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We examine the scaling law BJMa which connects organismal resting metabolic rate B with
organismal mass M, where a is commonly held to be 3/4. Since simple dimensional analysis
suggests a"2/3, we consider this to be a null hypothesis testable by empirical studies. We
re-analyse data sets for mammals and birds compiled by Heusner, Bennett and Harvey,
Bartels, Hemmingsen, Brody, and Kleiber, and "nd little evidence for rejecting a"2/3 in favor
of a"3/4. For mammals, we "nd a possible breakdown in scaling for larger masses re#ected in
a systematic increase in a. We also review theoretical justi"cations of a"3/4 based on
dimensional analysis, nutrient-supply networks, and four-dimensional biology. We "nd that
present theories for a"3/4 require assumptions that render them unconvincing for rejecting
the null hypothesis that a"2/3.
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Introduction

The &&3/4-law'' of metabolism states that organis-
mal basal metabolic rate, B, is related to organis-
mal mass, M, via the power law (Kleiber, 1932,
1961; Bonner & McMahon, 1983; Calder, 1996;
Schmidt-Nielsen, 1984; Peters, 1983)

B"cMa, (1)

where a is generally accepted to be 3/4. The
assumption that a"3/4 is relevant in medicine
(Mordenti, 1986; Anderson et al., 1997; Mah-
mood, 1999), nutrition (Cunningham, 1980; Pike
& Brown, 1984; Burger & Johnson, 1991), and
ecology (Damuth, 1981; Lindstedt et al., 1986;
Calder, 1996; Carbone et al., 1999; Hendriks,
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1999), and has been the subject of a series of
theoretical debates (Blaxter, 1965; Heusner,
1982a; Feldman, 1983, 1995; Economos, 1983;

Prothero, 1984). It has been often quoted that
quarter-power scaling is ubiquitous in biology
(Calder, 1996; West et al., 1997). Such quarter-law
scaling reinforces, and is reinforced by, the notion
that basal metabolic rate scales as BJM3@4.

Nevertheless, the reasons, biological or other-
wise, for why a"3/4 have remained elusive and
their elucidation stands as an open theoretical
problem. A recent surge of interest in the subject,
including our own, has been inspired by the el-
egant attempt of West et al. (1997) to link nutri-
ent-supply networks to metabolic scaling. This
work suggests that a fundamental understanding
of the relationship between basal metabolism and
body size is within our grasp and that closer
inspection of both theory and data are duly
warranted.
( 2001 Academic Press
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In this paper, we work from the null hypo-
thesis that a"2/3. In a resting state, heat is
predominantly lost through the surface of a body.
One then expects, from naive dimensional analy-
sis, that basal metabolism scales as surface area
which scales as <2@3 where <, volume, is propor-
tional to M presuming density is constant. This
scaling of surface area with mass has found
strong empirical support in organismal biology
(Hemmingsen, 1960; Schmidt-Nielsen, 1984;
Calder, 1996; Heusner, 1987). Such a surface law
of metabolism was "rst expounded in the 19th
century (Rubner, 1883). Later observations of
deviations from a"2/3 eventually led to its re-
placement by aK0.72}0.73 which was then sup-
planted by the simpler a"3/4 (Brody, 1945;
Hemmingsen, 1960; Kleiber, 1961). The wide-
spread agreement that a"3/4 is due largely to
the formative in#uence of Kleiber (1932, 1961)*
and has been accepted and used as a general rule
for decades (Blaxter, 1965). By the above argu-
ments, we consider size to be determinant of
metabolism and consider eqn (1) to be a predic-
tive one. In addition, we take lognormal #uctu-
ations in B for "xed M as the completion of our
null hypothesis. We therefore reinterpret the pre-
factor c in eqn (1) to be a lognormally distributed
variate.

We re-examine empirical data available for
metabolic rates of homoiotherms as well as care-
fully review both recent and historical theoretical
justi"cations for a"3/4. Our statistical analysis
of data collated by Heusner (1991b) for 391 spe-
cies of mammals and by Bennett & Harvey (1987)
for 398 species of birds shows that over consider-
able, but not all, ranges of body size, the hypothe-
sis a"2/3 is not rejected by the available data.
We also review empirical studies by Bartels
(1982), Hemmingsen (1960), Brody (1945), and
Kleiber (1932) and "nd the data, upon re-exam-
ination, to be supportive of our interpretations.
We then examine theoretical attempts to connect
metabolic rate to mass. These include approaches
based on dimensional analysis (Gunther &
Morgado, 1982; Economos, 1982; Gunther, 1985;
Bonner & McMahon, 1983; Heusner, 1982b;
*Kleiber's motivation in part was to make calculations
less cumbersome with a slide rule (Schmidt-Nielsen, 1984,
p. 59).
Feldman, 1995), four-dimensional biology (Blum,
1977; West et al., 1999), and nutrient-supply net-
works (West et al., 1997; Banavar et al., 1999). We
"nd that none of these theories convincingly
show that a"3/4, rather than a"2/3, should be
expected.

Measuring the Metabolic Exponent

The history of metabolic scaling may be traced
through a series of heavily cited empirical papers,
some of which are composed of relatively few
data points. In order to better understand the
scaling of metabolic rate, we work back in time,
calculating a and deviations from uniform scal-
ing for data from Heusner (1991b), Bennett &
Harvey (1987), Bartels (1982), Hemmingsen
(1960), Brody (1945), and Kleiber (1932). These
papers represent some of the most widely cited in
the "eld. Our re-analysis of the data demon-
strates that a"2/3 should not be rejected for
mammals with mass less than approximately
10}35 kg, and a similar analysis of metabolic
data for birds demonstrates a"2/3 should not
be rejected for birds in general.

We have used the same methods to calculate
a and its dependence on M in all cases where data
are available. Since we are modeling the equation
B"cMa as predictive, slopes and intercepts are
determined using standard linear regression in
log-space taking M to be the independent vari-
able (Rayner, 1985; Sprent, 1969). We also in-
clude two alternative regression techniques for
comparison, Kendall's non-parametric robust
line-"t method (Kendall & Gibbons, 1990) and
the reduced major axis (RMA) regression
(LaBarbera, 1990). Kendall's line-"t method cal-
culates the exponent as the median of the collec-
tion of slopes calculated between each pair of
data points (Kendall & Gibbons, 1990). The
RMA slope is typically used when no informa-
tion is available concerning errors or when a
predictive/causal hypothesis is not being tested.
The standard (product-moment) correlation coef-
"cient is denoted by r while that obtained using
the Spearman rank ordering (Press et al., 1992) is
written as r

s
. When data are not available we

have attempted to classify the data sets in terms
of the original calculations of a and their depend-
ence on M.



FIG. 1. Metabolic rate, B (watts), as a function of mass,
M(kg), for 391 species of mammals. Data taken from
Heusner (1991b). The straight line represents the best "t
for the 357 species with mass less than 10 kg where
a("0.668$0.019. The upward deviations for species with
larger mass (see Table 1) may indicate a real biological
di!erence but may also be due to the paucity of data.
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HEUSNER (1991)

Data on basal metabolic rate for 391 distinct
mammalian species compiled by Heusner (1991b)
is reproduced in Fig. 1. Heusner proposed that
species could be separated into two groups, one
of animals whose basal metabolism is normally
distributed about a regression line and one of
statistical outliers. Both groups were found by
Heusner to satisfy a 2/3-law for metabolism.

The results of linear least-squares (LLS) regres-
sion analysis, Kendall's robust line-"t method,
and RMA regression over various mass ranges
for Heusner's data are shown in Table 1. Here we
write a( , a(

k
, and a(

rma
for the respective estimates.-

We observe a break in scaling occurring at
around MK10 kg. For those ranges with an
upper mass M

max
)10 kg, a"2/3 appears to be

robust using both LLS and Kendall's method.
-Throughout the paper we use the convention xL to repres-
ent an exponent derived from numerical estimates.
The RMA regression varies widely depending
on range and returns slightly larger exponents
(closer to 0.7) than the other methods, though it
does show the same qualitative trend of decreas-
ing, stabilizing, and then gradually increasing
with increasing mass. Note that the data com-
prises 179 species of the order rodentia ranging
over more than three orders of magnitude of
mass from 0.007 to 26.4 kg. On separating out
these samples, we still "nd a("0.675$0.025 for
the remaining species with M)10 kg and
a("0.681$0.035 for the rodentia species.

Upon addition of mammals with mass exceed-
ing 10 kg, the exponent steadily increases. Given
the small number of samples of large mammals,
one can only speculate on the reason for this
possible deviation. Primarily, it may indicate
a real upwards deviation from scaling, with larger
organisms actually having greater metabolic
rates than predicted by a"2/3 (Bartels, 1982;
Economos, 1983; Heusner, 1991a). Larger organ-
isms are reported to scale allometrically in form
so such a deviation may be a result of changes
in body shape and hence surface area (Bonner
& McMahon, 1983; Calder, 1996). Support for
this notion comes from Economos (1982) who
"nds the relationship between mammalian head-
and-body length and mass is better "t by two
scaling laws rather than one. He identi"es 20 kg
as a breakpoint, which is in accord with our
"ndings here, suggesting that geometric scaling
holds below this mass while allometric quarter-
power scaling holds above. The upper scaling
observed by Economos could also be viewed
as part of a gradual deviation from geometric
scaling.

The upwards shift of metabolic rates for larger
mammals could otherwise point to problems of
measurement (note the corrections for elephants
in Brody, 1945), an evolutionary advantage re-
lated to larger brain sizes (Jungers, 1985; Allman,
1999), or the lack of competition for ecological
niches for large mammals creating a distinction
with smaller mammals.

BENNETT & HARVEY (1987)

Birds show strong support for not rejecting the
null hypothesis a"2/3. Figure 2 shows meta-
bolic data for 398 distinct bird species taken from



TABLE 1
¹he scaling exponent measured for varying ranges of mass, M)M

max
(kg), for

Heusner1s (1991b) data

M
max

N a( 95% CI r a(
k

a(
rma

0.01 17 0.454 [!0.811, 1.719] 0.263 0.549 1.723
0.032 81 0.790 [0.545, 1.034] 0.692 0.955 1.141
0.1 167 0.678 [0.578, 0.778] 0.810 0.693 0.837
1 276 0.662 [0.620, 0.704] 0.926 0.667 0.715

10 357 0.668 [0.643, 0.693] 0.965 0.666 0.692
32 371 0.675 [0.651, 0.698] 0.968 0.671 0.697

100 381 0.698 [0.675, 0.720] 0.971 0.682 0.719
1000 390 0.707 [0.686, 0.728] 0.975 0.691 0.725
3670 391 0.710 [0.689, 0.731] 0.976 0.692 0.728

Note: The estimates a( and a(
k

are determined by least-squares regression and Kendall's robust
line-"t method, respectively. The reduced major axis (RMA) exponent is calculated as a(

rma
"a( /r

where r is the linear correlation coe$cient. Notably, both a( and a(
k
are more stable than a(

rma
. For each

mass range, N is the sample number and the 95% con"dence interval (CI) for a( is also recorded. For
small mammals (M)0.01 kg, 17 species) a large error is apparent but for increasing M

max
, a( centers

around 2/3. A gradual upwards drift for a( and a(
k
is evident for M

max
'10 kg.

FIG. 2. Metabolic rate, B (watts), as a function of mass,
M(kg), for 398 species of birds taken from Bennett &
Harvey (1987). The straight line is the result of a regression
analysis which gives a("0.664$0.014.
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Bennett & Harvey (1987).? We "nd here that
a("0.664$0.014 (r"0.977) in agreement with
Bennett and Harvey's calculations. The results
from Kendall's method and RMA regression
agree with these results. Table 2 shows that an
adherence to a"2/3 holds across various mass
ranges. Lasiewski & Dawson (1967) similarly
found that a("0.668 for a smaller set of data.
Attempts to reconcile the 3/4-law with these
measurements have centered around the division
of birds into passerine (perching birds) and
non-passerine species (non-perching birds).
Lasiewski and Dawson, for example, found expo-
nents of 0.724 and 0.723 for passerine and
non-passerine species, respectively. Though this
is not an arbitrary division (core temperatures
are thought to di!er by 1}23C), later work by
Kendeigh et al. (1977) "nds exponents ranging
from 0.668 to 0.735 when passerines and non-
passerines are grouped according to di!erent
measurement conditions (winter vs. summer,
etc.).
?Following Bennett & Harvey (1987), we take one sample
for each species of bird selecting those with lowest mass-
speci"c resting metabolic rate. Note that we also include
organisms that Bennett and Harvey state were measured
during their active cycle whereas Bennett and Harvey do
not. The use of other selection criteria does not greatly a!ect
the results we present here.
Similar distinctions between intra- and inter-
species scaling have been raised in the study of
metabolic scaling for mammals where it has been
suggested that a"2/3 for single species compari-
sons and a"3/4 holds across di!ering species
(Schmidt-Nielsen, 1984; Heusner, 1982a; Bonner
& McMahon, 1983). Bennett & Harvey (1987)



TABLE 2
¹he metabolic exponent for birds measured using di+erent techniques over di+erent

mass ranges. See note of ¹able 1 for explanations of the entries

M
max

N a( 95% CI r a(
k

a(
rma

0.01 46 0.617 [0.221, 1.014] 0.535 0.620 1.155
0.032 162 0.636 [0.533, 0.738] 0.787 0.712 0.808
0.1 236 0.602 [0.543, 0.662] 0.864 0.645 0.697
0.32 290 0.607 [0.568, 0.646] 0.921 0.626 0.659
1 334 0.652 [0.622, 0.681] 0.954 0.656 0.683
3.2 371 0.655 [0.632, 0.679] 0.967 0.658 0.678

10 391 0.664 [0.644, 0.684] 0.974 0.665 0.682
32 396 0.665 [0.646, 0.685] 0.976 0.666 0.682

100 398 0)664 [0.645, 0.683] 0.977 0.665 0.679

TABLE 3
Exponents measured for varying ranges of mass
(kg), M

min
)M)M

max
according to Bartels

(1982). Here N is the sample number and r is the
correlation coe.cient

M
min

M
max

N a( r

2.4]10~3 3800 K85 0.66 0.99
2.4]10~3 0.26 K40 0.42 0.76
0.26 3800 K45 0.76 0.99
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also found that a depends on the level of taxo-
nomic detail one is investigating. It remains un-
clear whether such subdivisions re#ect relevant
biological distinctions or underlying correlations
in the choice of taxonomic levels.

BARTELS (1982)

Bartels (1982) analyses a set of approximately
85 mammalian species. Although data are not
provided in the paper, a summary of his results
can be found in Table 3. Bartels "nds a("0.66
(no error estimate is given) for mammals with
mass between 2.4]10~3 and 3800 kg and con-
cludes that the deviation from the expected 3/4
scaling is due to the variations in metabolic rates
of small animals. This lends further weight to our
conjecture that there may be a mass dependence
of metabolic rate scaling.

HEMMINGSEN (1960)

Hemmingsen's (1960) data set for mammals
comprises 15 data points with masses between
0.01 and 3500 kg. Most of his data are derived
from earlier work by Brody. He states that the
data is well modeled by a power law with
a("0.73. To reach this conclusion he does not
compute the power law of best "t, but rather, the
&&straight line... was chosen corresponding to
[a("]0.73, as established by Kleiber and also by
Brody''.

Hemmingsen also "nds that a 3/4-law holds for
unicellular organisms. Hemmingsen's work has
been cited extensively in support of the claim that
the 3/4-law is a universal biological phenomenon
(Peters, 1983; Schmidt-Nielsen, 1984; Calder,
1996; West et al., 1997). A careful re-examination
of Hemmingsen's work by Prothero (1986)
showed that a( can range from approximately
0.60 to 0.75 depending on which unicellular
organisms are included in the regression. Work
by Banse (1982) on the allometric scaling of
maximal growth rates of algae and ciliates
"nds a weaker mass dependence for algae
and a stronger mass dependence for proto-
zoa than would be expected if a simple applica-
tion of the 3/4-law held for microscopic
organisms. In addition to these empirical works
concerning scaling for microscopic life, Patterson
(1992a, b) has theoretically shown for aquatic
invertebrates and algae that the scaling expo-
nent can range from 0.31 to 1.00 depending on
the mass transfer mechanisms involved. We
agree with Prothero's conclusions that &&a three-
quarters power rule expressing energy metabol-
ism as a function of size in unicellular organisms
generally is not at all persuasive'' (Prothero,
1986).



TABLE 4
Results of regression on Brody1s (1945) data over di+erent mass intervals, M

min
(M)M

max
(kg). Refer to note of ¹able 1 for de,nitions of entries. Increases in aL , aL

k
and aL

rma
all occur for

ranges over larger masses

M
min

M
max

N a( 95% CI r a(
k

a(
rma

0.016 1 19 0.673 [0.612, 0.734] 0.985 0.667 0.684
0.016 10 26 0.709 [0.667, 0.750] 0.990 0.707 0.716

10 920 9 0.760 [0.676, 0.845] 0.992 0.733 0.766
0.016 920 35 0.718 [0.697, 0.740] 0.996 0.721 0.721
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BRODY (1945)

Brody (1945) compiles a list of metabolic rates
for 67 mammals. The complete data set yields
a("0.73$0.01. However, on inspection, one
makes the surprising observation that 32 data
points are arti"cial in that most of these are
calculated using previously determined empirical
equations while a few have been corrected to
account for variations in animal activity. Using
the remaining set of 35 animals we nevertheless
"nd a("0.72$0.02.

We re-analyse Brody's raw, uncorrected data
for mammals over di!erent mass ranges as shown
in Table 4. Again, an increase in a( is observed for
ranges of larger masses. This is consistent with
the results from Heusner's and Bartel's data
which suggest a deviation from perfect scaling
with increase in mass. Furthermore, it is evident
that a("0.72 as calculated by regression on the
full data set is misleading. We reiterate that we
are not suggesting that there is any robust scaling
law for large masses. The results of the regression
analysis merely suggest a dependence of a on the
mass ranges being considered and that a strict
power law may not be appropriate.

KLEIBER (1932)

In his seminal paper on metabolic rate, Kleiber
(1932) analysed 13 species of mammals with
average mass ranging from 0.15 to 679 kg. We
"nd the scaling exponent for the data to be
a("0.738$0.016. Again we consider the possi-
bility of a crossover and separate the data into
a set of "ve species with M(10 kg and eight
species with M'10 kg. For M(10 kg, a("
0.667$0.043 while for M'10 kg, a("0.754$
0.048. These results are again consistent with our
assertion of a mass-dependent a. Nevertheless, it
is important to remain mindful of the relative
paucity of data in these in#uential works.

Fluctuations about Scaling

The next logical step after measuring the meta-
bolic exponent and systematic deviations thereof
is to consider #uctuations about the mean. This
is seldom done with power-law measurements
(Dodds & Rothman, 2000) and researchers con-
cerned with the predictive power of a scaling law
for metabolic rate have often pointed to organ-
isms that deviate from predictions as being either
problematic or di!erent (Brody, 1945; Bartels,
1982; Schmidt-Nielsen, 1984; Heusner, 1991b).
We take the view that #uctuations are to be
expected and quanti"ed appropriately.

We thus generalize the relation B"cMa by
considering P (B DM), the conditional probability
density of measuring a metabolic rate, B, given
a mass, M,

P (B DM)"(cMa)~1f (B/cMa), (2)

where the leading factor of (cMa)~1 is for normal-
ization and :=

0
f (x) dx"1.

Our null hypothesis is that #uctuations are
Gaussian in logarithmic space, i.e. f is a lognor-
mal distribution function with median at unity.
Gaussian #uctuations are typically assumed in
statistical inferences made using regression anal-
ysis (DeGroot, 1975). Demonstrating that f is
not inconsistent with a normal distribution will
therefore allow us to use certain hypothesis tests
in the following section.

If eqn (2) is correct then the sampled data can
be rescaled accordingly to reconstruct f, the
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scaling function. To do so, one must "rst deter-
mine a and c. We suggest the most appropriate
estimate of a corresponds to the case when the
residuals about the best-"t power law are
uncorrelated with regards to body mass. This is
similar to techniques used in the analysis of par-
tial residuals (Hastie & Tibshirani, 1987) and we
make use of it later. We obtain residuals for the
TABL

Results from Kolmogorov}Sm
distributions of -uctuations a
mammals (Heusner, 1991b) an
1987). ¹he distribution is as
normal in logarithmic coordina
p are calculated directly from
determine a level of signi,canc

the maximum p

Range p

Mammals M(1 0.154
Mammals M(10 0.153
Birds All 0.132

FIG. 3. Fluctuations in metabolic rate for mammals with
M)10 kg taken from Heusner's data set (Heusner, 1991b).
Here, z"B/cMa( . The scaling function f [see eqn (2)] is "tted
with a lognormal distribution. Values of B have been renor-
malized as B/cMa( with a("0.667 and c"2.58 as explained
in the text and partitioned into 20 bins.
range 0.5)a)1.5 where the prefactor c of
B"cMa is determined via least squares. The
Spearman correlation coe$cient r

s
is then deter-

mined for the residuals and recorded as a func-
tion of a. We then take the value of a for which
r
s
"0 as the most likely underlying scaling

exponent.
We "nd r

s
K0 when a(K0.667 (cK2.58) for

mammals using Heusner's data with M)10 kg
as compared to r

s
K!0.41 when a("0.750. For

the entire range of masses in bird data of Bennett
and Harvey, r

s
K0 when a(K0.664 (cK4.04).

With these results on hand, we extract f for
mammals and birds, the results for mammals
being shown in Fig. 3. We "nd the form of
f agrees qualitatively with a lognormal. In order
to quantify the quality of this agreement we
employ the Kolmogorov}Smirnov test (De-
Groot, 1975), a non-parametric test which gives a
signi"cance probability (p value) for whether or
not a sample comes from a hypothesized distri-
bution. Not having a hypothesis for the value of
the standard deviation, we take two approaches
to deal with this problem. Asserting the measured
sample standard deviation p to be that of the
underlying normal distribution, we calculate the
corresponding signi"cance probability, p. Alter-
natively, an estimate of p, p*, may be obtained by
"nding the value of p which maximizes p such
that p(p*)"p*. Results for both calculations are
found in Table 5. All p values are above 0.01, i.e.
none show very signi"cant deviations. Addition-
ally, the p value for only the case of the birds
E 5
irnov tests for the underlying
round pure scaling for both
d birds (Bennett & Harvey,
sumed to be lognormal, i.e.
tes.¹he standard deviations
the residuals themselves and
e p. ¹he p* correspond to p*,
value possible

p p* p*

0.232 0.120 0.307
0.093 0.120 0.135
0.032 0.115 0.573
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using p estimated from the data falls below 0.05
indicating its departure is signi"cant, but this is
balanced by the high p value found by the
maximizing procedure.

Thus, we suggest the data supports the simple
hypothesis of lognormal #uctuations around
a scaling law with aK2/3 for mammals with
M)10 kg and for all birds.

Hypothesis Tests

We now construct two types of hypothesis tests
to determine whether or not a"2/3 or 3/4
should be rejected by the available data. The "rst
test is the standard method of testing the results
of a linear regression against a presumed slope.
The second is a natural extension of examining
#uctuations about a linear "t as per the previous
section. By analysing the correlations of the
residuals from the best-"t line we are able to
quantitatively determine which values of a are
compatible with the data. In both tests, we reject
a hypothesis when p(0.01.

COMPARISON TO A FIXED a

For a given set of N measurements for both
mass, M

i
, and metabolic rate, B

i
, we pose the

following hypotheses:

H
0
: a"a@, (3)

H
1
: aOa@. (4)
TABL

Hypothesis test based on standard com
and 3/4 for mammals with M)10 kg
r the correlation coe.cient, p is the s
and p

3@4
for the hypothesis a"2/

two col

N a( r

Kleiber 5 0.667 0.99
Brody 26 0.709 0.99
Heusner 357 0.668 0.96
We test the null hypothesis, H
0
, in the speci"c

cases a@"2/3 and 3/4 for data from Kleiber
(1932), Brody (1945), Bennett & Harvey (1987),
and Heusner (1991b), over various mass ranges.
Here, the p value represents the probability that,
given two variables linearly related with slope a@
and subject to Gaussian #uctuations, a data set
formed with N samples would have a measured
slope a di!ering at least by Da!a@D from a@
(DeGroot, 1975). For a null hypothesis with
a"a@, we write the p value as pa{, e.g. p

3@4
.

For mammals with M)10 kg, the results of
the hypothesis test are contained in Table 6. The
null hypothesis that a"3/4 is rejected for both
Brody and Heusner's data and should not be
rejected in the case of Kleiber. The alternative
null hypothesis that a"2/3 is not rejected for
both Heusner and Kleiber and rejected in the
case of Brody. Again, divisions into mass ranges
are somewhat arbitrary and are chosen to help
demonstrate the mass dependence of a. For
example, for mammals with M(1 kg, Brody's
data implies we should not reject the hypothesis
that a"2/3.

Table 7 details results for mammals with
M*10 kg. In the smaller data sets of Kleiber
and Brody the hypothesis that a"3/4 is not
rejected while for the larger data set of Heusner,
a"3/4 is rejected. In all cases, the hypothesis
that a"2/3 for large mammals is rejected. Even
though Brody and Kleiber's data sets are consis-
tent with an exponent a'3/4, the relative lack of
metabolic measurements on large mammals and
the strong rejection by Heusner's large sample
prevents us from drawing de"nitive conclusions
E 6
parison between slopes that a"2/3
. Here, aL is the measured exponent,
tandard error, and the p values p

2@3
3 and 3/4 are listed in the last
umns

p (a( ) p
2@3

p
3@4

9 0.016 0.99 0.088
0 0.020 (10~3 (10~3
5 0.010 0.91 (10~15



TABLE 7
Hypothesis test based on standard comparison between slopes that a"2/3
and 3/4 for mammals with M*10 kg. See ¹able 6 for the de,nition of

all quantities

N a( r p (a( ) p
2@3

p
3@4

Kleiber 8 0.754 0.998 0.021 (10~4 0.66
Brody 9 0.760 0.992 0.038 (10~3 0.56
Heusner 34 0.877 0.876 0.088 (10~12 (10~7

TABLE 8
Hypothesis test based on standard comparison between slopes that a"2/3 and 3/4
for birds and mammals over their entire mass range. See ¹able 6 for the de,nition of

all quantities

N a( r p (a( ) p
2@3

p
3@4

Kleiber 13 0.738 0.999 0.007 (10~6 0.11
Brody 35 0.718 0.996 0.011 (10~4 (10~2
Heusner 391 0.710 0.976 0.008 (10~6 (10~5
Bennett and Harvey 398 0.664 0.977 0.007 0.69 (10~15
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about the particular value, if any, of a for
M*10 kg.

When all mass ranges are considered for
both birds and mammals the hypothesis test (see
Table 8) demonstrates that both a"2/3 and 3/4
are rejected based on the empirical data on mam-
mals, while a"2/3 is not rejected and a"3/4 is
rejected based on the empirical data on birds.
In summary, we "nd that a single exponent may
be appropriate for rough estimates but, from
a statistical point of view, it appears that no
single exponent explains the data on metabolic
scaling for mammals.

ANALYSIS OF RESIDUALS

As per our discussion of #uctuations, a sensi-
tive test of a null hypothesis is to check the
rank-correlation coe$cient of the residuals. In
order to test the hypothesis, a"a@, we pose the
following hypotheses:

H
0
: r

s,a{ (zi, Mi
)"0, (5)

H
1
: r

s,a{ (zi, Mi
)O0, (6)
where the z
i

are the residuals. The hypothesis
H

0
means that if the residuals for the power

law B"cMa{ are uncorrelated with M then a@
could be the underlying exponent. The alterna-
tive hypothesis H

1
means that the residual

correlations are signi"cant and the null
hypothesis should be rejected. The p values
represent the probability that the magnitude of
the correlation of the residuals Dr

s,a{(zi, Mi
) D,

would be at least its value as expected for
samples taken from randomly generated
numbers.

In this case, we have tested the hypothesis for
a range of exponents, a@"0.6}0.8, and calculated
the signi"cance levels for both mammal and bird
data compiled by Heusner (1991b) and Bennett
& Harvey (1987), over di!erent mass ranges. The
results of this hypothesis test for Heusner's data is
contained in Fig. 4 and for Bennett and Harvey's
data in Fig. 5. Both tests show that the hypothesis
a"3/4 is rejected while that of a"2/3 is not
rejected over all mass ranges considered for both
birds and mammals. This does not mean that
a"2/3 is the &&real'' exponent, but rather that
it, unlike a"3/4, is not incompatible with the
data.



FIG. 4. Test of the null hypothesis H
0
: r

s,a{ (zi, Mi
)"0 based on mammalian data from Heusner (1991b) [see eqn (5)].

Shown are plots of p (a) for di!ering mass ranges. In all plots the two dashed horizontal lines correspond to p"0.05 and
p"0.01. The individual plots correspond to the following ranges: (a) M(3.2 kg, (b) M(10 kg, (c) M(32 kg, (d) all
mammals. For all mass ranges considered, p

2@3
'0.05 and p

3@4
;10~4.
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Theories

Thus far, we have presented empirical evidence
that a is mass dependent and that the null
hypothesis a"2/3 should not be rejected for
mammals with M(10 kg and all birds in most
available data sets. What then of theoretical at-
tempts to derive the 3/4-law of metabolism? We
show below that many of these arguments, while
often conceptually appealing and based on
simple physics and geometry, contain su$cient
#aws to render them unconvincing for the rejec-
tion of the simplest theoretical hypothesis, a"2/3.

DIMENSIONAL ANALYSIS

Dimensional analysis is a very useful technique
when there is only one mass, length, and
time-scale in a given problem. However, in the
case of metabolic scaling in biological organisms
there has been a long history of theoretical de-
bates over which scales to use when predicting
the scaling of metabolic rate via dimensional
analysis.

Theories of biological and elastic similarities
have been used to explain many structural as-
pects of organisms such as the length and width
of major limbs (Gunther & Morgado, 1982;
Economos, 1982; Gunther, 1985). Using the prin-
ciples of elastic similarity, Bonner & McMahon
(1983) have tried to explain why quarter-power
scaling in body lengths and widths should lead
to a"3/4. Cross-sections of limbs are argued to
scale as M3@4 and therefore the power required to
move scales in the same way. However, it is not
clear why the power output of muscles should be
the dominant factor in the scaling of basal
metabolic rate. Furthermore, such quarter-power



FIG. 5. Test of the null hypothesis H
0
: r

s,a{ (zi, Mi
)"0 based on bird data from Bennett & Harvey (1987) (see Fig. 4 for

details). Here, the individual plots correspond to the following ranges: (a) M(0.1 kg, (b) M(1 kg, (c) M(10 kg, (d) all
birds. As for the mammals data, p

2@3
'0.05 and p

3@4
;10~4 for all mass ranges considered.
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scaling for animal shape is not generally observed
(Calder, 1996).

Recent debates have focused on deriving
a solely from dimensional analysis (Heusner,
1982b; Feldman, 1995). The problem with all
attempts to derive metabolic rate from dimen-
sional analysis is that di!erent constraints lead to
di!erent choices of contributing scales (Feldman,
1995). Explaining the scaling of metabolic rate
is therefore displaced to biological questions of
energetic constraints, mass density, physiological
time, and di!usion constants across surfaces.

NUTRIENT SUPPLY NETWORKS

Interest in Kleiber's law resurged with the sug-
gestion by West, Brown and Enquist (WBE)
(1997) that nutrient-supplying networks might
be the ubiquitous limiting factor in organismal
form. This remains an intriguing idea and stands
as one of the most signi"cant attempts at dis-
cerning the underlying physical mechanisms
responsible for quarter-power scaling. Although
previous work had addressed the problem of
optimal network structure (Cohn, 1954, 1955;
Rashevsky, 1962; LaBarbera, 1990), theoretical
relations between optimal networks and the
scaling of basal metabolic rate had never been
considered.

The basic assumptions of WBE are
(i) homoiotherms have evolved to minimize the
rate at which they dissipate energy; (ii) the rel-
evant energy dissipation arises from transport
through nutrient-supply networks; (iii) these net-
works are space-"lling; and (iv) all homoiotherms
possess capillaries invariant in size. From these
four assumptions WBE derive three important
conclusions: (i) nutrient-supply networks are
fractal; (ii) these networks contain area-preserv-
ing branching; and (iii) metabolic rate scales with
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a"3/4. However, as we show below and in
Appendices A and B, the arguments used are
mathematically incorrect and as a consequence
none of the above conclusions may be derived
from the explicit assumptions. Nevertheless, we
"nd the model appealing and potentially useful
in understanding a number of biological issues.
Thus, we detail below where the errors lie to
illuminate the path of future work.

For clarity, we use the same notation as WBE.
For each level k in the network hierarchy one has
N

k
vessels each with length l

k
and radius r

k
with

k"1 being the aorta and k"N being the capil-
lary level. Related important quantities are
n
k
"N

k
/N

k~1
, c

k
"l

k
/l
k~1

and b
k
"r

k
/r

k~1
, the

ratios of number, length and radius from levels
k to k!1.

Central to the theory is the connection of these
network ratios to metabolic rate. WBE "nd that
n
k
"n, b

k
"b and c

k
"c are all constants inde-

pendent of k and that

a"!

log n
log cb2

. (7)

This depends in part on an assumption, which we
discuss below, that BJN

c
where N

c
is the num-

ber of capillaries. They also conclude that

b"n~1@2 and c"n~1@3, (8)

which gives a"3/4 in eqn (7). Whereas we show
below that these relations do not arise from an
optimization principle, they do have simple inter-
pretations. The "rst relation corresponds to
networks being area-preserving via N

k
r2
k
"

N
k~1

r2
k~1

. The second relation follows from
a space-"lling criterion that N

k
l3
k
"N

k~1
l3
k~1

.
Whether or not space-"lling networks satisfy
these conditions has been discussed by Turcotte
et al. (1998), who consider the more general case
of side-branching networks and arrive at an
equivalent statement of eqn (7) where the net-
work ratios b and c are to be determined empiric-
ally as functions of n.

WBE minimize energy dissipation rate by min-
imizing network impedance using a Lagrange
multiplier method. Two types of impedance are
considered: Poiseuille #ow (Lamb, 1945) and, for
the case of mammals and birds, a more realistic
pulsatile #ow (Womersley, 1955a).

We use the Poiseuille case to demonstrate how
fractality is not proven by the minimization
procedure. The impedance is given by

Z"

N
+
k/0

8kl
k

nr4
k
N

k

"

N
+
k/0

Z
k
, (9)

where Z
k

is the e!ective impedance of the k-th
level. As WBE show, the equations are consistent
and Z is minimized when

c
k
"b

k
"n~1@3

k
. (10)

However, the calculations do not require these
ratios to be level-independent, and as a conse-
quence, the network need not be fractal. Further
details may be found in Appendix A. To see why
this is true, we observe that eqns (9) and (10) give

Z
k
"c

k
b~4
k

n~1
k

Z
k~1

"1Z
k~1

. (11)

Thus, Z, the quantity being minimized, is invari-
ant as long as c

k
b~4
k

n~1
k

"1 for each k. This
shows that in this setting, a network can have n

k
varying with k and still be &&e$cient''. A "nding of
fractal networks would have provided a deriva-
tion of Murray's empirical law which essentially
states that b"n~1@3 for the outer reaches of the
cardiovascular system (Murray, 1926) (see the
Appendices for more details).

Regardless of these issues, the assumption of
Poiseuille #ow leads to an approximate meta-
bolic scaling law with a"1. WBE suggest that
modeling pulsatile #ow will provide the explana-
tion for a"3/4. The impedance now takes the
form

ZJ

N
+
k/0

h1@2
k

J2nr5@2
k

N
k

, (12)

where h
k
is the thickness of the vessel wall. How-

ever, as explained in Appendix B, the equations
given by the Lagrange multiplier technique are
inconsistent. For example, the equations give
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h
k
"!r

k
/5 which means negative wall thick-

nesses for blood vessles when they are by de"ni-
tion positive (Womersley, 1955a, b). If reasonable
modi"cations are made to circumvent this issue,
then the equations lead to a"6/7 rather than 3/4.

In order to obtain the scaling a"3/4 one
could abandon the minimization calculation and
assume a fractal, space-"lling, area-preserving
network where BJN

c
. In support of such an

assumption, there is good empirical evidence that
blood systems are well approximated by fractals
(Zamir et al., 1983; Fung, 1990; Kassab et al.,
1993a, b). With regards to the assumption that
BJN

c
, direct measurements for capillary den-

sity (N
c
/MJMa~1) are reported by Hoppeler

et al. (1981) with exponents for the scaling of
capillary density across species ranging from
!0.21$0.04 to !0.07$0.11 for various re-
gions of muscle. These numbers are in keeping
with higher exponents for the scaling of N

c
with

M in the range 0.75}1.00, but whether or not
BJN

c
is itself an unproven assumption. It is

probably more likely that the number of capillar-
ies scales with the maximum metabolic rate
which is thought to scale with an exponent closer
to unity (Bishop, 1999). At rest not all capillaries
di!use oxygen simultaneously and the limiting
factor for basal metabolic rate might not be N

c
.

A simpler and more recent theory based on the
idea of networks has been proposed by Banavar
et al. (1999). Here, networks "ll D-dimensional
hypercubes that have ¸D uniformly distributed
transfer sites. The theory is applied to both three-
dimensional organisms and two-dimensional
river networks. For organisms, Banavar et al.
"nd blood volume scales as <

b
J¸(D`1). Since

Banavar et al. further assume that BJ¸D and
that <

b
JM, they conclude that BJMD@(D`1).

Thus, when D"3, this gives a"3/4.
However, transfer sites are assumed to be

invariant in size and hence ¸D appears to be
proportional to volume < and consequently
M. Thus, both the scalings <

b
JM and

<
b
JM(D`1)@D are used, creating an apparent in-

consistency. The scaling of the distance between
transfer sites and the distinction between Euclid-
ean and non-Euclidean length scales could pos-
sibly be clari"ed to help resolve the dilemma.
Note that <

b
JM is supported empirically

(Stahl, 1967).
FOUR-DIMENSIONAL BIOLOGY

Over two decades ago it was suggested by
Blum (1977) that a"3/4 could be understood by
appealing to a surface law of metabolism in
a four-dimensional space. In d dimensions, the
&&area''A of the hypersurface enclosing a d-dimen-
sional hypervolume scales like AJ<(d~1)@d.
When d"4, AJ<3@4, although how this could
be reconciled with our three-dimensional world
was not explained and the theory has been
refuted elsewhere (Speakman, 1990).

Recently, an attempt by West et al. (1999) has
been made to re"ne and generalize their earlier
work on metabolic scaling (West et al., 1997)
using an optimization procedure to explain how
an e!ective fourth dimension could yield a"3/4.
The idea put forward is that organisms have
evolved to maximize the scaling of the e!ective
surface area, a, across which resources are ex-
changed. The area a and the biological volume
v are shown to satisfy the relation

aJv(2`ea)@(3`ev), (13)

where e
a

and e
v

are exponents to be determined
by optimization. West et al. then introduce the
relationship v"al where l is a characteristic
length of the organism. With the further assump-
tion that vJM, eqn (13) then becomes

aJM(2`ea)@(3`ea`el), (14)

where e
l
"e

v
!e

a
. With the conditions that

0)e
l
, e

a
)1, West et al. "nd that e

a
"1 and

e
l
"0. Equation (14) then yields aJM3@4.

Assuming aJB, this gives a"3/4.
However, this result contradicts the geometric

fact that transfer area can maximally scale as
volume, i.e. aJv, which gives a"1. Indeed, this
result is obtained by optimizing eqn (13) instead
of eqn (14). Doing so leads to e

a
"1 and e

v
"0,

assuming 0)e
a
, e

v
)1, which gives aJM, i.e.

a"1. In order to reconcile this with the results of
West et al., we note that the bounds 0)e

l
, e

a
,

e
v
)1 are overly restrictive. For example,

e
l
"!1 corresponds to the relevant length l be-

ing invariant with respect to M and, in this case,
eqn (14) then gives the same scaling as (13), namely,
aJM. Thus, the contradiction is resolved and
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the optimization procedure is seen to yield a"1
rather than 3/4.

Conclusions

The possibility that there might be a simple
law to explain the scaling of metabolic rates still
captures the imagination of many seeking to
understand what Kleiber called &&the "re of life''
(Kleiber, 1961). It is perhaps for this reason that
so many researchers, theorists and empiricists
alike, have struggled to deduce explanations for
the deviations from the simplest expectation that
a"2/3.

The shift from a"2/3 to 3/4 began with the
early work by Kleiber and Brody who found
aK0.72}0.73 in limited data sets (Kleiber, 1932;
Brody, 1945). Afterwards it was the work by
Hemmingsen (1960) and a general consensus
among practitioners (Blaxter, 1965) that simple
fractions would be a more convenient standard
that led to the widespread acceptance of a"3/4.
Subsequently, a"3/4 has often been taken as
fact despite the absence of a comprehensive
theory and contradictory evidence from large
literature surveys. Most prominent among these
surveys are those by Bartels (1982), Bennett
& Harvey (1987), and Heusner (1991b), which
suggest that a depends on body size and taxo-
nomic level.

We have re-analysed a collection of signi"cant
empirical data sets. We have constructed a set
of hypothesis tests which show that in the data
sets of Kleiber, Brody, Bennett and Harvey, and
Heusner, pure 3/4-law scaling is not present. For
both mammals with M)10 kg, and all birds we
are unable to reject the null hypothesis a"2/3.
For mammals with M*10 kg, systematic devi-
ations from a"2/3 appear to be present in all of
the data sets, the roots of which might simply
be a consequence of a change in body shape for
large mammals or might point to a greater evolu-
tionary advantage of large mammals.

We have also reviewed historic and recent
attempts to justify a"3/4 theoretically. Many of
the early e!orts to explain the scaling of meta-
bolic rates via dimensional analysis and other
crude scaling techniques have been dismissed in
the past. Although recent attempts to link meta-
bolic rates to network structure are noteworthy
they do not prove the stated conclusions. None-
theless, we believe that research exploring the
role of geometric form and the dynamics of
growth in constraining the behavior of networks
might lead to important progress in organismal
biology.

Stated simply, after a systematic review of the
available empirical data and theoretical argu-
ments, we "nd evidence that there may not be
a simple scaling law for metabolic rate, and if it
were to exist, we also "nd little compelling evid-
ence that the exponent should be a"3/4.
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Appendix A

Network Optimization Calculation for
Poiseuille Flow

We follow the conventions of WBE and con-
sider the case of Poiseuille #ow as a means to
derive a version of Murray's (1926) law and the
fractal nature of nutrient supply networks. The
impedance of the network is
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8kl
k
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. (A.1)

Minimizing the network's impedance with the
Lagrange constraints of "xed mass and blood
volume along with the assumption of a space
"lling network leads to the auxiliary function
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Taking partial derivatives with respect to l
j
, r

j
and N

j
we, respectively, have
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Considering "rst equation (A.4), we obtain
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Since this holds for all j then
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where b
j
"r

j
/r

j~1
and n
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j~1
which dem-

onstrates that
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giving a restricted version of Murray's (1926) law.
Since Murray's law does not require that the n

j
vessels attaching to a level j!1 vessel all have
the same radius, the above agrees with the law up
to the limits imposed by the present model's
assumptions.

After rearranging eqn (A.3) we obtain
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where we have used the form for j obtained in
eqn (A.6). Note that derivatives with respect to



&&3/4-LAW'' OF METABOLISM 25
N
j
, eqn (A.5), yield the same expression for j
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given above:
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The three equations [eqns (A.3)}(A.5)] are there-
fore consistent but redundant. The redundancy
can be seen to lie in the fact that the auxiliary
function F

m
in eqn (A.2) can be written in terms of

only two variables for each level k: m
k
"N

k
l3
k

and
f
k
"r

k
/l
k
. Equation (A.2) thus becomes
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Thus, one is only able to obtain information such
as ratios of variables rather than exact values for
network parameters.

The scaling of length ratios are explicitly deter-
mined by WBE's space-"lling assumption
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"C. (A.12)

Thus, even without implementing the minimiz-
ation procedure the space-"lling assumption
implies
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where c
k
"l

k
/l
k~1

is the length ratio. Finally,
eqns (A.8), (A.9) [or (A.10)] and (A.13) combine to
give

j
k

j
k~1

"

r4
k~1

N2
k~1

l2
k~1

r4
k
N2

k
l2
k

"b~4
k

n~2
k

c~2
k

"(n~1@3
k

)~4n~2
k

(n~1@3
k

)~2"1 (A.14)

so we have j
k
"j

0
for all k.
The calculations are seen to be consistent and
to yield an agreement with Murray's (1926) law.
Variations with respect to M are more subtle
since N"N (M) and provide higher-order cor-
rections. However, one of WBE's crucial results,
n
k
"n, i.e. that the network is fractal, has not

been reproduced. One way to see this is to con-
sider the impedance as impedances in series:
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Using eqns (A.8) and (A.13) we have that
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In other words, the same impedance appears at
each level. So
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since r
c
and l

c
are assumed to be independent of

mass and N
c
is the number of capillaries. This is

true regardless of whether or not the structure is
fractal. The network has to possess branching
ratios that collectively maintain the same impe-
dance from level to level [i.e. c

k
/b4

k
n
k
"1 as per

eqn (A.16)] but there is no requirement that the
individual ratios c

k
, b

k
and n

k
be independent of

level. Moreover, without the result that the net-
work is fractal, this minimization procedure no
longer yields the 3/4 power-law scaling of meta-
bolic rate [see eqn (7)].

Appendix B

Network Optimization Calculation for
Pulsatile Flow

In the case of Poiseuille #ow, WBE "nd a net-
work structure where area preservation is not
satis"ed (b

k
On~1@2

k
) and, e!ectively, a"1 (if

n
k
"n is assumed). The intended "x is to properly
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treat pulsatile #ow of mammalian blood circu-
lation systems. By doing so we should obtain
b
k
"n~1@2

k
and c

k
"n~1@3

k
. Together with the as-

sumption n
k
"n, this leads to the conclusion,

N
c
JM3@4, and assuming BJN

c
, it would imply

a 3/4-law of metabolic scaling.
The calculation relies on the results of Womer-

sley's work on pulsatile #ow (Womersley,
1955a, b). Womersley's calculations lead to
a modi"cation of the Poiseuille impedance. For
large tubes one has
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where c
0
"(Eh/2or)1@2 is the Korteweg}Moens

velocity, E the Young's modulus, h the thickness
of the vessel wall, o the blood density and r is, as
before, the vessel radius (Womersley, 1955a, b).
This impedance appears to be per unit length but
it has the correct dimensions showing that for
a #ow with pulsatile forcing in an elastic tube, the
impedance is independent of the tube length.

Womersley's impedance suggests a new auxili-
ary function
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Note that the extra variable of wall thickness, h
k
,

has been included in the second term to make it
a measure of the total volume taken up by the
blood system. The variable h

k
must appear in the

constraints if the minimization is to make any
sense and the blood volume is the only reason-
able choice*the blood volume constraint be-
comes a network volume constraint.

On considering variations of eqn (B.2) with
respect to r

j
and h

j
we obtain
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Since the second term of these equations are the
same we then have an equality between the "rst
terms which simpli"es to show that
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This suggests that r
k
is the distance to the outer

wall of blood vessels. We are then measuring the
blood volume as before and we should have had
(r
k
!h

k
) instead of (r

k
#h

k
) in the auxiliary func-

tion. However, it is apparent from Womersley
(1995a, b) that r is the radius as measured from
the center to the inner wall of a blood vessel
rather than the outer wall. There appears to be
no reasonable and simple way of including the
h
k

into a constraint function and we have an
ill-posed problem.

Nevertheless, we may proceed with the calcu-
lation by adding an extra assumption that
h
k
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0
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where a
0
'0. The modi"ed version of

eqn (B.3) now gives j as
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Since the right-hand side is independent of j we
must therefore have
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and given the space-"lling constraint, c
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we obtain
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which gives a relationship between the radius and
number ratios that is not area preserving:
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A further complication here is that the equations
obtained by setting LF

w
/Ll

j
"0 and LF

w
/LN

j
"0

are not consistent.
As in the case of Poiseuille #ow, n

k
"n is not

derivable. Assuming that n
k
"n and using

eqn (7) we "nd that the metabolic exponent
should be
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as opposed to the stated 3/4.
Note that if we had found b
k
"n1@2

k
then the

3/4 law would have been deduced (again, assum-
ing n

k
"n). Another observation here is that if

the Womersley impedance is taken together with
b
k
"n~1@2

k
then we "nd that the minimum total

impedance is obtained irrespective of the ratios n
k

being equal or not. So, in the cases of Poiseuille
and pulsatile #ow a fractal network is not neces-
sary for energy dissipation to be minimized. Ad-
ditionally, in the case of a pulsatile #ow network,
a"3/4 cannot be derived from the optimization
problem as stated. It may instead be derived by
assuming an area preserving, space-"lling, fractal
network where BJN

c
.


	Introduction
	Measuring the Metabolic Exponent
	FIGURE 1
	TABLE 1
	FIGURE 2
	TABLE 2
	TABLE 3
	TABLE 4

	Fluctuations about Scaling
	FIGURE 3
	TABLE 5

	Hypothesis Tests
	TABLE 6
	TABLE 7
	TABLE 8
	FIGURE 4

	Theories
	FIGURE 5

	Conclusions
	REFERENCES
	Appendix A
	Appendix B

