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Abstract 

 

People are embedded in networks involving many relationships that exist concurrently. They are 

not, however, enacted concurrently: because a person can only be in one place at a time, and by 

and large one tie can only be enacted insofar as others are not, the interactional obligations that 

concurrently adhere to a network position must be taken up sequentially. Complicating matters 

further, face-to-face encounters require that two people be simultaneously available. From these 

circumstances arise the conventions, strategies, and experiences of scheduling. Here I use a 

computer simulation to model how networks are concretely enacted through dyadic encounters, 

and explore the implications of this for diffusion. Whether, and how quickly, a practice (or idea, 

or disease) spreads through a network is shown to depend upon the interaction of network 

structure, whether or not actors try to compensate for past scheduling imperfections, and whether 

actors adopt upon first exposure, or upon finding that some proportion of their recently 

encountered friends have already done so. The study of network scheduling is one component of 

a more general program for the study of “enactment dynamics,” or the way in which pre-existing 

ties get activated and deactivated under concrete circumstances, with important consequences for 

what are counted as “network effects.” 



 

Introduction 
 

A person’s network is lived, and experienced, as an irregular succession of planned 

engagements, chance meetings, extended lulls, unanswered emails, I-was-just-about-to-call-yous, 

postponements, reschedulings, and competing priorities. It is represented and analyzed, however, 

very differently: as a static configuration of present-or-absent ties that exist concurrently, even 

when that means that a given person is portrayed as equally involved in several relationships 

simultaneously. Odd as this seems, or should seem, as an opening methodological gambit, it 

yields immediate advantages, clearing the way for the rigorous operationalization of structural 

properties such as density, centrality, and path distance (Wasserman and Faust 1994), and for the 

application of a slew of graph-theoretic techniques (Albert and Barabási 2002; Pattison and 

Wasserman 1999; Strogatz 2001). 

More significantly, networks thus construed have been linked to a range of non-network 

outcomes, such as innovation diffusion (Burt 1987; Galaskiewicz and Burt 1991), managerial 

promotion (Burt 1992; Podolny and Baron 1997), organizational membership (McPherson, 

Popielarz, and Drobnic 1992), and health (e.g., Cohen, Doyle, Skoner, Rabin, and Gwaltney 

1997). It appears, then, that network representations capture something important about the 

world. As a first approximation, it may be that we are continuously pulled into the orbit of our 

relationships, so that given enough time, a person encounters everyone in his or her network, 

with the result that he or she makes decisions, or suffers the decisions of others, as if on the basis 

of relationships simultaneously in play, as network imagery implies. 

This, however, is difficult to reconcile with some rather obvious facts about the world. In 

particular, scheduling considerations – related to who is available to interact with whom at any 

point in time – may prevent a person from consulting with all of his or her advisors prior to an 

important decision, or from gathering information from all of his or her acquaintances before 

changing jobs, or from garnering significant emotional support during a period of personal crisis. 

Thus the premise of this paper: scheduling rules and constraints interpose between social 

networks and the outcomes we attribute to them, including those listed above. The results of 

ignoring this fact are two-fold: first, the mechanisms behind known network effects are likely to 

be mis-specified (e.g., as being mainly psychological), and second, some network effects are 
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likely to be entirely missed – specifically, when the play of scheduling across a network 

produces results unrecognizable from the perspective of the network taken alone. 

Thus it is important that we begin to understand how scheduling rules interact with 

networks to produce outcomes. Here I take one particular outcome of long-standing interest to 

network analysts, diffusion, and consider how the pace and extent of diffusion (of an idea, 

disease, or practice) is affected by the interaction of scheduling rules and network structure. 

After describing past work on network scheduling, I propose a computer simulation of the same, 

one which aims at some degree of phenomenological realism. The initial diffusion analysis 

assumes that contagion occurs the instant someone who has not adopted (or is not infected) 

encounters someone who has (or is). Then I explore contagion that occurs at a “threshold,” when 

some fraction of one’s friends have adopted, though I propose a modification of standard 

threshold models to incorporate the fact that scheduling constraints may prevent a person from 

accurately assessing this fraction. For both types of contagion, I explore the effects of network 

structure, and whether or not people deliberately try to correct for past scheduling imperfections, 

which I call “remediation,” on time to complete diffusion. In the Conclusion I argue that the 

study of network scheduling is one branch of a wider research program into “network 

enactment,” which is concerned with the situational activation and deactivation of network ties, 

and the consequences of this for all of what get counted as “network effects.” 

 

Network scheduling 
 

The mere fact that I can only be in one place at a time imposes severe constraints on my ability 

to enact my network ties through dyadic encounters – through having lunch with friends, coffee 

with colleagues, meetings with advisors and students, etc. – and the problem is compounded 

many-fold by the fact that not only must I find time for a friend, he or she must also find time for 

me, and, moreover, these “times” must coincide. Though fundamental, these facts have received 

little attention in the sociological literature, though at least two articles have come close. Winship 

(1978), for one, devised an ingenuous equilibrium model for dyadic negotiations over time 

allocations, that is, over how much time two people will spend with one another given the 

constraint that Al cannot spend more or less time with Betty than Betty spends with Al. A 

limitation of his model, however, is that it ignores the fact that for two people to spend time 

together, they have to agree on when, precisely, that is to happen. Consider the case of three 
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people, Al, Betty, and Carl, each of whom wants to spend one half of his or her time with each of 

the others. Because there is perfect symmetry in their preferences, this is exactly what Winship’s 

model predicts will happen. The problem is that if Al spends the first half of each day with Betty, 

and the second half with Carl, there will be no point at which Betty and Carl will be 

simultaneously free to see each other.2 This difficulty arises because Winship does not require 

his actors to commit to particular time slots, only to quantitative allocations. 

If the weakness of Winship’s approach is that time is detached from schedules, its 

strength is that negotiations are conducted in a decentralized manner, without top-down 

oversight – which is how most such decisions are actually made. Leifer (1990) takes the opposite 

approach, imposing real-time scheduling constraints as well as an omniscient central scheduling 

authority to contend with them. Because his main application is to the scheduling of games in 

professional sports, however, there is no pre-existing network awaiting enactment – the 

scheduling objective is to ensure a balance of home and away games. Further, the scheduling 

phenomenology is far from realistic for the types of scheduling scenarios that concern me here, 

and which concern Winship. For one thing, if the central authority in Leifer’s model determines 

that a partially-completed schedule is destined to fall short of the scheduling objective, it can 

erase the encounters (games) already planned and start from scratch. Real people, however, do 

not have the option to pull out of their obligations whenever it suits them, and generally abide by 

their commitments even when the resulting schedules appear ill-conceived. 

 Among the features of a realistic model of scheduling, then, are (1) that it is performed in 

a decentralized manner, contra Leifer but as per Winship; and (2) that actors are concerned with 

scheduling specific encounters, rather than general allocations, contra Winship but as per Leifer. 

It must also (3) take a pre-existing network as input, so that people give scheduling priority to 

those they have pre-existing ties to. 

 

Scheduling simulation 
 

Simulations are increasingly used within sociology (Macy and Willer 2001), and the social 

sciences generally (Axelrod 1997; Gilbert and Troitzsch 1999), to study the macro consequences 

of variations in the local rules and constraints governing the behavior of individual actors. My 

                                                 
2 Winship (1992) acknowledges as much in a later paper, in which he uses graph coloring theory to analyze the 
scheduling of group gatherings such as colloquia. 
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use of simulations differs from what is typical in two respects. First, I am more concerned than 

most simulation researchers with phenomenological realism, that is, with programming actors to 

abide by rules that empirical research or, at least, commonsense suggests are actually operating 

in the real world. Importantly, this does not, at least in the current context, come at the expense 

of model simplicity, which simulation proponents such as Macy and Willer (2001) rightly value, 

since the rules that people actually follow tend to be fairly simple solutions to social dilemmas 

that simulated actors also face – here, the problem of how to credibly commit to invitations and 

engagements given that everyone has an interest in keeping their options open for as long as 

possible. 

 Second, and relatedly, simulation researchers often downplay the extent to which their 

simple models speak to what happens in the real world, appealing instead to the value that 

simulations have as virtual experiments (Axelrod 1997), which at most tell us what sets of 

conditions would be sufficient to produce some outcome in the real world were they met (Epstein 

and Axtell 1996). My position, in contrast, is that simulations should be built upon things we 

know for certain about the world, such as that no one can be in two places simultaneously, so as 

to explore the consequences of these known facts. Of course, in the real world there may be other 

forces at work offsetting these consequences, but knowing what these consequences would be in 

a simple model then directs our attention to these other forces, which can then be incorporated 

into later model iterations. This approach is illustrated below, when I permit actors to 

compensate for past scheduling imperfections by deliberately pursuing alters they have 

infrequently encountered – this as one way in which people cope with the fundamental limitation 

that being in one place means not being somewhere else, that attending to one tie normally 

means temporarily neglecting others. 

 

The model 
 

The simulation “core,” upon which the diffusion analysis will build, is diagrammed in Figure 1.3 

It takes as input a “preference” network. For the sake of convenience, I often equate the ties in 

this network with those of friends, or else speak of people “liking” one another, though the 

analysis extends to any network of background propensities to interact with some people rather 

than with others, such as in an organizational setting where this may be determined by task 
                                                 
3 The program was written in the programming language C. 
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interdependence rather than by sentiment. I assume that the network is symmetrical, such that if i 

considers j a friend, j considers i a friend as well, and that ties are dichotomous, so that one 

person either considers a second a friend or does not. As with most simplifying assumptions in 

simulation research, these are made to facilitate analysis of the dynamics arising most directly 

from the mechanism of interest – here, scheduling. That being said, future research may 

experiment with valued and nonsymmetrical relations. 

 

[FIGURE 1 ABOUT HERE] 

 

I refer to the main scheduling unit with which people are assumed to be working as a 

“round.” At the beginning of the round (1), each person sends out a single invitation to someone 

they like; in the baseline model, he or she selects this person at random from the set of his or her 

friends. These invitations are issued simultaneously. Any two individuals who have sent one 

another reciprocal invitations are then immediately paired off for an encounter (2), and each 

declines any remaining incoming invitations (3), which are immediately withdrawn. Then, the 

simulation returns to step (1), and anyone just turned down sends out a new invitation, avoiding 

the person (and later, the set of persons) whom he or she has already been turned down by; 

anyone still awaiting a reply takes no further action at this point. Reciprocal invitations again 

result in pairings and rejections (2, 3), and anyone who sent an invitation to some other 

previously-committed person is also turned down (3). Once again, the recently rejected send out 

a new set of invitations (1). 

 

[FIGURE 2 ABOUT HERE] 

 

The invitation-pairing-rejection cycle (1-3) repeats until no additional pairings are 

possible (4b), or until the entire system freezes (4a), with everyone still in the running waiting 

upon someone else, in what I refer to as a “contingency cycle.” Figure 2 illustrates some ways in 

which this can happen. In each case, there are three or more people caught in a cycle of 

invitations, such that, for instance, Al is waiting on Betty, Betty is waiting on Carl, Carl is 

waiting on Diane, and Diane is waiting on Al. Further, others can become caught up in such 

cycles, if they are waiting on someone in the cycle, or on someone who is waiting upon someone 
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in the cycle, and so forth. When this occurs, no further progress can be made. My solution is to 

randomly select one person from among those so affected to become “impatient,” with the 

additional requirement that she has at least one incoming offer. She then accepts one of these – in 

the baseline model, at random – and rescinds her outstanding invitation, following which the 

newly paired individuals decline other invitations as usual. The simulation then returns to step 

(1), continuing as before until another contingency cycle is encountered, or until no further 

encounters can be scheduled given the network and the specific scheduling rules at work (on 

which more shortly), at which point scheduling efforts for that round conclude. The scheduled 

encounters then occur, and the actors begin the whole process over again at the start of the next 

round. 

While some features of this simulation were implemented for the sake of programming 

convenience – in particular, the simultaneous issuing of each new set of invitations – several 

others are intended to capture real features of scheduling phenomenology. Firstly, people 

discriminate between those with whom they want to spend time and those with whom they do 

not. Secondly, two people have to agree to meet before an encounter can occur – an obvious 

requirement that is, however, ignored in much simulation research (e.g., Skyrms and Pemantle 

2000).4 Thirdly, people are limited to one outstanding invitation at any time, with respect to any 

given encounter opportunity. While this is something of a simplification, it remains true that we 

rarely send out multiple invitations with respect to the same time slot, lest both parties prove 

available and we have to take back the invitation after it has been accepted. Fourthly, an 

invitation extended is rarely rescinded unless rejected. The reason, perhaps, is that invitations 

amount to a kind of “line,” in Goffman’s sense of "a pattern of verbal and nonverbal acts by 

which one expresses one's view of the situation and through this his evaluation of the 

participants, especially himself" (1967, p. 5). In this context, the “view” expressed pertains to the 

inviter’s assessment of the social desirability of the invitee. To rescind such a line is severely 

face-threatening, and risks the animosity of the person so slighted and the tarnishing the 

reputation of the person responsible. Fifthly, people feel bound to the appointments they have 

committed to. While this is also a simplification, it is, once again, largely true, and on those rare 

occasions on which we do cancel an appointment we are at special pains to give an account of 

ourselves. 

                                                 
4 This is not to deny the fact of chance encounters, though I do not consider them here. 
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Lying between expedient and realistic is the assumption that encounters are dyadic, and 

the provision for impatience. Regarding the first, while encounters do sometimes involve more 

than two people, there are good reasons for people to prefer dyadic encounters. One is that these 

are more easily scheduled, since the greater the number of people to be accommodated, the more 

difficult the scheduling problem. Another is that dyadic encounters impose less of a 

cognitive/strategic load upon interactants, who only need to keep track of what one other person 

already knows, or can safely be told. Finally, even purely social encounters suffer when they 

involve more than two people. In the words of Emerson, “Two may talk and one may hear, but 

three cannot take part in a conversation of the most sincere and searching sort” (qtd. in Crystal 

and Crystal 2000, p. 140). 

While impatience certainly does, in the real world, serve to re-start scheduling when it 

has stalled, its implementation here is based more on programming simplicity than on realism. In 

particular, at present someone becomes impatient only when the entire group has run aground 

scheduling-wise, which is not something that a real person can be expected to know. As with so 

many aspects of the simulation, future research may experiment with alternatives, such as 

endowing each person with a level of characterological impatience, and thereby the capacity to 

rescind an outgoing offer and accept an incoming offer after a certain period of waiting, 

regardless of what is happening to others. This would complicate the current model, however, 

and indeed create further complications still, which I take as best avoided for current purposes. 

 

Remediation 
 

The baseline model assumes that actors have weighted their network options equally, which is 

why, at steps (1) and (4a) in Figure 1, their selections – of a friend to whom to send an invitation, 

or of a friend from whom to accept an invitation when impatient – are made randomly. But it is 

possible that actors deliberately compensate for scheduling imperfections experienced in prior 

rounds by more vigorously pursuing those friends whom they have not recently encountered, or 

weighing more favorably invitations from such people. I refer to this as “scheduling 

remediation,” and it plays an important role in what follows. The calculations involved take as 

input the cumulative history of dyadic encounters as these have occurred over a number of 

rounds. This is compared to what would have been ideal from the perspective of each person. 
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Then individuals issue invitations, and consider invitations from others, on the basis of the 

difference between the ideal and the reality – basically, the ideal-reality “residual.” 

The “ideal” number of times a person i would like to have seen a person j as of round r is 

calculated as the normalized strength of the tie, ranging from 0 to 1 and summing to 1 across all 

of i’s alters, times r: 
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where ijrf̂  is how often i and j would ideally have met, from i’s perspective, after r rounds; xij = 

1 if i likes j; and xi+ is x’s outdegree (summing across all alters, inclusive of j). Thus, if John likes 

four people, he is “expected,” if he gets his way, to see each of them one-quarter of the time, or 

on twenty-five occasions as of round 100. If, on the other hand, he only likes one person, he is 

expected to impose himself on that person every round. Note that ijrf̂  is always defined from the 

perspective of i, which may or may not accord with some j’s view on the matter. 

 When scheduling remediation is operating, the probability of i sending an invitation to j 

is then calculated as:  
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where  fijr is how many times i and j have met so far, after r rounds, 1
ˆ

+ijrf  is how often i and j 

would ideally have met after this round, from i’s perspective (and similarly for fikr and 1
ˆ

+ikrf ), 

and g is the number of people in the group. In the first round, when w = 0, i has the same 

probability of sending an invitation to each j for whom xij = 1. In subsequent rounds, however, i 

is more likely to send an invitation to someone he or she has seen too little of ( ijrf̂  - fijr > 0), 

where this likelihood increases with the size of the residual, but has a zero probability of sending 
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an invitation to someone he or she has seen enough of, or more than enough of ( ijrf̂  - fijr  ≤ 0), 

given the number of rounds that have passed so far (the absolute values in the numerator and 

denominator setting Pr(iVj) to 0 when this is the case). The ideal value is indexed to r+1, rather 

than to r, because otherwise there is a chance that someone will be put into a temporary stupor 

by the bottom half of Eq. 2, upon finding that they have encountered each person in their 

network the ideal number of times. Basically this keeps everyone slightly nervous, as a spur to 

sending out a new invitation even when a person has succeeded fabulously (and improbably) in 

enacting his or her network up to that point. 

 A similar equation is used to calculate i’s probability of accepting an invitation from j 

given that i has an outstanding offer to l with regard to which i has become impatient:  
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where the notation is as in Equation 2, the difference being that the normalizing divisor here 

excludes l whom i has written off as a lost cause. If i has no invitation from a j whom i has seen 

too little of, i randomly selects an invitation to accept, as if r = 0. 

 Remediation changes the question people ask from, “Whom do I like?”, to, “Of the 

people I like, whom haven’t I seen much of?”5 Note that I take remediation, or its absence, as a 

feature of a scheduling culture, so that the entire group is modeled as remediative or 

unremediative. While this elides the possibility that people differ within a group – that is, of 

heterogeneous scheduling strategies – it is a simplifying assumption that, arguably, maps, at least 

crudely, onto the world. It is easy to imagine, for instance, that business and professional 

networks are, on whole, more remediative than adolescent networks. Still, future research would 

do well to consider the possibility of heterogeneous strategies, both as the degree of 

                                                 
5 As remediation is currently implemented, it turns people into perfect record-keepers, who care as much about what 
happened, or did not happen, a long time ago as what happened more recently. An alternative would be to add a 
tunable memory decay parameter, whereby people would assign more weight to recent encounters. 
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heterogeneity affects group-level outcomes such as diffusion, and as particular individuals are 

affected by their strategies and the strategies of their network alters, say in terms of their 

respective levels of social engagement. 

 

Diffusion 
 

Diffusion researchers normally take ties to operate concurrently. This is particularly true in 

research on the spread of an idea or practice.6 In empirical research this means asking whether a 

person is more likely to acquire the practice if he or she has friends who already have (e.g., Burt 

1987; Coleman, Katz, and Menzel 1967),7 while computational research takes the answer to be 

yes, in order to explore the effects of various parameters – such as the degree of connectivity, 

and the proportion of one’s friends that need to adopt before one decides to jump on the 

bandwagon – on the pace and ultimate extent of diffusion (Watts 2002). This is not, of course, 

how real networks operate: I never see all of my friends at once; particular friends go unseen for 

months and even years at a time; and, by and large, spending time with one friend comes at the 

expense of spending time with another. 

It is not difficult to see that the contrast between static, concurrent representation and a 

reality rife with scheduling complexities is consequential for diffusion. For one, it may be that 

ideas or practices encounter scheduling “bottlenecks” when they reach people with high network 

centrality, who will take longer than others to query all of their network contacts for their 

opinions. And if people adopt only when a healthy proportion of their friends seem to have 

already done so, having many friends who have adopted is not likely to exert much pressure 

towards conformity if one never encounters them; conversely, having very few friends who have 

                                                 
6 Network analysts working on disease spreading have been more likely to address the issue of concurrency. An 
example is Morris and Kretzschmar (1995), who compare simulation models that impose serial monogamy with 
those that allow for concurrent sexual partners. This does not amount to incorporating scheduling, however, since, 
except in the serial monogamy model, nothing prevents an actor from having intercourse with several partners on a 
given day, and indeed a good deal of this goes on in the models. Along similar lines, Moody (2002) considers the 
effects of network change on diffusion of sexually transmitted diseases, though with similar assumptions. 
7 Burt (1987) describes, and favors, an alternative mechanism, according to which one adopts when those to whom 
one is “structurally equivalent” – that is, who are similarly tied to other people – have adopted. In this paper I restrict 
myself to diffusion through direct contact (or through “cohesion,” in Burt’s terminology), firstly because this is the 
mechanism more explored by researchers; secondly because it is the one with the most general applicability, 
including to disease transmission; and thirdly because while the scheduling requirements of diffusion through 
contact are clear, though normally unstated, the same cannot be said for diffusion through structural equivalence. 
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adopted may induce one to do the same if these are the people with whom one actually spends 

time. 

 Before I continue, some terminology: “Diffusion” here refers to the process whereby a 

practice, piece of information, or disease spreads through a network. “Contagion” refers to a 

specific occurrence of transmission from one individual to another. I speak of someone as 

“infected” if they are already in possession of the information or practice or disease, and of 

“adoption” when an uninfected person becomes infected. I am, of course, shamelessly mixing the 

terminology of epidemiology with that of the diffusion of innovations, but only in this way can a 

sufficiently flexible lexicon be compiled without the coining of neologisms.8 

 

[FIGURE 3 ABOUT HERE] 

 

 The diffusion analysis is diagrammed in Figure 3. It begins with a preference network of 

100 actors in which, as already indicated, all ties are constrained to be symmetrical. Diffusion 

through two types of networks was explored; the algorithms for producing these are described 

below. The simulation was run 100 times for each combination of conditions (network type and 

scheduling rule). Each repetition began with the generation of a new network, and the random 

seeding of the information in a single individual. It ended when everyone in the network had 

become infected, or after 1,000 rounds, whichever came first. 

 

Network topologies 
 

Much computational research on network diffusion assumes that networks are “random,” which 

normally means that each pair of individuals has some probability of being connected (e.g., 

Watts 2002). This is useful inasmuch as there are powerful graph-theoretic techniques which 

tend to make the same assumption, but is clearly not realistic: real networks tend to have 

particular properties, among them degree centralization – some people are more popular than 

others (Gould 2002) – as well as a tendency toward clustering, or triadic closure, which means 

that two people with a common friend tend to be friends with one another (Doreian, Kapuscinski, 

Krackhardt, and Szczypula 1996). Thus, in what follows I consider diffusion as it occurs in two 

network topologies: one a random network, in which ties are forged at random, and the other a 
                                                 
8 Terminological alternatives welcome! 
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network in which ties are formed in such a way as to generate degree centralization and triadic 

closure. This will provide us with a basis of comparison for exploring the consequences of 

scheduling in realistic networks, and for understanding precisely how those consequences come 

about. 

 In both sorts of networks, each actor “initiates” five ties, but can be on the receiving end 

of additional ties, so that the mean degree is ten – five initiated and, on average, five received. In 

the random (Rand) networks, people forge these ties at random, subject to the constraint that two 

actors can only have one tie between them, which means that each cannot initiate a tie to the 

other.9 The procedure for generating the “centralized-clustered” (C-C) networks is more 

complicated. Here, actors “arrive” to the network one at a time, and initiate five ties before the 

next actor “arrives.” Ego’s first tie is forged according to Barabási and Albert’s (1999) principle 

of “preferential attachment,” which calculates the probability of i forging this initial tie to j as j’s 

proportional share of all existing ties summed across everyone, excluding i: 
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With ego’s initial tie formed in this manner, his or her remaining ties are formed according to a 
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Equation 6 is applied repeatedly, until ego has forged five ties in all. Note that if i finds that there 

is no one remaining (a) to whom she is not yet tied, and (b) with whom she shares one or more 

friends – that is, if there is no j for whom Equation 6 produces a non-zero probability – she 

forges her additional ties at random. 

                                                 
9 While it is possible for such a network to be disconnected, something which would create a problem for the 
diffusion analysis, the odds of this happening are infinitesimally small, and none of the networks generated had this 
property. 
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[FIGURE 4 ABOUT HERE] 

 

 Sample random and centralized-clustered networks are diagrammed in Figure 4, though 

here the number of ties initiated by each actor was set at two, to reduce the number of ties so as 

to make the structural features easier to discern. It is obvious that the centralized-clustered 

network evidences the two properties of degree centralization, whereby some people have many 

ties and many others have few, and triadic closure, such that two people are more likely to be 

friends when they have friends in common; while we also find some relatively central actors, and 

some closed triads, in the random network, these are at chance levels only. To make the 

comparison more rigorous, we can calculate the degree of triadic closure using Watts and 

Strogatz’s (1998) “clustering coefficient”: 
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where i ≠ k ≠ j. This averages the ego-specific clustering coefficients, each of which is the 

proportion of pairs of alters liked by ego who also like each other, and has a range of [0, 1]. The 

mean clustering coefficient for the random graphs, generated as described above, is .093, while 

that for the centralized-clustered graphs is .431 (in each case, across 100 realizations); the 

difference is statistically significant (two-sided t-test; p<.001). Clearly, the degree of clustering, 

or triadic closure, in the centralized-clustered networks is much higher than in the random 

networks, as intended. 

 

[FIGURE 5 ABOUT HERE] 

 

 Second, we can compare the degree distributions from the two types of networks for 

further confirmation that the centralized-clustered networks are, in fact, centralized, meaning that 

some people have a lot of ties while many others have few. The two degree distributions, 

aggregating across 100 realizations of each type of network, are presented as histograms in 

Figure 5. Predictably, the random networks have degree distributions that are approximately 
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normal, with some people having only about five friends (the minimum), some having closer to 

fifteen, but most falling in the intermediate range of eight to twelve. In contrast, the majority of 

actors have between five and seven ties in the centralized-clustered networks, while some – a 

very few – have upwards of fifty ties.10 If we believe Albert and Barabási (1999) and Gould 

(2002), this is how real networks look, and this particular feature of the centralized-clustered 

networks will prove especially important in what follows. 

  

First contact contagion 
 

The initial analysis is based on the assumption that contagion occurs on first contact – that is, 

that ego becomes infected immediately upon encountering an infected alter; imagine a hot piece 

of gossip or, in the epidemiological application, a highly virulent disease. (Later I consider the 

effects of “threshold” diffusion, whereby someone adopts only when a particular fraction of their 

encountered friends already have, as is likely more appropriate for the spread of fads.) I compare 

mean time to complete diffusion (a) when ties are permitted to operate concurrently, as in 

traditional diffusion models, (b) when there is scheduling with remediation, and (c) when there is 

scheduling without remediation, where each analysis was performed on each of the two types of 

networks, making for six “conditions.” 

 

[FIGURE 6 ABOUT HERE] 

 

 Figure 6 is a boxplot of rounds until complete saturation for each condition. Several 

things can be seen here. Most striking, though not surprising, is the delay in diffusion caused by 

scheduling. Complete diffusion in both random and centralized-clustered networks of 100 actors 

occurs in about three rounds when actors are permitted to communicate with all of their alters 

each round – the typical assumption in most network diffusion models. In contrast, complete 

diffusion in the four scheduling conditions takes, for the most part, between ten and fifteen 

rounds – this a three-fold to five-fold increase. Clearly, diffusion occurs much more slowly when 

it requires face-to-face encounters, as may be the case for certain kinds of information and 

                                                 
10 The centralized-clustered distribution is, loosely speaking, “scale-free,” though it is not well approximated by the 
standard power law function pk ∼  k-γ (Strogatz 2001), because the decay – the drop-off in frequency of higher 
degrees – is somewhat too rapid. 
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gossip, and is certainly the case when we are concerned with the spread of a communicable 

disease such as SARS. (Compare this to the spread of a computer virus, for which there are no 

comparable scheduling requirements.) 

 A second finding is that remediation accelerates diffusion: when actors deliberately 

service their networks by pursuing elusive alters, the information or disease spreads through the 

network faster (p<.001 for the comparison of random networks with versus without remediation, 

and p<.05 for the comparison of centralized-clustered networks with versus without 

remediation). What is perhaps more surprising, however, is that the effect is not stronger. It 

appears that remediation only slightly offsets the effects of scheduling on diffusion time, which, 

we can thus conclude, are primarily owed to the combination of scheduling constraints and lack 

of concern with efficient transmission to which I attributed the effect of network topology. 

 A third finding is that diffusion takes longer in centralized-clustered networks than in 

random ones: on average, 14.4 versus 10.4 weeks with remediation, and 15.0 versus 11.9 weeks 

without it. (Both two-sided t-tests resulted in p < .001.) It is possible that this difference has at its 

root the corresponding difference in geodesics, as reflected in time to complete diffusion when 

no scheduling constraints apply (in which circumstance geodesics primarily determine diffusion 

time). This difference, however, is very small, to the point that it is not visibly discernable in 

Figure 6: without scheduling, complete diffusion takes an average of 3.03 rounds in the random 

networks, and 3.21 rounds in the centralized-clustered networks. This is smaller than the 

differences we observe when scheduling constraints apply, both in absolute terms, and in relative 

terms.11 I take this as evidence that the difference in diffusion times between the two sorts of 

networks when scheduling applies is not simply the result of the initial difference in geodesics as 

amplified by scheduling constraints, but is due to something else. 

 

[FIGURE 7 ABOUT HERE] 

 

 This “something else” can be gleaned from Figure 7, which graphs the round on which an 

actor was infected against its degree, for 2,000 actors, each drawn at random from a unique 

repetition of the simulation, half of them from random networks and half from centralized-

                                                 
11 That is, 14.4 – 10.4 = 4 is a smaller percentage of 14.4, and 15 – 11.9 = 3.1 is a smaller percentage of 15, than 
3.21 – 3.03 = .18 is of 3.2. 
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clustered networks. (Actors schedule remediatively.) It appears that the longer diffusion times in 

centralized-clustered networks are due to central actors who bridge between network regions 

which are, if not otherwise disconnected, at least far-removed from one another. Because these 

actors have so many alters to answer to, each takes longer than others to become infected once 

one of its neighbors is. While, once infected, a centralized actor is able to quickly infect others, 

the initial delay is enough to slow diffusion time relative to what it is in a random graph, because 

non-central actors on the opposite end of the network from the initial seed take a long time to get 

infected, having to wait either for a central actor to become infected and to visit them, or for the 

disease to find its way to them through a more circuitous route. In Figure 7, this is suggested by 

the triangular configuration of points for the centralized-clustered networks, and in particular by 

the low-degree, late-adopters that make up the lower-right corner. 

 

Threshold contagion 
 

I have assumed in the foregoing that an actor acquires the information or virus in question 

immediately upon encountering someone who already has it. While, as noted already, this makes 

sense in the case of a particularly juicy bit of gossip or a particularly contagious disease, it makes 

less sense if our concern is with the diffusion of a practice or fashion, where actor is more likely 

to adopt when some proportion of his or her network alters have – this being that person’s 

“threshold.” What a threshold means in scheduling terms is different than what it means in a 

concurrency model, however. If, as I have been assuming, people are only influenced by friends 

whom they encounter, then the relevant calculation is not of the proportion of one’s total friends 

who are infected, but the proportion of those friends one has encountered over some finite 

period. We thus have two parameters to consider, in addition to scheduling rule and network 

type: one’s threshold, or the proportion of friends one has recently encountered who are infected 

before one decides to do adopt, and one’s “memory,” or the number of rounds one thinks back in 

deciding whether or not to adopt – where this is what defines “recent.”12 

 I assume, for the sake of simplicity, homogeneity in both memory and threshold, which is 

to say that these are fixed at a single level for all members of the network, and then manipulated 

                                                 
12 An alternative would be to define memory as a decay function of the recent past. Another option, were we less 
interested in memory as a parameter, would be to calculate an actor’s probability of adopting as a function of the 
proportion of his or her friends who have already adopted. 
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to allow us to examine their effects on diffusion. The results are presented in Figure 8. For each 

condition – combination of network type and scheduling rule – two graphs are shown. The first 

indicates the proportion of repetitions at each memory-threshold level that resulted in complete 

diffusion within 1000 rounds. (As indicated earlier, the simulation terminated if complete 

diffusion had not occurred by the 1,000th round.) The second indicates the number of rounds to 

complete diffusion, up to the maximum of 1000. The graphs in the right column thus understate 

the time to complete diffusion when this was not achieved within the allotted period. 

 

[FIGURE 8 ABOUT HERE] 

 

 When thresholds are very small and/or memories are very short, diffusion takes about as 

long as it did in the first-contact model. This is not surprising, since under these conditions, one 

exposure to an “infected” individual is sufficient for contagion, so that threshold contagion 

becomes, for all intents and purposes, first-contact contagion. If, in particular, memory = 2, a 

single encounter is enough to meet or surpass a threshold of up to .5, the highest considered here. 

The same applies if the threshold = .1 so long as memory does not exceed ten, as well as if 

threshold = .2 and memory = 4. I will refer to any threshold that is satisfied by a single encounter 

with an infected person to be a “trivial” threshold. Not only does diffusion occur at about the 

same pace when thresholds are trivial as in the actual first-contact model, the effects of 

remediation and network structure observed in Figure 6 also carry through, with remediation 

again expediting diffusion, and the centralized-clustered network again retarding it. (Due to the 

range of values on the vertical axis, these effects, modest in comparison to what follows, are not 

visible in Figure 8.) 

 Diffusion time begins mounting as soon as we venture outside of this area. And yet, so 

long as memory remains under eight rounds, and/or threshold remains under .4, complete 

diffusion almost always occurs within 1,000 rounds, and usually in well under half that. While 

this does indeed amount to a large increase in diffusion time, before dwelling upon this it is 

important to understand that diffusion would never occur at higher threshold levels were it not 

for scheduling. The reason is that if people were continually monitoring all of their friends all of 

the time, no one with several friends – and I assume here that everyone has at least five – would 

ever judge that a significant proportion of her friends had adopted when, particularly when, at the 
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very beginning of the process, only the “seed” is in possession of the innovation. What 

scheduling does is repeatedly bring a person into the presence of those few friends – and there 

may only be one – who have adopted, with the result that she incorrectly infers that a larger 

fraction of her friends have adopted than actually have, and thus adopts. The implication is that 

some innovations, at least, initially take hold in a population because some people “misread” 

their ego-networks, jumping to conclusions based on scheduling contingencies that they only 

imperfectly understand. 

 Different mechanisms are responsible for diffusion when memory is in the medium range 

and threshold is low, on the one hand, and when threshold is in the medium range and memory is 

short, on the other. When threshold levels are moderate (here, .2 or .3), and memory is long (8-

10 rounds), contagion can occur because people cast a wide net and adopt if a small subset of 

those captured are found to have already adopted. We might refer to this as contagion through 

“high sensitivity,” and we can expect it to occur when people are eager to innovate for the sake 

of innovation, as in managerial circles when the consequences of an innovation are of less 

concern than the appearance of remaining on the “cutting edge.” In contrast, when memory 

length is moderate (4-6 rounds) and threshold is large (.4-.5), contagion can occur when, as just 

explained, chance alone lands someone in the company of that small subset of his or her friends 

who have already adopted, on the basis of which he or she infers, perhaps incorrectly, that most 

of his or her friends (i.e., not just those recently encountered) have done so, and thus adopts. This 

is diffusion through small-N sampling, or “stochastic contagion,” and we might expect to find it 

occurring among adolescents concerned with keeping up with quickly-changing fashions. 

 This sets us up to understand how diffusion times can be so long when memories and 

long and thresholds are high – and indeed, why sometimes diffusion appears not to happen at all, 

at least within the allotted time. The problem with stochastic contagion is that it requires short 

memories: the further back into the past people look, the more encounters, and thus alters, they 

are able to consider, the less likely they are to jump to incorrect conclusions about the fraction of 

their friends who have adopted. On the other hand, contagion through sensitivity requires that 

people have low thresholds; otherwise, a long memory just means that people are better able to 

enumerate counter-examples to those one or two friends who have already adopted. When 

memory is long and threshold is high, people spend a long time examining their friends before 

they consider adopting, and then only adopt if a sizeable portion of recently-encountered friends 
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have – a recipe, as it turns out, for stalled diffusion. This is what we might expect of people wary 

of innovation, such as social scientists reluctant to adopt a new statistical technique for fear that 

reviewers will not understand it, or intelligence officials more concerned with accountability 

according to established standards than with maximum effectiveness or efficiency. 

 The same combination of moderate-to-high threshold and medium-to-long memory that 

retards diffusion has two further consequences. I begin with the simpler of these, though it is the 

less stark. While remediation expedites diffusion when contagion occurs upon first contact, and 

when thresholds are trivial, remediation actually slows threshold-based diffusion when memory 

is medium to long and threshold is moderate to high.13 In general, remediation reduces the 

likelihood that an actor will, by chance alone, encounter only that subset of his or her friends 

who have already adopted.. This is consequential when memory is medium to long and threshold 

is moderate to high because, under these circumstances and early in the diffusion process, a 

person has to repeatedly encounter only that friend who has already adopted for his or her 

threshold to be reached, and this is exactly what remediation militates against. While we might, 

consequently, expect the remediation that professionals engage in to accelerate the diffusion of a 

rumor, it may well retard the spread of an uncertain new practice, the adoption of which one is 

reluctant to take on absent the belief that others (note the plural) have already done so. 

The other thing that happens when threshold is moderate-to-high and memory is medium-

to-long is that the effect of network structure is reversed, such that diffusion takes longer in 

random networks than in centralized-clustered networks – much longer when threshold and 

memory approach their upper values.14 (Compare Figures 8b and 8f, and 8d and 8h.) That is, 

while diffusion occurs faster in random networks than in more realistically structured ones when 

people adopt upon first contact, or when, more generally, a single encounter with someone 

already infected is sufficient for contagion to occur, it occurs faster in realistic networks than in 

                                                 
13 Determining statistical significance in this case is complicated, firstly because any two points on the planes in 
Figures 7b and d, and f and h, could be compared, and secondly of the right censuring caused by setting the 
maximum number of rounds at 1000. However, to take one set of memory-threshold coordinates, when threshold = 
.3 and memory = 2, the difference between mean rounds in Figures 7b and d is significant at the p < .001 level, and 
between mean rounds in Figure 8f and h at the p < .01 level. 
14 This effect, and that related to remediation described earlier, does not necessarily take hold at the instant that 
thresholds become non-trivial, which is to say that there are low-to-intermediate levels of memory and threshold at 
which the first-contact regime still faintly applies. As exact the transition point depends on a number of 
considerations – in particular, whether we are concerned with network structure or remediation – and as it is not 
sharp in any case (i.e., it does not amount to an abrupt “phase transition”), I do not dwell upon it here. 
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random ones when contagion occurs contingent upon a significant fractional threshold being 

reached. 

 

[FIGURE 9 ABOUT HERE] 

 

 It turns out that the difference between the two sorts of networks is entirely due to what 

transpires in the opening rounds of the simulation. This is conveyed by Figure 9, which graphs, 

for each combination of network type and remediation or its absence, the number of rounds 

passing between successive instances of contagion, aggregating across 100 repetitions, where 

threshold is set at .5 and memory to 6. Thus, in random networks with remediation the seed takes 

an average of 129 rounds to infect just one person, following which the second, third, and fourth 

individuals are infected – not necessarily through the seed’s direct influence – at average 

intervals of forty-seven, twenty-seven, and eighteen rounds. 

 

[FIGURE 10 ABOUT HERE] 

 

 What we see here is that the rates of diffusion under the four conditions quickly 

converge, such that by the tenth round they are essentially indistinguishable. What is happening 

in these opening rounds? The answer is in Figure 10, which, like Figure 7, graphs an actor’s 

degree against the round in which it was infected. From the insert it is evident that the earliest 

adopters are those with especially low degree, and who are as a consequence most susceptible to 

the influence of a single infected individual. (The gap between the seeds, who are infected at 

round 0, and the first subsequent adopters is a product of memory length.) There is no 

comparable pattern for the corresponding graph for clustering (not shown): some early adopters 

have highly clustered networks, while others have very unclustered ones. Further, note that the 

earliest adopters from the random networks are those whose degree best approximates what is 

modal in the centralized-clustered networks. But lacking many such people, diffusion in random 

networks takes considerably longer to get off the ground. 

 Once diffusion does get off the ground, the pattern of who adopts when it similar to what 

we saw in connection with first-contact diffusion in Figure 7. Once again, central actors in the 

centralized-clustered networks adopt at an intermediate stage, yielding to the influence of the 
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more peripheral early adopters. Then these central actors assist in the further transmission of the 

practice or idea to peripheral actors on the other side of the network. [Maybe add something here 

about the longer tail in Figure 10 – this may suggest that central actors don’t actually exercise 

very effective influence over peripheral ones.] 

 The implication is that topological differences are most consequential in the earliest 

stages of the diffusion process, at least with respect to the question of how long complete 

diffusion takes. And, judging from Figure 9, this is also where remediation has the greatest 

impact, by temporarily inhibiting diffusion in the crucial opening rounds. [Needs development.] 

 

Discussion 
 

The starting point of this paper was the gap between network analysts’ representation of social 

networks as configurations of currently existing and active ties, and the reality of episodic 

encounters, scheduling difficulties, and prolonged periods of tie inactivity. By means of a 

computer simulation of network scheduling, I have demonstrated that this disjuncture is 

consequential, at least for the phenomenon of diffusion. This consequentiality, however, is not at 

all straightforward. The main findings, including the two contagion mechanisms, are summarized 

in Figure 11. 

 

[FIGURE 11 ABOUT HERE] 

 

 I submit that these findings are likely robust to the precise details of the scheduling 

algorithm, since they follow more from the undeniable constraints upon which it is based – such 

as the constraint that a person cannot be in two places at once – than upon, say, the precise 

implementation of impatience. Still, here is far more to scheduling than is captured in this simple 

simulation, and some of it may be consequential for not only diffusion, but also for other 

outcomes that it might be used to explore. Among the scheduling considerations lacking from 

this model are: that people can schedule encounters far in advance, committing to future 

encounters with people who cannot be immediately accommodated; that people can meet in 

groups of larger than two, though there are good reasons why people prefer one-on-one 

encounters; that for a range of reasons, people block off time for solitary work or reflection, 

sometimes in response to temporal rhythms of an entirely different kind (e.g., related to 
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organizational routines); that people can affix different degrees of urgency to their requests for 

encounters; that people hold some friends in higher regard than others, and may positively 

dislike some people; and that people can employ heterogeneous scheduling strategies, whereas 

here I have assumed homogeneous scheduling “cultures.” 

Each of these variations is well worth pursuing, in connection with the outcomes 

explored above as well as others, such as network evolution, social integration/involvement, and 

organizational decision-making. I wish to suggest, however, that this paper points to more than 

just further extensions of the model. While my specific concern in this paper has been with 

scheduling, I take this to be one aspect of a more general set of issues related to what I call 

“enactment dynamics.” As here, the study of enactment dynamics begins with a distinction 

between historically-anchored, pre-existing relationships, on the one hand, and the various ways 

in which these can be concretely activated, or “enacted,” on the other. Enactment need not entail 

simply having lunch for a friend, though this is the sort of enactment assumed in this paper. It 

may also entail various sorts of actions towards third parties (e.g., one’s friend’s enemy), with or 

without deliberate coordination with the person to whom the tie extends. The important thing is 

that such action would not have occurred absent the tie in question, though in defining “tie 

enactment” we might also add the requirements that the action not undermine that tie, and maybe 

also that the action be recognizable to third parties as something one is doing by virtue of the tie. 

The study of enactment dynamics stands to extend the reach of network analysis, firstly 

by encouraging us to view a wider range of actions as products of our network positions, and 

secondly by alerting us to the myriad obstacles that stand between a pre-existing network and 

any consequences following from it in a particular setting, here exemplified by scheduling 

constraints that may keep friends from encountering one another for long periods. While such 

obstacles might seem at first to pose a threat to network analysis, by blocking network effects, an 

understanding of these constraints will better equip us to understand how networks operate 

through and around them, as well as to anticipate the situational junctures at which particular 

networks seem to matter not at all.  

 

 

Conclusion 
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The premise of this paper is that standard network representations are fundamentally misleading 

about the nature of networks, implying as they do that a person’s network ties are continuously 

in operation, though in reality we know that ties can be activated and deactivated, enacted and 

suppressed, and that the activation of one tie often has as its consequence the suppression of 

others. Central to the translation of a “background” preference network into concrete patterns of 

interaction are principles of scheduling, by means of which people seek to balance, not always 

successfully, the competing demands incumbent upon their network positions. By means of a 

scheduling simulation that is built, to the extent that a simple simulation can be, upon a realistic 

phenomenology, I have sought to show that the scheduling constraints that interpolate between 

network representations and network realities are consequential for at least one outcome of 

concern to network analysts, social scientists generally, and recently, the wider public: diffusion. 

The effects of scheduling were found to depend upon several factors, including the behavioral 

(adoption) rule scheduled encounters inform, the network structure scheduling operates upon, 

and how actors themselves respond to scheduling outcomes, in terms of whether or not they 

strive to remedy past imperfections. I concluded with a call for further research on “enactment 

dynamics” more generally, encompassing not only network scheduling but all of the various 

circumstances and constraints that activate and suppress network ties, and that thus decide when, 

and how, pre-existing relations translate into events in the world. 
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Figure 1. Scheduling algorithm core

1. Each actor who is committed neither to an 
encounter nor to an outstanding invitation selects 
an alter whom iXj, and whom i has not yet been 
turned down by this round, and sends an invitation 
(iVj). 
2. Actors who reciprocally invite (iVj, jVi) are 
paired off for an encounter (iEj, jEi). 
3. Invitations to committed individuals are turned 
down and withdrawn. 
4. Return to (1) unless 

a. no new invitations were sent out at (1) due 
to contingency cycles � one person selected at 
random to become “impatient,” accepts an 
incoming offer � go to (2), (1). 
b. no further pairings are possible � end; 
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Figure 2. Invitation contingency cycles (arrows are invitations) 
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Figure 3. Diffusion analysis 
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Figure 4. Sample networks, minimum degree = 2  
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       b. Centralized-clustered 
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Figure 5. Degree distributions, summing over 100 networks, minimum degree = 5 
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Figure 6. Boxplot for rounds to complete diffusion by network 
and rule combination 
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Figure 7. Time to infection by degree (given remediation), first-contact model 
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Figure 8. Rounds to complete diffusion, and proportion completely diffused within 1000 
rounds, by network and rule combination 
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Figure 9. Rounds to next contagion, given last 
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Figure 10. Round infected by degree, for threshold = .5, memory = 6, and remediation 
(1,000 actors, each drawn from a separate repetition) 
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Figure 11. Summary of main findings 
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TO DO: Change language: to diseases in the 1st-contact model, and practices in the threshold 

model. And explain earlier that the two models are meant for these different sorts of phenomena. 

Future work: parameterize clustering and degree centralization. Here I can’t because it’s hard 

and maybe, at this stage, impossible to only vary one feature of a network; clustering and 

centralization, in particular, tend to go together. 


