~p that

f�
’

C1

Cnþ1pnþ1
c

~p1=n: (76)

We observe that for C2 ¼ C3 ¼ � � � ¼ Cn ¼ 0; a linearity
condition in the fPkg must hold, specifically, Pk ¼ kP1
for k ¼ 1; . . . ; n: To show this, we rearrange the fCmg

given by Eq. (72) as follows, ignoring multiplicative
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factors and substituting Pk ¼ kP1:

Cm /
Xm

k¼1

ð�1Þk
m

k

 !
Pk ¼

Xm

k¼1

ð�1Þk
m!

ðk � 1Þ!ðm � kÞ!
P1

/
Xm

k¼1

ð�1Þk
ðm � 1Þ!

ðk � 1Þ!ðm � kÞ!
/
Xm�1

k0
¼0

ð�1Þk
0 m � 1

k0

 !

¼ ½1þ ð�1Þ�m�1 ¼ 0; ð77Þ

where we have shifted the index k to k0
¼ k � 1:
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Hadeler, K.P., Castillo-Chávez, C., 1995. A core group model for

disease transmission. Math. Biosci. 128, 41–45.

Hadeler, K.P., van den Driessche, P., 1997. Backward bifurcation in

epidemic control. Math. Biosci. 146, 15–35.

Hethcote, H., 2000. The mathematics of infectious diseases. SIAM

Rev. 42, 599–653.

Kermack, W.O., McKendrick, A.G., 1927. A contribution to the

mathematical theory of epidemics. Proc. R. Soc. London. A 115,

700–721.

Kribs-Zaleta, C.M., 2002. Center manifold and normal forms in

epidemic models. In: Castillo-Chávez, C., Blower, S., Kirschner,
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