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Abstract Theories of scaling apply wherever similarity exists across many
scales. This similarity may be found in geometry and in dynamical processes. Uni-
versality arises when the qualitative character of a system is sufficient to quantitatively
predict its essential features, such as the exponents that characterize scaling laws.
Within geomorphology, two areas where the concepts of scaling and universality have
found application are the geometry of river networks and the statistical structure of
topography. We begin this review with a pedagogical presentation of scaling and
universality. We then describe recent progress made in applying these ideas to net-
works and topography. This overview leads to a synthesis that attempts a classification
of surface and network properties based on generic mechanisms and geometric con-
straints. We also briefly review how scaling and universality have been applied to
related problems in sedimentology—specifically, the origin of stromatolites and the
relation of the statistical properties of submarine-canyon topography to the size dis-
tribution of turbidite deposits. Throughout the review, our intention is to elucidate not
only the problems that can be solved using these concepts, but also those that cannot.

INTRODUCTION

Geomorphology is the science devoted to the pattern and form of landscapes
(Dietrich & Montgomery 1998, Scheidegger 1991). Studies range from physical
theories for landscape evolution to inference of earth history from surface struc-
tures. In any such study, it is imperative to distinguish what makes landscapes
alike from what makes them different. Here we review theoretical aspects of this
challenge and their relevance to observational measurements.

Extensive studies over the last half-century have led geomorphologists to dis-
cover a wealth of empirical ‘‘laws’’ that seem to indicate that some properties of
landscapes are invariant. These laws are especially prevalent in fluvial geomor-
phology—the branch of the subject that deals with how water, and rivers in par-
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ticular, shapes landscapes. Indeed, the literature of river networks is replete with
observations that have been elevated to laws, attached to names such as Horton,
Hack, and Tokunaga (Horton 1945, Hack 1957, Tokunaga 1966, Abrahams 1984,
Rodrı́guez-Iturbe & Rinaldo 1997). Looking beyond river networks, one sees that
topography naturally encodes more information. Here, too, there have been claims
that statistical measures such as power spectra and correlation functions have a
generic form that may also be invariant (e.g. see Turcotte 1997).

Many of these empirical measures are expressed as scaling laws. Scaling laws
are typically of power law form and indicate an invariance under appropriate
changes of scale. Some may also be related to fractal dimensions (Mandelbrot
1983); they have surely gained much of their popularity from their association
with fractal geometry.

Our purpose here, however, is to stress not the geometric interpretation of
these scaling laws, but rather their significance in terms of physical and geological
processes. This is often a difficult task. For example, Hack’s law states that the
length l of the main stream of a river basin scales like a power h of the basin’s
area a (i.e. l } ah). From the pioneering studies of Hack (1957) to the present
day (Gray 1961, Rigon et al 1996, Maritan et al 1996b), one often finds that h .
0.6. Various questions arise: Why is this a power law relation? Why is h . 0.6?
How much variation is there? Could there be one universal exponent that all
networks strive for, perhaps an elegant fraction such as h 4 3/5 or h 4 7/12? Is
it possible that l } a0.6 will end up in a metaphorical zoo, left to be named,
classified, and admired, but not understood?

The notion of universality allows one to go beyond zoology. The idea, in a
nutshell, is that many complicated phenomena, sometimes from vastly different
fields, exhibit the same scaling laws. When one pares away the details, common
generic processes can often be identified. One has then determined a universality
class. The utility of the idea lies in what is learned from the identification of the
generic mechanisms.

Universality is of unquestionable power and beauty in fundamental fields
where one seeks the ‘‘essential’’ mechanisms common to diverse phenomena.
However, in many areas of science one is interested not only in generic mecha-
nisms but also in the details that make one system different from another. We
argue that geomorphology, and indeed many of the earth sciences, are in the latter
category. Universality’s importance nevertheless remains undiminished: it allows
us to simultaneously distinguish what different systems (e.g. two river basins)
have in common in addition to what makes them different.

This review is intended to be pedagogical and reasonably self-contained rather
than exhaustive and encyclopedic. We begin by discussing the concepts of scaling
and universality in the context of their applications to networks and topography.
We then concentrate on studies of networks and topography proper. Because
observational data rarely allows access to time-dependent statistics, our focus is
on stationary (steady-state) properties. Here, theories of random networks and
surfaces receive much emphasis. In the case of networks, we attempt a synthesis
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of widely scattered theoretical results and propose how they may explain obser-
vations of scale dependence in Hack’s law. We suggest that slow ‘‘crossovers’’
from one scale-dependent regime to another may account for observed variations
in the Hack exponent.

Our discussion of topography is framed by the consideration of universality
classes demarcated by stochastic partial differential equations for surface evolu-
tion. Here the theories are again quite general, perhaps so much so that their
applicability to geomorphology could be rightly questioned. We attempt a bal-
anced presentation that points out the possible limitations in addition to the obvi-
ous advantages of generic theories. The latter receive implicit emphasis through
a brief review of how these surface evolution models have also been applied to
related problems in sedimentology—namely, the origin of ancient sedimentary
structures known as stromatolites and the relation of submarine topography to the
size distribution of turbidite deposits.

We conclude the review with a brief discussion of open problems. We point
out that a key missing link is the relationship between theories for networks and
theories for surfaces. Even more crucial is the need for dynamical theories of
networks and surfaces whose time-dependent aspects may be tested by accessible
data.

In closing this introduction, we refer the reader to the recent review of river
networks by Rinaldo et al (1998) and the extensive overview provided in the
recent book by Rodrı́guez-Iturbe & Rinaldo (1997). Not wishing to cover the
same ground in our discussion of networks, we endeavor to provide complemen-
tary and novel thoughts, and refer to these other treatments and the references
therein at appropriate places in our review.

SCALING

Consider the following problem in fluvial geomorphology: If one doubles the
length of a stream, how does the area drained by that stream change? Or, inversely,
how does basin shape change when we compare basins of different drainage
areas? The concept of scaling addresses such questions.

Basin Allometry

Figure 1 shows two river basins along with a sub-basin of each. A basin can be
defined at any point on a landscape. Embedded within any basin is a multitude
of sub-basins. In considering our preceding question, we must first define some
dimensions. A reasonable way to do this is to enclose each basin by a rectangle
with dimensions L\ and L' as illustrated in Figure 1a. L|| is the longitudinal extent
of the basin, and L' is the basin’s characteristic width. By this construction, the
area a of a basin is related to these lengths by
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Figure 1 A pair of river basins, each with a sub-basin scaled up for comparison with the
original. The basins in (a) are self-similar. The basins in (b) are not.

a } L L . (1)\ '

Measurements taken from real river basins suggest that L' scales like a power H
of L\ (Ijjasz-Vasquez et al 1994, Maritan et al 1996b). In symbols,

HL } L . (2)' \

Substituting Equation 2 into Equation 1, we obtain

1`Ha } L . (3)\

Equations 2 and 3 are scaling laws. Respectively, they describe how one length
scales with respect to another, and how the total area scales with respect to one
of the lengths.

Figure 1a corresponds to H 4 1, known as geometric similarity or self-
similarity. As the latter appellation implies, regardless of size, basins look the
same. More prosaically, lengths scale like widths.

The case H ? 1 is called allometric scaling. Originally introduced in biology
by Huxley & Teissier (1936) ‘‘to denote growth of a part at a different rate from
that of a body as a whole,’’ its meaning for basin size is illustrated by Figure 1b.
Here, 0 # H , 1, which means that if we examine basins of increasing area,
basin shape becomes more elongate. In other words, because (1 1 H)/
(1 ` H) . 0 and

1(11H) 1(11H)/(1`H)L /L } L } a , (4)' \ \

the aspect ratio L'/L\ decreases as basin size increases.
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Random Walks

Our next example is a random walk (Feller 1968, Montroll & Shlesinger 1984).
We describe it straightforwardly here, noting that random walks and their geo-
morphological applications will reappear throughout the review.

The basic random walk may be defined in terms of a person who has had too
much to drink stumbling home along a sidewalk. The disoriented walker moves
a unit distance along the sidewalk in a fixed time step. After each time step, our
inebriated friend spontaneously and with an even chance turns about face or
maintains the same course, and then wanders another unit distance only to repeat
the same erratic decision process. The walker’s position xn after the nth step,
relative to the front door of his or her local establishment, is given by

n11

x 4 x ` s 4 s , (5)n n11 n11 o k
k40

where each sk 4 51 with equal probability and x0 4 0.
There are many scaling laws associated with random walks. Probably the most

important of these describes the root-mean-square distance that the average
walker has traveled after n steps. Since xn is the sum of independent increments,
its variance is given by the sum of the individual variances,2^x &n

n

2 2 2^x & 4 ^s 1 ^s & &, (6)n o i i
i41

where ^•& indicates an average over an ensemble of walkers. Since ^si& 4 0 and
, we have . Defining , we obtain2 2 2 1/2s 4 1 ^x & 4 n r 4 ^x &i n n n

1/2r 4 n . (7)n

Generalizing the scaling (Equation 7) to continuous time t and space x, we have
r(t) } t1/2. Now note that

11/2r(t) 4 b r(bt). (8)

In other words, if one rescales time and space such that t r bt and x r b1/2x, the
statistics of the random walk are unchanged. Figure 2 illustrates the meaning of
these rescalings. The two random walks shown—the lower being a portion of the
upper rescaled—are said to be statistically equivalent.

More generally, functions f(x) that satisfy equations of the form f(x) 4
b1a f(bx) are called self-affine (Mandelbrot 1983). This relation need not be exact
and indeed usually only holds in a statistical sense. An example already given is
the scaling of basin widths found in Equation 2. Also, when f measures the ele-
vation of a surface at position x, a is called the roughness exponent (Barabasi &
Stanley 1995).
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Figure 2 Two example random walks where the lower walk is the inset section of the
upper walk ‘‘blown up.’’ Random walks are statistically equivalent under the rescaling of
Equation 8. Here, b 4 1/5 so the rescaling is obtained by stretching the horizontal axis
by a factor of 5 and the vertical axis by 51/2.

Probability Distributions

What is the size distribution of river basins? In other words, if one chooses a
random position on a landscape, what is the probability that an area a drains into
that point? As we will see, scaling laws appear once again, this time in the form
of probability distributions.

Imagine that the boundaries on each side of a basin are directed random walks.
In this context, a directed random walk is one in which the random motion is
always in the x-direction of Figure 1, while the y-direction plays the role of time.
Taking the left boundary to be fl(y) and the right boundary to be fr(y), a basin
is formed when these two walks intersect (i.e. a pair of sots collide). Because fl

and fr are independent, the difference f(y) 4 fr(y) 1 fl(y) is yet another random
walk. We see then that the distribution of basin sizes may be related to the prob-
ability that the random walk f(y) returns to its initial position after n steps for
the first time. This is the classic problem of the first return time of a random walk.
As the number of steps becomes large, the asymptotic form of the solution is
(Feller 1968)

1
13/2P(n) 4 n . (9)

2 p!

In terms of basin parameters, we may take n } l } L\, where l is the length of the
main stream. Note that the assumption l } L\ is valid only for directed random
walks; this is discussed further in the following section on networks. We therefore
have the distribution of main stream lengths,
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13/2P (l) } l . (10)l

Because the typical width of such a basin of length l scales like l1/2 (see Equation
7), the typical area a } l3/2. Thus the probability of basin areas is

dl
P (a) 4 P [l(a)]a l da

14/3} a . (11)

As expressed by Equation 2, basin widths scale in general like , where 0 # HHL\

, 1 rather than the fixed H 4 1/2 of random walks. In keeping with this obser-
vation, the distributions for area and main stream also generalize. Thus we write

1c 1sP (l) } l and P (a) } a . (12)l a

Furthermore, the exponents s and c are not independent and their connection lies
in the aforementioned Hack’s law, one of the most well-known scaling laws of
river networks. Hack’s law expresses the variation of average main stream length
l with area a,

hl̄ } a , (13)

where h is known as Hack’s exponent. The averaged value l is required here
since there are noticeable statistical fluctuations in Hack’s law (Maritan et al
1996b, Rigon et al 1996, Dodds & Rothman 2000). For the simple random model
we have l } a2/3 and therefore Hack’s exponent h 4 2/3 (Takayasu et al 1988,
Huber 1991). Now, as per Equation 11, we can write

¯dl¯P (a) 4 P [l(a)] (14)a l da
h(11c)11} a . (15)

Using Equation 12, we obtain our first scaling relation,

s 4 h(1 1 c) 1 1. (16)

In general, scaling relations express exponents as algebraic combinations of other
exponents. Such relations abound in theories involving scaling laws, and as such
provide important tests for both theory and experiment.

Scaling Functions

In any physical system, scaling is restricted to a certain range. For example, basins
as small as a water molecule are clearly out of sanity’s bounds. At the other
extreme, drainage areas are capped by the size of the overall basin, which is
dictated by geology. In the customary terminology, we say that scaling breaks
down at such upper cutoffs because of finite-size effects.

As it turns out, this feature of scaling is important both in theory and in prac-
tice. Measurements of exponents are made more rigorous and more can be
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achieved with limited system size. In the case of river networks, Maritan et al
(1996b) demonstrated how finite-size scaling can be used to derive a number of
scaling relations. We outline the basic principle below.

Consider the probability distribution of basin areas Pa(a) } a1s. We can more
generally write it as

1sP (a) 4 a f(a/a ), (17)a *

where f is referred to as a scaling function and a* is the typical largest basin area.
The behavior of the present scaling function is

c for x K 1
f(x) } . (18)50 for x k 1

Therefore, for a K a* we have the power law scaling of Pa(a), whereas for a k

a*, the probability vanishes.
We enjoy the full worth of this construction when we are able to examine

systems of varying overall size. We can recast the form of Pa(a) with lengths by
noting from Equation 3 that where we have set 1 ` H 4 D. This givesDa } L\*

1Ds D˜P (a|L ) 4 L f(a/L ), (19)a \ \ \

where is a new scaling function which, because of Equation 12, has the limitingf̃
forms

1sx for x K 1
f̃(x) } . (20)50 for x k 1

We now have two exponents involved. By examining basins of different overall
size L we obtain a family of distributions upon which we perform a scaling
collapse. Rewriting Equation 19, we have

sD D˜L P (a|L ) 4 f(a/L ), (21)\ a \ \

so that plots of against should lie along one curve, namely the graphDs DL P a/L\ a \

of the scaling function . Thus, by tuning the two exponents s and D to obtainf̃
the best data collapse, we are able to arrive at strong estimates for both.

UNIVERSALITY

We would like to know precisely which aspects of a system are responsible for
observed scaling laws. Sometimes, seemingly different mechanisms lead to the
same behavior. If there is truly a connection between these mechanisms, then it
must be at a level abstract from raw details. In scaling theory, such connections
exist and are heralded by the title of universality. In this section, we consider
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several examples of universality. This will then lead us into problems in geo-
morphology proper.

More Random Walks: Crossover Phenomena

First, consider once again the drunkard’s walk. Suppose that instead of describing
the walk as one with discrete steps of unit length, the walker instead lurches a
distance sn at time n, with sn now drawn from some probability distribution P(s).
Take, for example, P(s) } exp{1s2/2r2}, a Gaussian with variance r2. We then
find from Equation 6 that , and once again the characteristic excursion2 2^x & 4 nrn

rn } n1/2. Thus the scaling is the same in both cases, even though the details of
the motion differ. Loosely stated, any choice of P(s) will yield the same result,
as long as the probability of an extremely large step is extremely small. This is
an especially simple but nonetheless powerful instance of universality, which in
this case derives directly from the central limit theorem.

Real random walks may of course be more complicated. The archetypal case
is Brownian motion. Here we consider the random path taken by a microscopi-
cally small object, say a tiny sphere of radius r and mass m, immersed in a liquid
of viscosity l. Within the fluid, random molecular motions induced by thermal
agitations act to give the particle random kicks, thus creating a random walk. A
classical model of the process, owing to Langevin, is expressed by the stochastic
differential equation (Reif 1965, Gardiner 1985)

dv
m 4 1av ` g(t). (22)

dt

Here v is the velocity of the particle, g(t) is uncorrelated Gaussian noise, and
a 4 6prl is the hydrodynamic drag that resists the motion of the sphere. Now
note that the existence of the drag force creates a characteristic time scale s 4
a/m. For times t K s, we expect viscous damping to be sufficiently unimportant
so that the particle moves in free flight with the thermal velocity characteristic of
molecular motion. On the other hand, for times t k s, the effect of any single
kick should damp out.1 Solving Equation 22 for the mean-square excursion ^x2&,
one finds (Reif 1965, Gardiner 1985)

2t for t K s2^x & } . (23)5t for t k s

The first of these relations describes the ballistic phase of Brownian motion,
whereas the second describes the diffusive phase. The point here is that there is
a crossover from one type of behavior to another, each characterized by a partic-
ular exponent. The existence of the ballistic phase at small times, like the diffusive

1Although the essence of the problem is captured here, the full story is in truth richer (e.g.
Alder & Wainwright 1970).
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Figure 3 Three mechanisms of surface growth corresponding to the three terms of Equa-
tion 24. Diffusive smoothing is depicted in (a), growth normal to the surface in (b), and
random growth in (c). Surfaces are shown for each mechanism at times t1, t2, and t3 where
t1 ,t2 , t3. In (a), the arrows represent the flux of deposited material, and in (b) they
indicate the direction of growth (for k . 0).

phase at large times, is independent of the details of the motion. Brownian motion
thus provides an elementary example of a dynamical process that can fall into
one of two classes of motion, depending on which processes dominate at which
times. In general, such crossover transitions range from being sharp to being long
and drawn out. Later in this review, we argue that crossovers are an important
feature of Hack’s law.

Surface Evolution

Universality can manifest itself in ways more subtle and much deeper than the
simple random walks discussed previously. To illustrate this, we consider an
example of particular relevance to geomorphology: classes of surface evolution.

We consider a surface , where h is the height at position at time t. Ar rh( x, t) x
wide variety of models of growing or eroding surfaces may be modeled by the
stochastic equation (Kardar et al 1986, Barabasi & Stanley 1995, Halpin-Healy
& Zhang 1995, Marsili et al 1996)

]h k r2 24 m¹ h ` |¹h| ` g( x, t). (24)
]t 2

The individual effect of each of the three terms on the right-hand side is portrayed
in Figure 3.

The first term represents diffusion, i.e. the tendency of bumps to smooth out.
The second term reflects the tendency of a surface to grow or erode in a direction
normal to itself. Its quadratic form results from retaining the leading-order non-
linearity that accounts for the projection of this growth direction on the (vertical)
axis on which h is measured; the coefficient k is related to the velocity of growth,
or alternatively, the erosion rate. Finally, is stochastic noise, uncorrelatedrg( x, t)
in both space and time and with zero mean and finite variance. It represents time-
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and space-dependent inhomogeneities in material properties (e.g. soil type) and
forcing conditions (e.g. rainfall rate).

Equation 24 is written such that h represents the fluctuations of height in a
frame of reference moving with velocity k. These fluctuations contain the statis-
tical signature of the physical growth process. In particular, three classes of sur-
face evolution may be described by Equation 24. These classes may be
characterized by the behavior of the height-height correlation function

2 1/2C(r, t) 4 ^|h(x ` r, t) 1 h(x, t)| & . (25)x

The function C, here written under the assumption that , withrC( x ) 4 C(x)
, measures the roughness of a surface, or more precisely, the root-mean-rx 4 | x |

square height fluctuation over a distance r. We are interested in the scaling behav-
ior with respect to both space and time.

The first class of surface evolution models, called random deposition, is
obtained by setting m 4 k 4 0, leaving only the noise term. Because the variance
of the height of each point grows linearly and independently with time, so does
the variance of the height difference of any two points, independent of their
separation r. Thus

1/2C(r, t) } t . (26)

The second class is noisy diffusion, where now only k 4 0. It represents random
fluctuations mediated by diffusive smoothing. As such, at a particular time there
is a length scale below which diffusion balances noise and above which noise
continues to increase the roughness. Indeed, one may show that Equation 24 is
invariant with respect to the self-affine transformations t r bzt and x r bax, and
that (Family 1986)

zaC(r, t) 4 r f (kt/r ) (27)

describes simultaneously the dependence of C on both r and t. Here, k is a constant
with appropriate dimensions and f(y) is a scaling function, as discussed in the
previous section on scaling. For the particular case of noisy diffusion, f may be
calculated analytically. However, the preceding physical arguments suffice to
point out that for large values of y, i.e. kt k rz, f(y) approaches a constant. On
the other hand, for kt K rz, the r-dependence in the two factors on the right side
of Equation 27 must cancel, yielding C(r,t) } ta/z. The actual values of a and z
depend on the dimensionality of the growing or eroding surface. For one-
dimensional surfaces, such as the transects of Figure 3, a 4 1/2 and z 4 2
(Edwards & Wilkinson 1982, Family 1986, Barabasi & Stanley 1995). For the
more relevant situation of a two-dimensional surface, one finds that again z 4 2
but that C(r,t) } (log r)1/2. Because this r-dependence is very small, it is often
taken as equivalent to having a 4 0.

Real geological surfaces are often thought to exhibit fractal properties (e.g.
Turcotte et al 1998), which in the present context means a . 0. Clearly, noisy
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diffusion would then be an inadequate model. Including the nonlinear term of
Equation 24, however, changes affairs considerably. The dynamical scaling equa-
tion (Equation 27) is still satisfied, but now, in the case of one-dimensional inter-
faces, one may obtain the exact solution a 4 1/2 and z 4 3/2, for any k ? 0
(Kardar et al 1986). For the two-dimensional case, theory predicts that a ` z 4
2, but there is no complete analytic solution. Thus far, numerical studies have
estimated that 0.2 & a & 0.4. Indeed, a large literature has evolved to understand
the behavior of the KPZ equation (introduced by Kardar, Parisi, and Zhang) in
higher dimensions (Krug & Spohn 1992, Barabasi & Stanley 1995, Halpin-Healy
& Zhang 1995).

The point of this brief review of surface roughening models is that discrete
universality classes of interface dynamics may be defined. Each class is defined
by the dominant physical mechanisms and the scaling exponents that they pro-
duce. It is important to note additionally that Equation 24 is not as specialized as
it may naı̈vely seem. For example, instead of surface diffusion we may find
surface tension. Or a microscopic process of local rearrangement could exist, and
its large scale simply behaves diffusively. No matter what their origin, all these
processes are described by ¹2h. Equally if not more important, the growth normal
to the interface, represented by the nonlinear term, is relevant to a variety of
processes in which the microscopic evolution of a surface includes processes that
depend on the amount of the exposed surface area and not just its inclination. As
we have already stated, the nonlinear term is the leading-order nonlinearity in an
expansion that takes account of this growth factor. It turns out that one may
establish the irrelevance of higher-order terms. ‘‘Irrelevance’’ in this context
means that the values of the scaling exponents a and z do not change. This is an
integral part of the notion of universality, because it means that asymptotically—
e.g. at long times and large length scales—different models, different equations,
and hence different processes can behave the same way.

A Little History

Scaling and universality are deep ideas with an illustrious past. Therefore, a brief
historical perspective is in order.

In essence, scaling may be viewed as an extension of classical dimensional
analysis (Barenblatt 1996). Our interest, however, is strongly influenced by stud-
ies of phase transitions and critical phenomena that began in the 1960s. Analogous
to the present situation with river networks, equilibrium critical phenomena at
that time presented a plethora of empirical scaling exponents for which there was
no fundamental ‘‘first principles’’ understanding. Kadanoff and others then
showed how an analysis of a simple model of phase transitions—the famous Ising
model of statistical mechanics—could yield the solution to these problems
(Kadanoff et al 1966). Their innovation was to view the problem at different
length scales and search for solutions that satisfied scale invariance.
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These ideas were richly extended by Wilson’s development of the calculational
tool known as the renormalization group (Wilson & Kogut 1974). This provided
a formal way to eliminate short-wavelength components from problems, while at
the same time finding a ‘‘fixed point’’ from which the appropriate scaling laws
could be derived. The renormalization group method then showed explicitly how
different microscopic models could yield the same macroscopic dynamics, i.e.
fall within the same universality class.

These ideas turned out to have tremendous significance well beyond equilib-
rium critical phenomena. [See, for example, the brief modern review by Kadanoff
(1990) and the pedagogical book by Goldenfeld (1992).] Of particular relevance
to geomorphology are the applications in dynamical systems theory. An outstand-
ing example is the famous period-doubling transition to chaos, which occurs in
systems ranging from the forced pendulum to Rayleigh-Bénard convection (Stro-
gatz 1994). By performing a mathematical analysis similar to that of the renor-
malization group, Feigenbaum (1980) was able to quantitatively predict the way
in which a system undergoes period-doubling bifurcations. The theory applies
not only to a host of models, but also to widely disparate experimental systems.

Underlying all this work is an effort to look for classes of problems that have
common solutions. This is the essence of universality: If a problem satisfies qual-
itative criteria, then its quantitative behavior—scaling laws and scaling rela-
tions—may be predicted. In the remainder of this review, we explore these
concepts as they apply to geomorphology.

RIVER NETWORKS

River networks were introduced in the discussions of scaling and universality as
a principal source of scaling phenomena in geomorphology. The list of scaling
laws for river networks is indeed a lengthy one. As we will describe, however,
the use of certain assumptions demonstrates that the total content of these laws
comes down to the values of only a few scaling exponents; all other exponents
are connected via scaling relations. In particular, we view Hack’s law as central
to the description of river networks.

After these scaling laws are marshalled together, which is an important step
in its own right, one is left with two rather deep questions: What is the source of
scaling in river networks? And does the scaling exhibited by river networks
belong to a single universality class, a discrete set, or even a continuum? It is fair
to say that the answers are not yet known. An explanation of the former question
would presumably lead to an elucidation of the latter. To this end, we present and
examine model networks for which analytic results exist. These networks epito-
mize basic universality classes of river networks. This will in turn lead us to a
critical analysis of Hack’s law.
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Figure 4 Horton-Strahler stream ordering. (b) is created by removing all source streams
from the network in (a), and these same streams are denoted as first-order stream segments.
The new source streams in the pruned network of (b) are labeled as second-order stream
segments and are themselves removed to give (c), a third-order stream segment.

Scaling Laws and Scaling Relations

We now fill in some gaps of further definitions of scaling laws pertinent to river
networks. We have already seen Hack’s law (Equation 13), probability distribu-
tions for area and length (Equation 12), and the scaling of basin widths and areas
with respect to longitudinal length (Equations 2 and 3). In what follows, we
introduce a set of assumptions that allow for the derivation of these laws and the
relevant scaling relations. The main outcome is that we will at the end be able to
express the universality class of a network in two numbers.

Horton’s Laws Horton (1945) was the first to develop a quantitative treatment
of river network structure. The basic idea is to assign indices of significance to
streams, affording a means of comparing stream lengths, drainage areas, and so
on. A later improvement by Strahler (1957) led to the following method of stream
ordering, depicted in Figure 4. Source streams are defined as first-order stream
segments. Deletion of these from the network produces a new set of source
streams, which are then the second-order stream segments. The process is iterated
until we have labeled all stream segments. In this framework, a sub-basin is of
the same order as its main stream.
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Given such an ordering, natural quantities to measure are nx, the number of
stream segments for a given order x; the average stream segment length; āx,,̄ ,x

the average basin area; and the variation in these numbers from order to order.
The following ratios are generally observed to be independent of order x:

¯ ¯n , l āx x`1 x`1 x`1
4 R , 4 R , 4 R , and 4 R . (28)n , l a¯n , l āx`1 x x x

The ratios R, and Rl are simply connected. The stream ordering has broken down
main stream lengths into stream segments, so we have . A trivialx¯ ¯l 4 ( ,x k41 k

calculation shows that if R, 4 x`1/ x then R, 4 Rl (4 lx`1/lx) (Dodds &¯ ¯, ,
Rothman 1999).

Tokunaga’s Law The Horton ratios (Equation 28), although indicative of the
network structure, do not give the full picture. We cannot construct a network
using the Horton ratios alone because we do not know which streams connect
with which. The network perhaps suggested by the Horton ratios is one where all
streams of order x flow into streams of order x ` 1, a true hierarchy. But this
is misleading because streams of a certain order entrain streams of all lower
orders.

A more direct description was later developed by Tokunaga (Tokunaga 1966,
1978, 1984; Peckham 1995; Newman et al 1997; Dodds & Rothman 1999). The
same stream ordering is applied as before, and we now consider {Tx,x8}, the so-
called Tokunaga ratios. These represent the average number of streams of order
x8 that are side tributaries to streams of order x. Real networks have a self-similar
form, so we first have Tx,x8 4 Tx1x8 4 Tm. Tokunaga’s law goes further than this
by stating that the Tokunaga ratios may be derived from just two network-depen-
dent parameters, T1 and RT:

m11T 4 T (R ) . (29)m 1 T

As it turns out, we can further argue that Horton’s laws plus uniform drainage
density are equivalent to Tokunaga’s law. Both afford the same type of network
(Dodds & Rothman 1999). First, this assumption leads to the result that Ra [ Rn

so that only two Horton ratios are independent. Moreover, an invertible transfor-
mation between the remaining pairs of parameters may be deduced to be (Tokun-
aga 1978)

2 1/2R 4 1/2(2 ` R ` T ) ` 1/2[(2 ` R ` T ) 1 8R ] , (30)n T 1 T 1 T

R 4 R . (31), T

Scaling Relations We now assume that (a) a network obeys Tokunaga’s law,
(b) drainage density is uniform, and (c) single streams are self-affine. The latter
two are defined as follows. Drainage density is a measure of how finely a land-
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TABLE 1 A list of scaling laws for river networks*

Law Name or description Scaling relation

Tm 4 T1(RT)m11 Tokunaga’s law (T1, RT)

nx`1/nx 4 Rn Horton’s law of stream numbers see Equation 31

x`1/ x 4 R,
¯ ¯, , Horton’s law of stream segments lengths R, 4 RT

lx`1/lx 4 Rl Horton’s law of main stream lengths Rl 4 RT

āx`1/āx 4 Ra Horton’s law of stream areas Ra 4 Rn

l } Ld self-affinity of single channels d

l } ah Hack’s law h 4 log Rl /log Rn

a } LD scaling of basin areas D 4 d/h

L' } LH scaling of basin widths H 4 d/h 1 1

P(a) } a1s probability of basin areas s 4 2 1 h

P(l) } l1c probability of stream lengths c 4 1/h

K } ab Langbein’s law b 4 1 ` h

k } Lf variation of Langbein’s law f 4 d

} ab̃K̃ as above 4 1 ` hb̃

} Lũk̃ as above 4 df̃

*The first five laws require Horton-Strahler stream ordering, whereas the rest are independent of this construction. All
laws and quantities are defined in the text. The assumptions required to deduce all of these scalings are comprised of the
two italicized relations, Tokunaga’s law and the self-affinity of single channels, and the assumption of uniform drainage
density.

scape is dissected by channels. Another parameter that effectively expresses this
is the typical length of a hillslope separating drainage divides from channels. The
last assumption incorporates self-affinity of single streams. The main stream of a
basin is reported to scale as (Tarboton et al 1988, La Barbera & Rosso 1989,
Tarboton et al 1990, Maritan et al 1996b)

dl } L . (32)\

From this microscopic picture of network connection, we can build up to the
scaling laws of the macroscopic level (Dodds & Rothman 1999). Exponents are
found in terms of (T1, RT, d), or equivalently, (Rn, Rl, d). More precisely, only the
ratio log Rl /log Rn is needed, so all scaling exponents may be found in terms of

(log R /log R , d) [ (h, d), (33)l n

where h is the Hack exponent. Thus, we have a degeneracy—the two parameters
Rl and Rn are bound together to give only one value. We therefore find more
information in these microscopic, structural descriptions than in the macroscopic
power laws. Table 1 lists all exponents and their algebraic connection to these
fundamental network parameters.
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TABLE 2 Theoretical networks with analytically known universality classes*

Network h d

Non-convergent flow 1 1

Directed random 2/3 1

Undirected random 5/8 5/4

Self-similar 1/2 1

Optimal channel networks (I) 1/2 1

Optimal channel networks (II) 2/3 1

Optimal channel networks (III) 3/5 1

Real rivers 0.5–0.7 1.0–1.2

*The universality class of river networks is defined by the pair of exponents (h,d) where h is Hack’s exponent (Equation
13) and d is the scaling exponent that represents stream sinuosity (Equation 32). Each network is detailed in the text. All
other scaling exponents may be obtained via the scaling relations listed in Table 1. The range of these exponents for real
river networks is shown for comparison.

In our discussion of scaling, we introduced probability distributions of drain-
age area and main stream length. There we derived the scaling relation s 4
h(1 1 c) 1 1 (Equation 16). With the preceding assumptions, we may further
show that (Dodds & Rothman 1999)

s 4 2 1 h and c 4 1/h. (34)

Thus we have only one independent exponent and two scaling relations. We note
that other constructions may lead to the same result (Maritan et al 1996b, Meakin
et al 1991).

One final collection of scaling laws revolve around , the total distance alongK̃
streams from all stream junctions in the network to the outlet of a basin. Empirical
observations suggest that , and this is often referred to as Langbein’sb̃K̃ } a
law (Langbein 1947). We can show that 4 1 ` h follows from our basicb̃
assumptions.

Known Universality Classes of River Networks

We next describe basic network models that exemplify various universality
classes of river networks. These classes form the basis of our ensuing discussion
of Hack’s law. We consider networks for non-convergent flow, random networks
of directed and undirected nature, self-similar networks, and ‘‘optimal channel
networks.’’ We also discuss binary trees to illustrate the requirement that networks
be connected with surfaces. We take universality classes to be defined by the pair
(h,d), and these exponents are sufficient to give the exponents of all macroscopic
scaling laws. The network classes described as follows are provided in Table 2,
along with results for real river networks.
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Figure 5 Possible directions of flow for three networks whose statistics belong to dif-
fering universality classes. Diagram (a) provides the trivial class where flow is essentially
non-convergent; diagram (b) corresponds to directed random networks; and diagram (c)
corresponds to undirected random networks. Note that although diagram (a) literally pic-
tures perfect parallel flow, it figuratively symbolizes any set of flow lines that do not
converge.

Note that in some cases, different models belong to the same universality class.
Indeed, this is the very spirit of universality. The details of the models we outline
in this section are important only to the models themselves.

Non-convergent Flow [(h,d) $ (1, 1)] Figure 5a shows the trivial case of non-
convergent flow where (h,d) 4 (1, 1). By non-convergent, we mean the flow is
either parallel or divergent. Basins are effectively linear objects, and thus we find
that drainage area is proportional to length. This universality class corresponds,
for example, to flow over convex hillslopes, structures that are typically domi-
nated by diffusive processes rather than erosive ones. Importantly, channels in
long valleys will also belong to this class. After such a channel forms, drainage
area and length will increase regularly until a junction with a comparable channel
is reached. The flow here is non-convergent at the level of the network itself.

Directed Random Networks [(h,d) $ (2/3, 1)] We next present what we deem
to be the simplest possible network entailing convergent flow that is physically
reasonable. This is the directed random network first introduced by Scheidegger
(1967). Scheidegger originally considered the ensemble of networks formed on
a triangular lattice when flow from each site is randomly chosen to be in one
of two directions. This may be reformulated on a regular square lattice with the
choices given in Figure 5b. Because of universality, the same scaling arises
independent of the underlying lattice. Now, these networks are essentially the
same as those we discussed in the introductory section on scaling. In both cases,
basin boundaries and main streams are directed random walks. We have thus
already derived the results h 4 2/3, s 4 4/3, and c 4 3/2. Other exponents
follow from the scaling relations. Furthermore, d 4 1 because the networks are
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Figure 6 Two examples of a binary tree rendered onto a plane. The exponential growth
of the number of branches means that the networks fill up space too quickly. The two
usual assumptions of binary trees—that individual links are similar in length and that
drainage density is uniform—cannot both be maintained.

directed. Our first universality class is therefore defined by the pair of exponents
(h,d) 4 (2/3, 1).

Undirected Random Networks [(h,d) $ (5/8, 5/4)] If we relax the condition of
directedness, then we move to a set of networks belonging to a different univer-
sality class. These networks were first explored by Leopold & Langbein (1962).
They were later theoretically studied under the moniker of random spanning trees
by Manna et al (1992), who found that the universality class is described by (h,d)
4 (5/8, 5/4). The possible flow directions are shown for both directed and undi-
rected random networks in Figures 5b and 5c.

Branching Trees [(h,d) $ (?, ?)] The networks mentioned previously are built
on two-dimensional lattices. We take an aside here to discuss a case where no
clear link to a two-dimensional substrate exists. Consider a binary branching tree
and all of its possible sub-networks (Shreve 1966, 1967). This seems a logical
model since most river networks are composed of confluences of two streams at
forks—very rarely does one see even trifurcations, let alone the conjoining of
four streams.

However, binary trees are not as general as one might think. That river net-
works are trees is evident, but they are special trees in that they fill all space (see
Figure 6). If links between forks are assumed to be roughly constant throughout
a network, then drainage density increases exponentially. Conversely, if drainage
density is held constant, then links grow exponentially in length as we move away
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from the outlet into the network. Thus, we cannot consider the binary tree model
to be a representation of real river networks.2

Nevertheless, we briefly persist with this unrealizable model because it is of
historic importance and does allow for some interesting analysis. If we do make
the unphysical assumption that we may ascribe unit lengths and areas to each
link, then the Horton ratios can be calculated as Rn 4 4 and Rl 4 2 (Shreve 1966,
1967; Tokunaga 1978). This gives the Hack exponent h 4 log Rl /log Rn 4 1/2.
Other avenues have arrived at this same result, which came to be known as
Moon’s conjecture (Moon 1980, Waymire 1989). Because main stream lengths
are proportional to basin length, we have the universality class (h,d) 4 (1/2, 1).

One final comment regarding binary trees concerns the work of Kirchner
(1993), who found that river network scaling laws are ‘‘statistically inevitable.’’
The problem with this seemingly general and hence rather damning result is that
the basis of the study was the examination of binary tree sub-networks. Thus, no
conclusions regarding real river networks may be drawn from Kirchner’s work.
As we hope has been clearly demonstrated, any reasonable method for producing
general ensembles of networks must have the networks associated with surfaces.
Moreover, work by Costa-Cabral & Burges (1997) has confirmed variability of
network laws for one particular model that works along these lines.

Self-Similar Basins [(h,d) $ (1/2, 1)] An example of a network that belongs
to the universality class (h,d) 4 (1/2, 1) and is embedded in a surface is the so-
called Peano basin (Rodrı́guez-Iturbe & Rinaldo 1997). Its definition is an iter-
ative one demonstrated by the first three ‘‘basins’’ in Figure 7. A modified version
without trifurcations is illustrated on the right, so that all junctions are the usual
forks of river networks. Technically, this also allows for the proper application
of Tokunaga’s description, which quite reasonably presumes that all junctions are
forks.

It is a simple exercise to show that for the Peano basin, nx 4 3•4X1x11 and
lx 4 2x11l1 for x 4 1, . . . , X 1 1 where X is the overall basin order. Thus
we have Rn 4 4 and Rl 4 2, and hence log Rl /log Rn 4 1/2. An inspection of
Tokunaga’s ratios shows that T1 4 1 and RT 4 2, in agreement with the trans-
formation of Equations 30 and 31. Since main stream length rapidly approaches
L\, we have essentially l 4 L\, so that d 4 1. The important point to note here
is that, by construction, the basins are of unit aspect ratio. Because d 4 1, we
see that Hack’s exponent is by necessity 1/2.

Thus, the Peano basin belongs to what we call the self-similar universality
class, defined by (h,d) 4 (1/2, 1). As with other simple models, the Peano basin
is not something we would expect to find in nature. Nevertheless, the general
class of self-similar basins is a very reasonable one. Indeed, that basins of all

2Binary trees are examples of Bethe lattices, which have been well studied in percolation
theory (Stauffer & Aharony 1992). Solutions to percolation problems show that they
resemble infinite-dimensional space, not two-dimensional space.
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Figure 7 The Peano basin, a member of the (h, d ) 4 (1/2, 1) universality class. The
first three basins show the basic construction, with each larger basin built out of four of
those from the previous level. The rightmost basin shows a slight perturbation to remove
the trifurcations. Each basin’s outlet is at its bottom.

sizes should be geometrically similar is what would be expected by straightfor-
ward dimensional analysis.

Optimal Channel Networks [(h,d) $ (2/3, 1), (1/2, 1), or (3/5, 1)] Another
collection of networks with well-understood universality classes makes up the
optimal channel networks (see Rodrı́guez-Iturbe & Rinaldo 1997, Rinaldo et al
1998, and references therein). These models, known as OCNs, are based on the
conjecture that landscapes evolve to a stationary state characterized by the min-
imization of the energy dissipation rate whereė,

11hė ; a s ; a . (35)o i i o i
i i

Here ai and si are the contributing area and the slope at the ith location on a map
and are identified with a thermodynamic flux and force, respectively. The second
approximation comes from the empirical observation that ^s&a ; a1h, where the
average is taken over locations with the same contributing area, and typically h
. 0.5 (Horton 1945, Flint 1974, Rodrı́guez-Iturbe & Rinaldo 1997).

The conjecture of optimality is controversial. Although it is appealing to seek
a variational formulation of fluvial erosion (Sinclair & Ball 1996, Banavar et al
1997), it seems unlikely that the existence of a variational principle could be
proved or disproved.3 It remains nevertheless interesting to consider ramifications
of such a conjecture.

3A comparison with fluid mechanics is instructive. Here one starts with the Navier-Stokes
equations, so precise derivations are possible. For example, in the case of creeping (Stokes)
flow with fixed boundaries, the flow field does indeed minimize energy dissipation rate
(see Lamb 1945, art. 344). On the other hand, if the boundaries can move, cases may be
found in which the flow field maximizes, rather than minimizes, dissipation (Hinch 1988).
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Maritan et al (1996a) have shown that OCNs based on the formulation in
Equation 35 fall into two distinct universality classes, denoted respectively here
by I and II, depending on the value of h. In the simplest case (h 4 0), we find
that the OCNs belong to the universality class of directed random networks. On
the other hand, for 0 , h # 1/2, the OCNs fall into the self-similar class. A third
class (III) is made possible by extending the model to include a fixed, random
erosivity at each site. This final class is deduced as (h,d) 4 (3/5, 1).

Much of the literature on OCNs is devoted to numerical investigations. As it
turns out, the universality classes given previously are not necessarily obtained,
and differing exponents are reported. The reason is that the minimization process
is fraught with local minima. Furthermore, the results depend on the details of
the numerical method itself. As we discuss later, the actual scaling of real net-
works may be somewhat deceptively masked by long crossovers between distinct
regimes of scaling. It is conceivable that a similar effect occurs with OCNs.
Locally, physical processes such as the one suggested in the OCN formulation
may conspire to produce certain scaling exponents, whereas at large scales, expo-
nents in keeping with random networks may become apparent.

Summary Table 2 provides a summary of the foregoing networks and their
corresponding universality classes. As the table shows, we have identified five
distinct universality classes for river networks. Ranges for h and d for real river
networks are also indicated. In scaling theory, the importance of exact results
cannot be overlooked. The measurement of scaling exponents is a notoriously
fickle exercise. For example, one might find that regression analysis gives a tight
error bound over any given variable range but that the choice of the range greatly
affects the estimate. Thus, we need persuasive reasoning to reject these known
universality classes of networks and composite versions thereof. For the remain-
der of this section we explore the possibility of their existence in nature.

Real River Networks I: Hack’s Law for Maximal Basins

Hack’s original paper was concerned with basins with drainage areas less than
103 km2 (Hack 1957). He found h 4 0.6 but also noted fluctuations with h, which
could be as large as 0.7 in some regions. Later, measurements by Gray (1961)
found h 4 0.57 in the midwestern area of the United States. Unfortunately,
exponents are often reported without error bars, and since we are concerned with
distinguishing values like 0.50, 0.57, and 0.67, estimations of error are imperative.

Although both Hack and Gray sampled from areas of differing geologies, they
restricted their work to localized areas of the United States and included data
taken from sub-basins contained within a single basin. In contrast to this, later
work by Mueller (1972, 1973), Mosley & Parker (1973), and Montgomery &
Dietrich (1992) compared individual basins from around the world. We suggest
it is vital to discriminate between such intra-basin and inter-basin measurements.
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Figure 8 The maximal basin version of Hack’s law for 37 of the world’s largesth̃l̃ 4 c̃ã
basins (data taken from Leopold 1994). Hack’s exponent is estimated to be 0.50 and theh̃
prefactor to be 3.0. A confidence interval of one standard deviation gives the correspond-
ing ranges as , 0.56 and 1.3 , c̃ , 6.6.˜0.44 , h

We refer to the latter as the maximal basin version of Hack’s law—the cross-
comparison of continent draining basins. Denoting maximal by a tilde, we have

h̃l̄ 4 c̃ ã . (36)

Similarly, the mainstream length now scales as

d̃˜ ˜l } L . (37)\

Curiously, the reported results here point to a maximal basin Hack exponent of
approximately 0.5. The oft-cited findings of Mueller (1973) further claim a cross-
over from 0.6 to 0.5 scaling in the maximal basin version of Hack’s law. Upon
inspection of the data used by Mueller, it is evident that considerable error in
exponents must be acknowledged. Nevertheless, Figure 8 shows the maximal
basin Hack’s law for 37 networks from around the world. We find the exponent

4 0.50 5 0.06, which suggests that the world’s largest river basins are self-h̃
similar. Note that without proper knowledge of , we must be careful since self-d̃
similar basins belong specifically to the universality class 4 (1/2, 1).˜ ˜(h, d )

A simple argument for why the world’s largest basins would be self-similar is
as follows. The shapes of the drainage areas of these networks are dictated by
geologic processes. The Mississippi, for example, is bounded by the Rocky
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Mountains and the Appalachians, structures of predominantly tectonic origin. The
aspect ratios of these basin shapes are thus rather variable. They depend partly
on how the dominant river orients itself in the basin, though this is also consequent
of the overall geology. It thus seems reasonable that most continent-scale basins
would not deviate too far from having unit aspect ratios. Note that the tendency,
if any, would be toward thinner basins. If \ & ', then only one basin would be˜ ˜L L
expected. On the other hand, if \ K ', as in the case of a coastal mountain˜ ˜L L
range, then multiple dominant basins will arise. The transition from single to
many basins as the ratio \ / ' decreases is an interesting problem in itself. Fur-˜ ˜L L
thermore, at this scale, main streams are expected to be proportional to overall
basin length because they are predominantly directed. Hence, we suggest that
geologically constrained maximal basins belong to the universality class

4 (1/2, 1).˜ ˜(h, d )

Real River Networks II: Hack’s Law for Single Basins

What do these arguments imply for the original formulation of Hack’s law? It is
by no means evident how the scalings of intra-basin and inter-basin versions are
related. In fact, the scaling for Hack’s law would seem to be a complicated one.
We first conjecture the existence of up to four separate scaling regimes connected
by three crossover regions, as depicted in Figure 9. These scaling regimes are
associated with non-convergent hillslope flow, (h 4 hh 4 1), an intermediate
region of short-range order with unknown scaling (h 4 h?), random networks (h
4 hr), and geologic controls (h 4 hg).

Hillslopes We proceed in our description from smallest to largest basins. At the
lower limit, we are in the realm of unchannelized, diffusive hillslopes. As we
noted in our discussion of non-convergent flow, ‘‘basins’’ therefore have no width
and are equivalent to lines of flow. We thus have l } a and the universality class
(h, d) 4 (1, 1). Any measurement taken from a map that resolves hillslope struc-
ture will exhibit this linear phase of Hack’s law. Note, however, that for a land-
scape where long, linear channels exist side by side, this hillslope transition will
be subsumed into an even more pronounced linear regime of Hack’s law.

This first crossover is potentially an important one. Recall that by the present
definition, main stream length l is measured to the drainage divide and not to a
channel head. This obviates problems associated with the qualitative definition
of channel head position. Nevertheless, the position and movement of channel
heads are important signatures of the nature of erosional processes (Dietrich &
Dunne 1993). Hack’s law therefore gives, in theory, a simple measure of channel
head position from the position of the first crossover at the end of the h 4 1
regime. The typical hillslope length l1 is indicated in Figure 9. Because hillslope
length gives drainage density, we equivalently have a measure of the latter and
hence its fluctuations.
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Figure 9 Conjecture for the full extent of Hack’s law. Shown on a double logarithmic
plot are four possible scaling regimes joined by three crossovers indicated by gaps. Small-
est basin areas and stream lengths pertain to hillslopes (non-convergent flow) where hh4
1. After channels begin at around (a1, l1), the rigidity in how the smallest streams fit
together leads to a rapid drop in the exponent h. The existence of robust scaling in this
intermediate region is an unresolved problem, hence h 4 h?). As basin size increases
toward (a2, l2), boundaries become more flexible and less correlated so that Hack’s law
moves via a potentially long crossover toward a random universality class where hs 4
5/8 or 2/3. Finally, as the basins reach the size of the system beyond some a3, geologic
boundaries become important and there is a regime where the scaling may change yet
again to a value 1/2 , hg , 1.

Crossover to Short-Range Order At the end of the hillslope regime, the first
channels form when flow fully changes from non-convergent to convergent. Then
appears a spread of basins with different areas that have similar main stream
lengths. Hence, Hack’s law flattens out from the slope of h 4 1. These first-order
streams are subject to strong ordering constraints. Neighboring source streams
that feed into the same second-order stream are roughly parallel. Second-order
streams are to a lesser degree similarly positioned; because their separation is
greater, more sinuous formations are possible. This marks the beginning of what
is potentially a long crossover in Hack’s law. Initially, we may have h . 1/2
because of the orderedness of basins. However, we may well have a non-trivial
scaling owing to the physics of the situation; this is a question yet to be resolved.

Crossover to Randomness Whatever the case, we find that at larger scales,
correlations in stream and basin shape decrease. This suggests an approach to one
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of the random universality classes. Thus, Hack’s exponent would increase toward
an hr in keeping with the overall stream structure. The random regime is indicated
in Figure 9, holding between a2 and a3 an inner and outer basin size. As we
discussed, hr 4 2/3 for directed networks and hr 4 5/8 for non-directed. Note
that d would increase from 1 to 5/4 for non-directed networks.

It is important to note that the existence of a definite crossover to a random
universality class would give a length scale that marks the extent of network
correlations. In principle, if one could further extract a measure of the rate at
which networks correlate—i.e. the rate at which the cumulative effects of pro-
cesses such as erosion, landslides, and diffusion migrate throughout a basin—
then one would have an estimate of network age.

Crossover to Geologic Constraints Eventually, basins reach the size and shape
of the geologically constrained maximal basin. Here, the scaling may well change
again. Several possibilities arise. For a maximal basin that is long and thin, we
could have a return to h 4 1 if interior basins are relatively wide. A maximal
basin with an aspect ratio closer to 1 could see h drop back to 1/2. For a basin
lying within a wide drainage region where only \ is set by tectonic controls, theL̃
scaling may remain unchanged. Thus, for Hack’s law, the most general feature
identifiable with geology is this last crossover itself, with a range of scalings as
a possibility.

In addition to Hack’s law, other scaling laws such as those for area and length
probability distributions will pass through corresponding regimes of scaling. Scal-
ing relations will thus hold within certain ranges of basin variables, which should
in principle be reconcilable with observations of elements such as drainage den-
sity and regional geology.

What we have provided here is an unabashedly heuristic argument for the form
of Hack’s law. In practice, different regions will have the four scaling regimes
present to varying degrees. Clearly, further empirical work on Hack’s law is desir-
able to establish the validity of these claims.

TOPOGRAPHY

We have thus presented a flavor of the rich phenomenology of river networks.
But in truth, the surfaces from which these networks derive are a more funda-
mental indicator of geomorphological evolution. The reasoning is simple: from
any elevation field , a unique drainage network may be constructed; however,rh( x)
no unique elevation field may be associated with a given network.

We now arrive at the question of what to quantify about topography. A crucial
point is that once we have a collection of topographic measures, we need to
understand how they relate to the scaling laws of river networks. Networks rep-
resent connectivity, and their physical and hydrological significance is obvious.
But connectivity results from correlations, so explicit consideration of how
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patches of topography are correlated to other patches of topography should be
useful too.

We thus return to the basic measure of topographic connectedness, the height-
height correlation function (Equation 26). We now need its dependence on direc-
tion, so we write

r r r r 1/22
rC( r) 4 ^|h( x ` r) 1 h( x)| & . (38)x

Next, we consider some generic forms of and some theoretical models thatrC( r)
one may associate with them.

Self-affine Topography

At sufficiently large scales, it is often reasonable to assume that is iso-rC( r)
tropic—i.e. , where . Over the past two decades, numerousr rC( r) 4 C(r) r 4 | r|
investigations have provided evidence that C(r) ; ra over some range of length
scales, with the roughness exponent a between 0 and 1 (Newman & Turcotte
1990, Turcotte 1997, Mark & Aronson 1984, Matsushita & Ouchi 1989, Ouchi
& Matsushita 1992, Chase 1992, Lifton & Chase 1992, Barenblatt et al 1985,
Gilbert 1989, Norton & Sorenson 1989). It follows from our discussion of scaling
that this implies statistical similarity of the topography, giving h(x) . b1ah(bx).
Such topography is called self-affine, and the exponent a may be related to a
fractal dimension (Mandelbrot 1983, Barabasi & Stanley 1995, Turcotte 1997).

However, in marked contrast to the situation with network scaling laws, it is
extremely rare that a may be unambiguously defined over several orders of mag-
nitude. Figure 10 shows a typical example where no simple straight-line segment
may be identified. At small values of r, there is a tendency toward a relatively
steep slope, and at large values, a relatively small slope. One finds this ambiguity
often in the literature. Indeed, in the references just cited, one often finds large
values of the roughness exponent (0.70 & a & 0.85) at small scales, and small
values (0.30 & a & 0.55) at large scales, with the crossover at approximately
1 km, as in Figure 10.

Whether this is a genuine crossover from one type of scaling to another—or
even whether one should expect any power law scaling at all—is a subject of
much debate, with no conclusion to date. The evidence for scaling is sufficiently
good, however, to motivate its theoretical justification.

Next we review classes of stochastic partial differential equations that yield
predictions for roughness exponents. Deterministic equations for erosion, though
of considerable interest and utility, have not led to such predictions (Smith &
Bretherton 1972, Willgoose et al 1991, Howard 1994, Izumi & Parker 1995,
Banavar et al 1997). Given that deterministic formulations of fully developed
turbulence yield scaling laws approximately consistent with measurements
(Frisch 1995), it would be especially interesting to know if any deterministic
erosion model could do the same.
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Figure 10 (a) Digital elevation map of an area of the Appalachian Plateau, in Northwest
Pennsylvania. Elevations are given in meters. The spatial resolution is 90 m. (b) Averaged
height-height correlation function C(r) for the landscape in Figure 10a, where r is oriented
in the vertical direction of (a). Logarithms are computed from quantities measured in units
of meters. Straight lines are given to guide the eye, not to imply power law scaling. From
Pastor-Satorras & Rothman (1998b).

Stochastic Equation Models

The simplest nonlinear surface evolution model is given by Equation 24. Intro-
duced by Kardar, Parisi, and Zhang (KPZ) in 1986, its rich phenomenology and
the theoretical challenges posed by this model led subsequently to an enormous
literature [for reviews, see Krug & Spohn (1992), Halpin-Healy & Zhang (1995),
Barabasi & Stanley (1995)]. As we already discussed, the KPZ equation embodies
only simple notions of smoothing, stochasticity, and growth normal to the inter-
face. Since the KPZ equation is associated with 0.2 & a & 0.4 for two-
dimensional surfaces, and its derivation may be broadly associated with many
geologic processes, Sornette & Zhang (1993) proposed it as the generic mecha-
nism responsible for many observations of 0.2 & a & 0.4 made from eroded
surfaces.

This raises a conundrum of interest central to this review. If indeed C(r) ; ra

with a KPZ-consistent a, is any progress of geomorphological interest made by
its identification with the KPZ universality class? The answer is not obvious; it
depends strongly on one’s scientific taste as well as on the problem one wishes
to solve. Here we advocate a pragmatic point of view: If such a classification
allows either the solution or better formulation of a problem, then progress is
indeed made.

One straightforward way to proceed is to ask how we may explain the wide
variety of circumstances in which a is not close to 0.4. Are there, for example,
different universal mechanisms responsible for the aforementioned observations
of 0.70 & a & 0.85?
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Figure 11 Schematic con-
figuration of an anisotropic
landscape.

Noting that these large values of a are observed at small length scales, Pastor-
Satorras & Rothman (1998a,b) proposed that the differences may result from the
inherent anisotropy of fluvial erosion. The central idea, illustrated by Figure 11,
is that at small scales an unambiguous downhill (i.e. ‘‘dip’’) direction may be
identified. The problem thus contains a preferred direction, and one expects that
both the governing dynamics and statistics such as C(k) should reflect this broken
symmetry. Below, we review some of the ramifications of this idea.

By assuming (a) this asymmetry, (b) the conservation of material, and (c)
stochastic material heterogeneities, the following stochastic equation may be
derived:

2 2 2 3]h ] h ] h l ] h2
4 (m ` l ) ` m ` ` g. (39)0 2 2 2]t ]x ]x 3 ]x\ ' '

This stochastic partial differential equation represents anisotropic linear diffusion
(where diffusion is emphasized in the x\-direction) supplemented by a cubic non-
linearity when l2 ? 0. The ‘‘bare’’ diffusivity is given by m, while the enhance-
ment in the x\ direction is given by l0. The nonlinear term is the leading-order
nonlinearity of an expansion that takes account of the mean effect of the contrib-
uting area on the erosion rate. As in Equation 24, g once again represents an
uncorrelated noise, but here we consider it as a function of space only. The addi-
tion of noise is crucial because it allows us to make some simple predictions
concerning the anisotropy of correlations.

In the absence of nonlinearity (i.e. when l2 4 0), a linear anisotropic noisy
diffusion equation is obtained. Because the equation is linear, the statistics it yields
may be predicted exactly. The most pertinent result is that the ratio of the cor-
relations in the two principal directions scales like

C m ` l' 0; . (40)1 2C m\

In other words, since the preferred direction gives l0 . 0, the topography is
quantitatively rougher, at all scales and by the same factor, in the perpendicular
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direction than in the parallel direction. Rough empirical support of this prediction
is shown in Figure 12.

The nonlinear case (l2 . 0) provides much richer fare. The application of the
dynamic renormalization group (e.g. Barabasi & Stanley 1995, Medina et al 1989)
shows that the topography should be self-affine, with roughness exponents that
depend on direction. That is,

a a\ 'C (x ) ; x and C (x ) ; x (41)\ \ \ ' ' '

for correlations along fixed transects and , respectively.0 0x 4 const. x 4 const.' \

First-order estimates of the roughness exponents are

5 5
a 4 . 0.83 and a 4 . 0.63. (42)' \6 8

Evidence for this anisotropic scaling is shown in Figure 13. Figure 13a shows
submarine topography of a portion of the continental slope off the coast of
Oregon. Here the slope results from the relatively abrupt increase in the depth of
the seafloor as the continental shelf gives way to the deeper continental rise. The
main feature of the topography is a submarine canyon. In this region, submarine
canyons are thought to have resulted from seepage-induced slope failure (Orange
et al 1994), which occurs when excess pore pressure within the material over-
comes the gravitational and friction forces on the surface of the material, causing
the slope to become unstable. Slope instabilities then create submarine ava-
lanches, which themselves can erode the slope as they slide downward.

Figure 13b shows the plots of C(x\) and C(x') computed from the topography
in Figure 13a. One sees that the least-squares estimates of the roughness expo-
nents, a' . 0.78 and a\ . 0.67, exhibit a good fit to the theoretical predictions
(Equation 42).

We may thus tentatively conclude that Equation 39 provides the identification
of two universality classes of anisotropic erosion. The linear case is characterized
by the difference in prefactors given by Equation 40, whereas the nonlinear case
is characterized by the values of the scaling exponents a' and a\ given by Equa-
tion 42. Empirical work by Chan & Rothman (in preparation) indicates that the
former case has wide generality and may be used to identify the characteristic
length scale that governs the anisotropy.

Applications to Sedimentology

The ‘‘world view’’ afforded by stochastic surface-evolution equations is most
useful when little is known about the detailed dynamical processes that create a
surface. As such, this view can help identify the origin of certain geomorpholog-
ical patterns created by some sedimentary systems. Here we briefly review two
such cases.

Our first example is that of turbidite deposition. Turbidites are the sedimentary
deposits that result from underwater avalanches known as turbidity currents. Tur-
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Figure 12 (a) Digital elevation map of an area near Marble Canyon in northeast Arizona. Elevations are given in meters, and the spatial
resolution is 90 m. (b) Height-height correlation functions computed along the parallel (C||) and perpendicular (C') directions for the
landscape shown in Figure 12a. Logarithms are computed from quantities measured in meters. Since the two correlation functions approx-
imately differ only by a vertical shift along a logarithmic axis, the prediction of Equation 40 is roughly satisfied. From Pastor-Satorras &
Rothman (1998a).
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Figure 13 (a) Digital map of a submarine canyon off the coast of Oregon, located at coordinates 448408 N, 1258458 W. The vertical axis
represents the depth z below sea level. The spatial resolution is 50 m. All units are given in meters. (b) Height-height correlation functions
computed along the parallel (C||) and perpendicular (C') directions for the topography shown in (a). Solid lines are least-squares fits to the
scaling region. The logarithms are computed from quantities measured in meters. From Pastor-Satorras & Rothman (1998a,b).
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bidity currents are often initiated as slope instabilities in submarine canyons, such
as the one shown in Figure 13a. Empirical studies of the size distribution of
turbidite deposits has shown that they may sometimes be characterized by power
law distributions (Hiscott et al 1992, Rothman et al 1994, Rothman & Grotzinger
1995). Specifically, one finds that the turbidite event size s can scale like P(s) }

, with s1 a characteristic exponent that depends in part on allometric relations1s1s
governing the spreading of turbidity currents (Rothman et al 1994, Rothman &
Grotzinger 1995).

Because the model given by Equation 39 has successfully characterized the
topographic fluctuations of a real submarine canyon, it is natural to ask whether
the exponents that characterize the surface roughness can be related to the ava-
lanche size-distribution exponent s1. Viewing Equation 39 as a model of forced
nonlinear diffusion, Pastor-Satorras & Rothman (1998a) constructed a scaling
argument to obtain the scaling relation

1
s 4 2 1 . (43)1 1 ` a /a\ '

We see that the size-distribution exponent s1 depends only on the anisotropy of
the correlations via the ratio a\ /a'. This equation has not yet been tested, owing
to the practical difficulties of obtaining measurements of related canyons and
turbidites. It would be of considerable practical interest, however, if one could
indeed use relations like Equation 43 to predict turbidite size distributions from
the fluctuations of submarine topography.

Our second example is a particularly unusual sedimentary rock known as a
stromatolite. Stromatolites are laminated, accretionary structures whose laminae
exhibit complex patterns (Walter 1976, Grotzinger & Knoll 1999). An example
is shown in Figure 14. The origin of these patterns is unknown, but they are
commonly thought to be associated with sediment-binding or precipitation mech-
anisms induced by ancient microbial mats or biofilms. Because stromatolites as
old as 3.5 Gyr have been found, they are considered as evidence for early life on
Earth (Schopf 1983). As such, a fundamental understanding of how features of
the patterns relate to theories for their origin would be of considerable interest.

Some patterns formed by stromatolites can be characterized as successive
single-valued interfacial profiles h(x), where h is the height of the interface and
x its position. Grotzinger & Rothman (1996) analyzed such patterns over length
scales ranging from centimeters to meters. Their analysis found that the average
power spectrum of the height fluctuations followed a scaling law that is equiva-
lent, in real space, to finding C(r) } ra, with a . 0.5. Reasoning that the stro-
matolite laminae could have formed by a combination of sedimentary fallout,
chemical precipitation, and diffusive smoothing, they concluded that a purely
physical model based on the KPZ equation was both plausible and approximately
consistent with their data analysis.
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Figure 14 A vertical cross-sectional cut through a stromatolite. The dark jagged lines
running roughly horizontally represent the interfaces between successive stromatolite lam-
inae. From Grotzinger & Rothman (1996).

As we can see, an argument based on scaling and universality has shown that
certain complex patterns in rocks may derive from physical principles rather than
early forms of life. However, it is of crucial importance to note that the mecha-
nisms of the KPZ equation are sufficiently general that they apply as well to the
growth of bacteria colonies, for example, as they do to the accumulation of sed-
iment. Thus, what was learned in this stromatolite study was in fact more subtle:
It showed that a statistic (i.e. an exponent derived from a power spectrum) can
be measured, and that the result could be equally consistent with growth mech-
anisms that are either biological or physical. Rather than ruling out a particular
detailed mechanism, such arguments based on scaling and universality instead
frame the debate. This is an important step toward resolving the unfinished busi-
ness of addressing the precise mechanisms by which these sedimentary structures
form (Grotzinger & Knoll 1999).

Topographic Networks

Our last ambition here is to explore the connection between the two main subjects
of this review: surfaces and river networks. The partnership between a landscape
and its network is a significant and complicated coevolution. In both cases, we
have talked about categorization into universality classes. Although we have seen
that this is not always possible, and that nature is not filled with perfect scaling
laws, we are nevertheless led to consider the link between universality classes of
surfaces and networks. Real river networks are defined by surfaces. Therefore, if
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a surface belongs to class X, then what may we say of its network? This is a
question not yet answered, and here we outline some basic ideas.

We can theoretically break down topography into three major classes: surfaces
with zero, finite, and infinite correlation length. In addition, and in keeping with
our previous observations, we may also specify a degree of anisotropy. We intro-
duce Ca(k), a new correlation function. This is the autocorrelation function of the
surface and is related to Equation 38. It is defined as

r r r r 1/22
rC ( r) 4 ^|h( x ` r)h( r)| & . (44)a x

A general scaling form of the autocorrelation function may be written as

1r/n 1aC (r) ; e r . (45)a

Here, n is a measure of the extent of correlations in the surface and is referred to
as the correlation length. Heights on the surface separated by r k n are essentially
uncorrelated, whereas for r K n, a power law relation holds. Next, we consider
how networks behave as a function of n and a.

Uncorrelated Surfaces [n $ 0] A surface with no correlations gives rise to a
random network. For example, on a two-dimensional lattice we assign to each
site a height randomly chosen from the interval [0, 1]. With sufficient tilting of
this random carpet, a random directed network will appear (Dodds & Rothman
1999). We would thus have h(n 4 0) 4 2/3 and d(n 4 0) 4 1. If, however, the
carpet is lifted up at its center, we would obtain a random network that is directed
radially. Thus, the underlying geologic structure is important in determining the
universality class of the network, even in this case of zero correlations.

Correlated Surfaces [0 , n , `] To move away from random networks we
must evidently find correlations present in surfaces, and this is apparently true of
real landscapes. Consider a surface with a finite correlation length—that is, one
where correlations exist but are limited in extent. Such a surface must at large
scales exhibit the characteristics of a random one. This is of course true whether
or not the correlations are isotropic or anisotropic. The absolute limiting case for
the earth is that of correlations on the size of continents, and more typically on
the scale set by tectonic action. The barriers to such massive connectedness are
strong. Although fluvial activity tends to develop correlations down through a
network, it is the transverse extent that is slow to evolve. Diffusive movement of
material is well capped by the age of the earth and the slowness of contributing
processes.

Crossovers in statistics would therefore be an integral feature here. Although
surfaces would be effectively random at large scales, they would follow the sta-
tistics of self-affine surfaces for small scales. The magnitude of n would dictate
the extent of this scaling. In finding transitions in surface correlations, we would
expect to see the same in network scaling laws. A finite correlation length evident
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in Ca(r) should, for example, appear also in Hack’s law. Referring back to Figure
9, we see that n should be on the order of l2.

Self-affine Surfaces [n $ `] In theory, of course, we do have perfect self-affine
surfaces. This appears to be an area that warrants further investigation, and indeed
some progress has been made (Goodchild & Klinkenberg 1993). It is conceivable,
for example, that scaling relations exist that combine surface and network expo-
nents, i.e. h 4 h(a) and d 4 d(a). If so, we would then have an idealized pairing
of landscapes and networks to use as a basis for understanding real structures.

Anisotropic Correlations Equation 45 may be straightforwardly generalized to
allow for anisotropic correlations. Then we have two correlation lengths n' and
n\ and two scaling exponents a' and a\. Limiting cases may be understood in the
case of directed flow. For example, when n' K n\—i.e. when transverse corre-
lations are short relative to correlations in the overall flow direction—then we
would expect the hillslope universality class (h, d) 4 (1, 1). Scaling relations
would also extend to become functions of the two scaling exponents, h 4 h(a',
a\) and d 4 d(a', a\).

CONCLUSION

This review has advocated the use of simple models for determining how and
why geomorphological systems exhibit certain scaling laws. The discussion has
been focused almost entirely on theories for the steady-state or final structure of
rivers and topography. We have emphasized how assumptions of randomness can
be a useful point of departure for developing insight and more sophisticated
theories.

Our review leaves many important issues untouched. Foremost among these
is the need to formulate models of equivalent simplicity for the dynamic evolution
of geomorphic systems. Here stochastic equations for surface growth provide
some insight; however, there remains no clear idea of how their predictions of
time dependence could be related to available measurements. The numerical
simulation of hypothesized erosion equations (e.g. Willgoose et al 1991, Howard
1994) can be useful, but the dependence of results on parameter choices and
model details makes its relevance to real systems difficult to ascertain.

In contrast, the applicability of scaling and universality depends simply on
whether the qualitative criteria that define universality classes is indeed present
in real systems. For example, we have shown that if a landscape is uncorrelated
beyond a certain length scale, then precise predictions for network structure
beyond that length scale may be made. Indeed, our review has pointed out the
existence of several critical length scales that delimit certain scaling regimes. It
may well be that the key to extending this approach to dynamics will lie in the
identification of how these length scales change with time. The current explosion
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in the availability of high-resolution digital elevation maps promises that exciting
progress toward the resolution of these issues will be made in the near future.
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