## The Geological Society of America

$$
\begin{array}{r}
{\left[\text { horton: } \begin{array}{r}
\text { overs }
\end{array}\right]} \\
\text { CONTENTS }
\end{array}
$$



Subscription, $\$ 10$ per year.
Publication Office: Mt. Royal and Guilford Aves., Baltimore 2, Md.
Communications for publication should be addressed to The Geological Society of America, Dr. H. R. Aldrich, Secretary. 419 West 117 th Street. New York 27. N. Y.

NOTICE.-In accordance with the rules established by the Council, claims for non-recelpt of the presceding number of the Bulletin must be sent to the Secretary of the Soclety within three months of the date of the receipt of this number in order to be filled gratis.

Entered as second-class matter in the Post-Office at Baltimore, Md., under the Act of Congress of July 16, 1894.
Accepted for mailing at special rath of postage provided for in Section 1103 Act of October 3, 1917, authorized on July 8. 1918.
commonly interbedded with the lavas of steep semiarid Hawaiian volcanoes, especially with those of the dying andesitic third phase of volcanism (Stearns, 1940, p. 1947-1948). They perch water in the overlying lava at the Waihu Springs. At the lower Waihu Springs the same bed of hillwash is underlain by the Waihu fanglomerate. Thus none of the so-called glacial springs on Mauna Kea described by Wentworth and Powers (1943) appear to be perched by drift.

## SUMMARY AND CONCLUSIONS

During Wisconsin time Mauna Kea was covered with an icecap several hundred feet thick that extended to an altitude of 10,500 feet and left a distinct terminal moraine and small outwash fans. The Waihu fanglomerate may have been deposited by floods caused by rapid melting of the icecap by lava flows in early Wisconsin time. If not, it is outwash of a pre-Makanaka glacier. All older so-called drift deposits are definitely explosion deposits, possibly hydromagmatic, due to hot lava breaking through the icecap, but they are not indicative of early glaciations. All so-called drift deposits ąnd erratics, supposedly indicating that early icecaps extended as low as 6900 feet on Mauna Kea, are believed to be conglomerates or lag boulders from eroded stream-laid deposits. The absence of deposits of early Pleistocene glaciers is best explained by the hypothesis that the volcano had not at that time reached a height sufficient to nourish glaciers in a tropical climate. An alternate hypothesis is that the deposits lie deeply buried by subsequent lavas.

## 1 REFERENCES CITED

Gregory H. E., and Wentworth, C. K. (1937) General features and glacial geology of Mauna Kea, Hawaii, Geol. Soc. Am., Bull., vol. 48, p. 1719-1742.
Jaggar, T. A. (1925) The Daly glacier on Mauna Kea, Volcano Letter No. 43, Oct. 22.
Macdonald, G.A. Petrography of the island of Hawaii, U. S. Geol. Survey, Prof. Paper (in preparation). Stearns, H. T. (1940) Four phase volcanism in Hawaii, Geol. Soc. Am., Bull., vol. 51, p. 1947-1948. Wentworth, C. K., and Powers, W. E. (1941) Multiple glaciation of Mauna Kea, Hawaii, Geol. Soc. Am., Bull., vol. 52, p. 1193-1218.
p. 542-547. (1943) Glacial springs on the island of Hawaii, Jour. Geol., vol. 51,
U. S. Geological Survex, 333 Federal Bldg., Honolulu 2, T. H.

Manuscript Received by the Secretary of the Society, June 1, 1944.
Published ay Permission of the Director, Geological Survey, U. S. Dept. of the Interior, Washington 25, D. C.

## EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY

BY ROBERT E. HORTON

## CONTENTS

Page
Abstract. ..... 277
Acknowledgments ..... 279
List of symbols used ..... 279
Playfair's law ..... 280
Quantitative physiographic factors ..... 281
General considerations. ..... 281
Stream orders ..... 281
Drainage density. ..... 283
Length of overland flow. ..... 284
Stream frequency. ..... 285
Composition of drainage net. ..... 285
Laws of drainage composition ..... 286
Total length of streams of a given order. ..... 291
Channel-storage capacity. ..... 292
General equation of composition of stream systems ..... 292
Relation of size of drainage area to stream order. ..... 293
Law of stream slopes. ..... 295
Determination of physiographic factors for drainage basins. ..... 295
Relation of geologic structures to drainage composition ..... 300
Infiltration theory of surface runoff . ..... 306
General statement ..... 306
Infiltration-capacity ..... 307
Overland or sheet flow ..... 309
Law of overland flow ..... 309
Index of turbulence. ..... 312
Types of overland flow. ..... 312
Rain-wave trains. ..... 313
Profile of overland flow ..... 314
Surface erosion by overland flow ..... 315
Soil-erosion processes ..... 315
Resistance to erosion ..... 317
Eroding force. ..... 319
Critical length $x_{0}$-Belt of no erosion ..... 320
Erosion rate. ..... 324
-TQtal erosion and erosion depth. ..... 324
Relation of erosion to slope length. ..... 325
-Rain intensity and erosion. ..... 326
Transportation and sedimentation. ..... 329

Origin and development of stream systems and their valleys by aqueous erosion.

## Rill channels and rilled surface.

Origin of rill channels.
Cross-grading and micropiracy

## Hydrophysical basis of geometric-series laws of stream numbers and stream lengths

## General statement

## First stage.

332
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Second stage...
Subsequent stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Adventitious streams.
Stream development with progressively increasing land-exposure competition . . . 34
End point of stream development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stream-entrance angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Drainage patterns.
350
Asymmetrical drainage patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Perched or sidehill streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Rejuvenated streams; epicycles of erosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Drainage-basin topography.
Marginal belt of no erosion; gradation of divides. ........................ 355
Interfluve hills and plateaus

Stream-valley gradation.................
Typical ovoid forms of drainage-basins.
Davis stream-erosion drainage-basins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Davis stream-erosion cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

ILLUSTRATIONS
Figure

1. Well-drained basin.......... . .
2. Flat sandy area, poorly drained
3. Bifurcation or relation of stream order to number of streams in different drainage basins.
4. Relation of stream lengths to stream order in different drainage basins
5. Diagram of factor $\rho^{s}-1 / \rho-1$
6. Law of stream slopes.
7. Drainage net, upper Hiwassee River
8. Graphical determination of stream characteristics.
9. Drainage patterns of Laurel Fork and Glady Fork, Cheat River drainage basin
10. Stream numbers and stream lengths.
11. Drainage patterns
12. Relation of surface-runoff intensity $\left(q_{s}\right)$ to average depth of surface detention............. 311
13. Half section of a small drainage basin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
14. Half profile of a valley slope. ........
15. Horton slope function for surface erosion.
16. Gradient and degree of erosion.
17. Relation of erosion to slope length
18. Relation of initial infiltration-capacity to erosion
19. Erosion of sodded area initiated by the breaking down of grass cover in intense rains.
20. Successive stages of rill-channel development.
21. Portion of Moon Mountain, Arizona-California, quadrangle, U. S. G. S. ... 333
22. Development of a valley by cross-gradigg. ................................................... . . . . . . . . . . . . . . . . . . . . . . . 334
23. Successive stages of rill obliteration...
24. Development of a stream from a rill system by cross-grading.
25. Development of a drainage net in a stream basin............................................ . . . 340
26. Beginning of erosion on newly exposed land.............................................. . . . . . . 342
27. Development of first pair of tributaries on new stream system............................ . . 343
28. Lines of flow after cross-grading of first pair of tributary areas........................... 344
29. Development of lower pairs of main tributaries. ........................................... . . . 345
30. Final development of two adjacent drainage basins on newly exposed land............... . . 346
31. End point of stream development. .......................................................... . . . . . . 347
32. End point of a definite stream channel...................................................... . . . . . 347


33. Perched or hillside stream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
34. Belts of no erosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
35. Belt of no erosion at a cross divide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
36. Topography of an interior cross divide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
37. Origin of ungraded or partially graded interfluve hills and plateaus...................... . . . 362
38. Gradation of stream valley.

## ABSTRACT

The composition of the stream system of a drainage basin can be expressed quantitatively in terms of stream order, drainage density, bifurcation ratio, and stream-length ratio

Stream orders are so chosen that the fingertip or unbranched tributaries are of the 1st order; streams which receive 1st order tributaries, but these only, are of the 2 d order; third order streams receive 2 d or 1st and 2 d order tributaries, and so on, until, finally, the main stream is of the highest order and characterizes the order of the drainage basin.

Two fundamental laws connect the numbers and lengths of streams of different orders in a drainage basin:
(1) The law of stream numbers. This expresses the relation between the number of streams of a given order and the stream order in terms of an inverse geometric series, of which the bifurcation ratio $r_{b}$ is the base.
(2) The law of stream lengths expresses the average length of streams of a given order in terms of stream order, average length of streams of the 1st order, and the stream-length ratio. This law takes the form of a direct geometric series. These two laws extend Playfair's law and give it a quantitative meaning.

The infiltration theory of surface runoff is based on two fundamental concepts:
(1) There is a maximum or limiting rate at which the soil, when in a given condition, can absorb ain as it falls. This is the infiltration-capacity. It is a volume per unit of time.
(2) When runoff takes place from any soil surface, there is a definite functional relation between the depth of surface detention $\delta_{a}$, or the quantity of water accumulated on the soil surface, and the rate $q_{s}$ of surface runoff or channel inflow.

For a given terrain there is a minimum length $x_{c}$ of overland flow required to produce sufficient runoff volume to initiate erosion. The critical length $x_{c}$ depends on surface slope, runoff intensity, infiltration-capacity, and resistivity of the soil to erosion. This is the most important single factor involved in erosion phenomena and, in particular, in connection with the development of stream systems and their drainage basins by aqueous erosion.
The erosive force and the rate at which erosion can take place at a distance $x$ from the watershed line is directly proportional to the runoff intensity, in inches per hour, the distance $x$, a function of the slope angle, and a proportionality factor $K_{e}$, which represents the quantity of material which can be torn loose and eroded per unit of time and surface area, with unit runoff intensity, slope, and terrain.
The rate of erosion is the quantity of material actually removed from the soil surface per unit of time and area, and this may be governed by either the transporting power of overland and actual rate of erosion, whichever is smaller. If the quantity or materted deposition or sedimenta suspension in overland flow exceeds the quantity which can be transported, deposition or sedimentation on the soil surface will take place.
On newly exposed terrain, resulting, for example, from the recession of a coast line, sheet erosion occurs first where the distance from the watershed line to the coast line first exceeds the critical length $x_{c}$, and sheet erosion spreads laterally as the width of the exposed terrain inced, shoestring gullies or a newly exposed plane surface initially develops a series of shallow, close-spacel slope. As a result of rill channels. The rins various causes,
adjacent thereto, and a new system of rill channels is developed having a direction of flow at an angle
to the initial rill channels and producing a result to the initial rill channels and producing a resultant slope toward the initial rill. This is called crossgrading.
With progressive exposure of new terrain, streams develop first at points where the length of over primary or highest-order streams of the and streams starting at these points generally become the primary or highest-order streams of the ultimate drainage basins. The development of a rilled main stream, and on these slopes tributary fowed by cross-grading, creates lateral slopes toward the where the length of overland flow in the new resultant develop, usually one on either side, at points where the length of overland flow in the new resultant slope direction first exceeds the critical length
$x_{c}$. ${ }^{x_{c}}{ }_{C r}$

Cross-grading and recross-grading of a given portion of the area will continue, accompanied in flow within the remaining areas is everywhere less thany streams, until finally the length of overland account for the geometric-series laws of stream numbers and stream length $x_{c}$. These processes fully A belt of no erosion exists around the stream numbers and stream lengths.
evelopment of the stream system is in progress, and this belt basin and interior subarea while the rea when the stream development becomes complete The development of interior divides between sublete.
petitive erosion, and such divides, as well as the exterior divide sums takes place as the result of comgenerally sinuous in plan and profile as a result of competitive erosion with the general result that isolated hills commonly competitive erosion on the two sides of the divide at their junctions with longitudinal divides. These interfluve hills are particularly on cross divides, summits had been subjected to more or less repented cross the divide on which they are located. dilhe on which they are located.
by competitive erosion, and the drainage basin grows in be absorbed by the stronger, larger streams ength. There is, however, always a triangular area of direct draine the time that it increases in een any two major strims, or pear-shaped. 1
The drainage basins of the first-order tributaries are the last developed on a given area, and such Theams often have steep-sided, $V$-shaped, incised channels adjoined by belts of no erosion.
The end point of stream development occurs when the tributary subareas have been so completely subdivided by successive orders of stream development that there nowhere remains a length of overland flow exceeding the critical length $x_{c}$. Stream channels may, however, continue to develop to some extent through headward erosion, but stream channels do not, in general, extend to the Valied rine.
Valley and stream development occur together and are closely related. At a given cross section the valley cannot grade below the stream, and the valley supplies the runoff and sediment which together determine the valley and stream profiles. As a result of cross-grading antecedent to the development of new tributaries, the tributaries and their valleys are concordant with the parent stream and valley at the time the net streams are formed and remain concordant thereafter.
erally S-shaped on each, when grading is complete, and except for first-order tributaries, are generally S-shaped on each side of the stream, with a point of contraflexure on the upper portion of the slope, and downslope from this point the final form is determined by a combination of factors, includ-
ing erosion rate, transporting power, and the relative frequencies ing erosion rate, transporting power, and the relative frequencies of occurrence of storms and runoff
of different intensities. The longitudinal profile of a valley along the stream bank and the cross section of the valley are closely related, and both are related to the resultant slope

Many areas on which meager stream development has taken place, and which are cocation. classified as youthful, are really mature, because the end point of ptream and which are commonly for existing conditions has already been reached.

When the end point of stream and valley gra
remaining surface is usually concave upward, more or less rememed in a given drainage basin, the ribbed by cross and longitudinal divides and containing interfluve hills and pegment of a parabaloid, a "graded" surface, and it is suggested that the term "peneplain" is hills and plateaus. This is called is neither a plane nor nearly a plane, nor does it approach a plane as an ultimate limiting form surface The hydrophysical concepts applied to stream and valley development account form. phenomena from the time of exposure of the terrain. Details of these phenomena of stream valley development on a given area may be modified by geologic structures and subsequent geologic changes, as well as local variations of infiltration-capacity and resistance to erosion

In this paper stream development and drainage-basin topography are considered
iewpoint of the operation of hydrophysical processes. In connection with the Davis wholly from the the same subject is treated largely with reference to the effects of antecedent geologic condition cycle subsequent geologic changes. The two views bear much the same relation as two pictures of the same object taken in different lights, and one supplements the other. The Davis erosion cycle is, in effect usually assumed to begin after the development of at least a partial stream system; the hydrophysical concept carries stream development back to the original newly exposed surface.

## ACKNOWLEDGMEN'TS

The author is indebted to Dr. Howard A. Meyerhoff for many helpful suggestions and criticisms. Grateful acknowledgment is also given Dr. Alfred C. Lane, who, more than 40 years ago, gave the author both the incentive and an opportunity to begin the study of drainage basins with respect to possible interrelations of their hydraulic, hydrologic, hydrophysical, and geologic features.

## LIS' OF SYMBOLS USED

$A=$ area of drainage basin in square miles.
$\alpha=$ slope angle.
$c=$ distance from stream tip to watershed line.
$\delta=$ depth of sheet flow in inches at the stream margin or at the foot of a slope length $l_{0}$.
$\delta_{a}=$ average depth of surface detention or overland flow, in inches, on a unit strip of length $l_{0}$.
$\delta_{x}=$ depth of sheet flow in inches at a distance $x$ from the crest of the slope or watershed line.
$D_{d}=$ drainage density or average length of streams per unit of area.
$e=$ energy expended by frictional resistance on soil surface, ft .-lbs. per sq. ft . per sec.
$E_{a}=$ average erosion over a given strip of unit width and length $l_{o}$ per unit of time.
$e_{r}=$ erosion rate or quantity of material, preferably expressed in terms of depth of solid material, removed per hour by sheet erosion.
$E_{t}=$ total erosion $=$ total solid material removed from a given strip of unit length per unit of time.
$f=$ infiltration-capacity at a given time $t$ from the beginning of rain, inches per hour.
$f_{c}=$ minimum infiltration-capacity for a given terrain.
$f_{0}=$ initial infiltration-capacity at beginning of rain.
$F_{1}=$ erosive force of overland flow, lbs. per sq. ft .
$F_{0}=$ tractive force of overland flow, lbs. per sq. ft . of surface.
$F_{s}=$ stream frequency or number of streams per unit area.
$i=$ rain intensity-usually inches per hour.
$I=$ index of turbulence or percentage of the area covered by sheet flow on which the flow is turbulent.
$K_{a}=$ coefficient in the runoff equation where $\delta_{a}$ is used instead of $\delta$ as the depth of sheet flow.
$k_{c}=$ proportionality factor required to convert the rate of performance of work in sheet erosion into equivalent quantity of material removed per unit of time.
$K_{f}=$ a proportionality factor which determines the time $t_{c}$ required for infiltration-capacity to be reduced from its initial value $f_{0}$ to its constant value $f_{c}$.
$K_{l}=$ corresponding coefficient (to $K_{s}$ ) in the equation for laminar overland flow.
$K_{s}=$ constant or proportionality factor in equation expressing runoff intensity in terms of depth $\delta$ of overland flow.
$l_{a}=$ average length of streams of order $o$.
$l_{0}=$ maximum length of overland flow on a given area.
$l_{0}=$ length of overland flow or length of flow over the ground surface before the runoff becomes concentrated in definite stream channels.
$h_{1}, l_{2}$ etc. $=$ average lengths of streams of 1 st and 2 d orders, etc.
$L^{\prime}=$ extended stream length measured along stream from outlet and extended to watershed line. $L_{0}=$ total length of tributaries of order $o$.
$M=$ exponent in the equation: $q_{s}=K_{s} \delta^{M}$, expressing the runoff intensity in terms of depth of sheet flow along the stream margin.
$n=$ surface roughness factor, as in the Manning formula.
$N_{o}=$ number of streams of a given order in a drainage basin.
$N_{s}=$ total number of streams in a drainage basin.
$N_{1}, N_{2}$ etc. $=$ total number of streams of 1st, 2d orders, etc.

 processes still remains largely qualitative. Stream basins and their drainage basins are described as "youthful," "mature," "old," "poorly drained," or "well drained," without specific information as to how, how much, or why. This is probably the ref largely of lack of adequate tools with which to work, and these tools must be of two kinds: measuring tools and operating tools.
One purpose of this paper is to describe two sets of tools which permit an attack their stream nets, along quantitative lines forms, particularly drainage basins and heir stream nets, along quantitative lines.
approached quantitatively, and how the problem of erosional morphology may be
 highly important as it is, will not be considered, and the discussion-water erosion,


 increase of size of drainage basin, stream profiles, and stream bends-will not be considered in detail.

 branched, main or stem stream is usually designated as of order 1 and smaller tributary streams of increasingly higher orders (Gravelius, 1914). The smallest un-
 јо se pəұчия!! different orders.
Feeling that the main or stem stream should be of the highest order, and that unbranched fingertip tributaries should always be designated by the same ordinal, uеәdo.n' system. In this system, unbranched fingertip tributaries are always designated as of order 1, tributaries or streams of the 2d order receive branches or tributaries of the 1st order, but these only; a 3d order stream must receive one or more tributaries of the 2 d order but may also receive 1 st order tributaries. A 4 th order stream receives branches of the 3d and usually also of lower orders, and so on. Using this system the order of the main stream is the highest.
To determine which is the parent and which the tributary stream upstream from the last bifurcation, the following rules may be used:
(1) Starting below the junction, extend the parent stream upstream from the bifurcation in the same direction. The stream joining the parent stream at
simple quantitative basis for comparison of the degree of development in the drainage nets of basins of comparable size. Its usefulness as a basis for such comparisons is limited by the fact that, other things equal, the order of a drainage basin or its stream system generally increases with size of the drainage area.
 Expressed as an equation

## (1) <br> Drainage density, $D_{d}=\frac{\Sigma L}{A}$

 density or average length of streams within the basin per unit of area (Horton, 1932).
## DRAINAGE DENSITY

Figures 1 and 2 show two small drainage basins, both on the same scale; one well drained, the other poorly drained. These terms, well drained and poorly drained, while in common use in textbooks on physiography, are purely qualitative, and something better is needed to characterize the degree of drainage development within a basin. The simplest and most convenient tool for this purpose is drainage

where $\Sigma L$ is the total length of streams and $A$ is the area, both in units of the same system. The poorly drained basin has a drainage density 2.74 , the well-drained one, 0.83 , or one fourth as great

For accuracy, drainage density must, if measured directly from maps, be deter-
R. E. HORTON -EROSIONAL DEVELOPMENT OF STREAMS
the greatest angle is of the lower order. Exceptions may occur where geologic controls have affected the stream courses.


Figure 1.-Well-drained basin
(Cherry Creek, N. Y., quad., U. S. G. S.) n, the shorter is usually taken as of the lower order.

On Figure 1 several streams are numbered 1, and these are 1st order tributaries. reams numbered 2 are of the 2nd order throughout their length, both below and ove the junctions of their 1st order tributaries. The main stream is apparently
 arse of the stream was $d c b$, but the portion above $d c$ was diverted by headwater sion into stream $a c^{\prime}$. The well-drained basin (Fig. 1) is of the 5th order, while the

mined from maps on a sufficiently large scale to show all permanent natural stream. channels, as do the U. S. Geological Survey topographic maps. On these maps perennial streams are usually shown by solid blue lines, intermittent streams by dotted blue lines. Both should be included. If only perennial streams were included, a drainage basin containing only intermittent streams would, in accordance with equation (1), have zero drainage density, although it may have a considerable degree of basin development. Most of the work of valley and stream development by rumning water is performed during floods. Intermittent and ephemeral streams carry flood waters, hence should be included in determining drainage density. Most streams which are perennial in their lower reaches or throughout most of their courses have an intermittent or ephemeral reach or both, near their headwaters, where the stream channel has not cut down to the water table. These reaches should also be included in drainage-density determinations.

 are largely used to characterize physiographic age in the sense used by Davis (Davis, 1909; Wooldridge and Morgan, 1937). In the poorly drained area (Fig. 2) the mean annual rainfall is about 30 per cent greater than in the well-drained area (Fig. 1). Therefore some other factor or factors are far more important than either rainfall or relief in determining drainage density. These other factors are infiltration-capacity
of the soil or terrain and initial resistivity of the terrain to erosion.

## MOTA GNVTAYAO AO HLONGT



 pue sоџ purן s! mo甘 puepran


 the case, there is at the end of the storm an interval of residual rainfall having an intensity less than the infiltration-capacity. Channel flow is sustained by accumulated channel storage. This drains out slowly and lasts for hours or even days after hannel inflow from surface runoff ends.
In addition to its obvious value in various ways in characterizing the degree of development of a drainage net within a basin, drainage density is particularly useful
 imately half the average distance between the stream channels and hence is approxi-



 $\frac{I-\frac{1}{1-\frac{1}{2}}=N}{}=N$

## ${ }_{1-1}^{1}+1 /={ }^{0} 1$

S! s.ap.io Ife jo suraņs
 rom the properties of geometric series, the equation of the lines giving the number







Ławs of drainage composition
values of drainage density independent of other units are needed for various purposes. densities may have quite different numbers and lengths of streams. Numerical tative purposes two terms are needed, since two drainage nets with the same drainage drainage net as related both to drainage density and stream frequency. For quanti-

Cotton (1935) and others have used the term "texture" to express composition of a control of drainage systems. little hydrologic significance, although it is highly significant in relation to geologic position has a high degree of hydrologic significance, whereas pattern alone has but streams and tributaries of different sizes or orders, regardless of their pattern. Com guished from "drainage pattern." Composition implies the numbers and lengths of thor has therefore coined the expression "composition of a drainage net," as distinmore is needed as a basis for quantitative morphology of drainage basins. The aut drainage pattern with widely different drainage and stream densities. Something given basin. There may be various combinations of stream numbers, lengths, and both, provide an adequate characterization of the stream system or drainage net in a
 the same lengths and numbers of streams, the drainage pattern may be dendritic, of tributary streams within the drainage basin. Thus, for example, with identically

Table 1.-Characteristics of the drainage nets of certain stream basins

| Stream | Location | TYpe | Order of Maín stream | Area <br> Sa.Mi A | No. of Strearn $\sum N_{0}$ | No. of Itorder streams $\mathrm{N}_{1}$ | Stream Frequency $F_{5}$ | Drainage Density $D_{d}$ | Aver. lagth 1 Is order streams $L_{1}$ | Bifur--cation ratio $r_{b}$ | Length ratio $r_{l}$ | 乏L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (8) | (10) | (i1) | (12) | (13) |
| Esopus Creek | Olive Bridge, N.Y. | Mountains | 5 | 234 | 126 | 90 | 0.527 | 0.849 | 0.99 | 3.12 | 2.31 | 203.2 |
| . ${ }^{\text {. }}$ | Lower Area * | Rolling and Plairs | 7 | 426.3 | $361 \%$ | 256 | . 847 | . 818 | .81 | 2.27 | 1.84 | 348.6 |
| Rondout | Honk Falls, N.Y. | Mountains | 4 | 105. | 58 | 44 | . 552 | 1.07 | 1.08 | 3.30 | 2.64 | 112.6 |
| Putham Brook | Weedsport, N.Y. | Glacial, Drumlin | 4 | 27 | 26 | 18 | . 963 | 1.95 | . 77 | 2.46 | 2.74 | 52.7 |
| Cold Spring Brook | - . | - ${ }^{0}$ | 4 | 15.8 | 25 | 15 | 1.58 | 2.025 | . 58 | 2.62 | 2.66 | 32. |
| Crane Creek | " | $\cdots 6$. | 5 | - \% 5.7 | 48 | 31 | 1.05 | 2.03 | . 81 | 2.22 | 2.30 | 92.6 |
| Ganargua Creek | Lyors, N.Y. | " " | 6 | 299. | 269 | 166 | . 899 | 1.628 | . 87 | 2.89 | 2.30 | 487.1 |
| Keuka Lake | Foot of Lake, . N.Y. | Hilly, Dissected | 5 | 161.9 | 170 | 124 | 1.055 | 1.665 | 1.16 | 3.25 | 1.96 | 268. |
| Seneca. | , " , - | - • | 6 | 479. $\dagger$ | 472 | 334 | . 984 | 1.59 | . 95 | 3.15 | 2.20 | 762.5 |
| Owasco - | Weedsport, .. | 「 - | 5 | 200. | 265 | 191 | 1.325 | 1.79 | . 83 | 3.91 | 2.22 | 358. |
| Thunder Bay River | Alpena, Mich. ** | Glacial ~ Flat | 4 | - | 44 | 33 | - | - | - | 3.00 | - | - |
|  |  |  |  |  |  | . |  |  |  |  |  |  |

* Ashokar Dam to Saugerties, N.Y. * Data furrished by Prof. C.O. Wisler. t Land area, excluding lake.


These equations may appear formidable, but they are merely the statement in symbolic form of the simple algebraic laws of geometric series. Equations (5) and (7) are the most important and are readily solved by means of logarithms.


Figure 4.-Relation of stream lengths to stream order in different drainage basins
As an example, Table 2 shows the observed end computed numbers and lengths of streams of different orders, based on the following values of the variables:

$$
\begin{aligned}
r_{b} & =3.12 \\
s & =5 \\
r_{l} & =2.31 \\
l_{1} & =0.994
\end{aligned}
$$

Actual stream numbers must of course be integers, while the computed numbers may be fractions. Some variation between the computed and observed stream numbers and lengths must be expected, for various reasons. Several drainage basins listed in Table 1 contain large lakes, and the drainage density is less than it would be if the lake did not exist, since there would then necessarily be a stream of the highest order traversing the lake bed. Lower Rondout Creek represents an incomplete drainage basin to which the geometric-series laws do not necessarily apply because it contains a stream or portions of streams of higher order than those originating within this particular area. For some other areas the data were derived from early editions of topographic maps which do not show all the low-order tributaries. In
order that the equations shall give correct results the drainage basin must be reasonably homogeneous. This is true of the drainage basin of Esopus Creek above Olive Bridge, which is wholly mountainous. The drainage basin of lower Esopus Creek is, however, rolling and permeable, with great differences in soil, vegetal cover, rainfall, and climate, as compared with the upper basin. Upper Esopus Creek drainage basin

Table 2.-Observed and computed stream lengths and stream numbers Drainage basin of Esopus Creek above Olive Bridge, New York.

| Stream Order | Number of streams |  | Average stream length (miles) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | From topographic maps | By eq. (5) | From topographic maps | By eq. (7) |
| 1 | 90 | 94.75 | 0.994 | 0.994 |
| 2 | 25 | 30.37 | 2.45 | 2.30 |
| 3 | 9 | 9.73 | 5.64 | 5.31 |
| 4 | 1 | 3.12 | 6.00 | 12.2 |
| 5 | 1 | 1.00 | 29.00 | 28.3 |

has a much higher bifurcation ratio and stream-length ratio than the lower basin (Table 1), and the composition of the drainage nets is quite different, as shown graphically on Figures 3 and 4.

The importance of these equations lies both in their practical application and in the fact that they represent laws which evolve from physical processes which Nature follows rather closely in the development of stream systems under such diverse conditions as those of upper and lower Esopus Creek. The size of the drainage basin does not enter the equations directly. It is indirectly involved, since the order of the main stream would in general be higher in the larger drainage basin, for two homogeneous drainage basins of different sizes. The order of the main stream is a factor in the equations, and the drainage basin in which the main stream is of the higher order will have, in general, more tributaries of a given order.
The data given in Table 1 cover a wide range of conditions, from precipitous mountain areas, like upper Esopus Creek, and highly dissected areas, like those of Seneca and Owasco lakes, to moderately rolling and flat areas. They cover also drainage basins ranging in size from a few square miles up to several hundred square miles.

The bifurcation ratio (Table 1, column 11) ranges from about 2 for flat or rolling drainage basins up to 3 or 4 for mountainous or highly dissected drainage basins. As would be expected, the bifurcation ratio is generally higher for hilly, well-dissected drainage basins than for rolling basins.

The values of the length ratios (column 12) range from about 2 to about 3; the average is 2.32 .

In the examples given in Table 1, the stream lengths were measured to stream tips as shown on U. S. Geological Survey topographic maps. If stream lengths had been measured as extended to watershed lines, the resulting stream-length ratios would have been materially reduced. If $c$ is the average length from the stream tip to the
watershed line, and $l_{1}$ and $l_{2}$ are actual average stream lengths of two successive orders, $l_{2}$ being the higher, then, as computed in Table 1,

$$
\begin{equation*}
r_{l}=\frac{l_{2}}{l_{1}} \tag{8}
\end{equation*}
$$

If measured as extended to the watershed lines,

$$
\begin{equation*}
r_{l}^{\prime}=\frac{l_{2}+c}{l_{1}+c} . \tag{9}
\end{equation*}
$$

treams
The quantity $r_{l}^{\prime}$ will always be less than $r_{l}$. The average value of $r_{l}$ for the streams listed in Table 1 is 2.32 . If the stream lengths were extended to the watershed lines, this value would lie between 2.00 and 2.32. The theoretical value of $r_{l}$ for streams flowing into larger streams at right angles is 2.00 , but $r_{l}^{\prime}$ will be greater for streams entering at acute angles, as do most streams on steeper slopes. The distance along the course of a stream from its mouth extended to the water shed line is called "mesh length." The use of this quantity instead of actual stream length is preferable in physiographic studies, and its use leads to closer agreement with the theoretical values.
In Figures 3 and 4, the agreement between the mean lines for the different streams and the observed data is so close that the two following general laws may be stated regarding the composition of stream-drainage nets:
(1) Law of Stream Numbers: The numbers of streams of different orders in a given drainage basin tend closely to approximate an inverse geometric series in which the first term is unity and the ratio is the bifurcation ratio.
(2) Law of Stream Lengths: The average lengths of streams of each of the different orders in a drainage basin tend closely to approximate a direct geometric series in which the first term is the average length of streams of the 1st order.
Playfair called attention to the "nice adjustment" between the different streams and valleys of a drainage basin but chiefly with reference to their declivities. These two laws supplement Playfair's law and make it more definite and more quantitative. They also show that the nice adjustment goes far beyond the matter of declivities.

## total length of streams of a given order

Since the total length of streams of a given order is the product of the average length and number of streams, equations (5) and (7) can be combined into an equation for total stream length of a given order.
The total length $L_{o}$ of tributaries of order $o$ is:

$$
\begin{equation*}
L_{0}=l_{1} r_{t^{*-o r}}^{r_{1}} 0^{0-1} \tag{10}
\end{equation*}
$$

The total lengths of all streams of a given order is the product of the number of streams and length per stream. The number of streams is dependent on the bifurcation ratio $r_{b}$ and increases with stream order, while the length per stream is dependent on the stream length ${ }_{v} r_{l}$ and decreases with increasing stream order. Thus the total ratic
lengthṣ of streams of a given order should have either a maximum
lengths of streams of a given order should have either a maximum or a minimum
value for some particular stream order. A maximum or minimum may not occur because the stream order required to give the maximum or minimum stream length may exceed the order of the main stream, in which case the total lengths of streams of a given order will either increase or decrease progressively with increasing stream
 рәұеия! $\rho$ and is an important factor in relation both to drainage composition and physio-
graphic development of drainage basins. As will be shown later, the value of the
$\rho=r_{b}$ determined by precisely those factors-hydrologic, physiographic,
cultural, and geologic-which determine the ultimate degree of drainage development
in a given drainage basin.
By summation of the total stream lengths for different orders, as given by equation (10), the total stream length within a drainage basin can be expressed in terms of four fundamental quantities: $l_{1}, o_{s}, r_{b}$, and $r_{l}$.

## CHANNEL-STORAGE CAPACITY

 as a nood proceeds down a system of stream channels. A knowledge of relative amounts of channel storage at different locations is required for various problems of





 total channel storage in the stream system becomes known. This illustrates the
practical application of quantitative physiography to a variety of engineering关


 order $s$ is the sum of the total lengths of streams of different orders, or: $L_{0}=l_{1} r_{b^{s}} o_{r_{l}}{ }^{-1}$
 and of different sizes, the order $s$ of the main stream will in arger drainage basin. As a result the drainage density may increase, decrease or remain substantially unchanged in two similar drainage basins of different sizes.

\author{


In addition to the various quantitative relationships between the different factors





 inverse geometric-series law.

## LAW OF STREAM SLOPES

DETERMINATION OF PHYSIOGRAPHIC FACTORS FOR DRAINAGE BASINS
To determine completely the composition of a stream system it is necessary to know: (1) the drainage area, $A$, (2) the order $s$ of the main stream, (3) the bifurcation ratio $r_{b}$, (4) the stream length ratio $r_{l}$, and (5) the length $l_{s}$ of the main stream or preferably the average length $l_{1}$ of 1 st order streams. If these data are given, then




The quantity $\log r_{b}$ is small relative to $\log (\rho-1) D_{d} A$ and may be neglected, so that in either case the order of the main stream developed in a drainage basin of a
 area $A$. If, for example, with given values of $\rho, D_{d}, r_{b}, r_{l}$, and $l_{1}$, an area of 10,000 square miles is required to develop a stream order $s$, then, under the same conditions, in a drainage basin of 100,000 square miles, the main stream would be of order one unit higher, and in a drainage basin of $1,000,000$ square miles the main stream would be two units higher in order than in an area of 10,000 square miles. This shows at once why stream systems with extremely high orders do not occur-there is not room to accommodate the requisite drainage basins on the solid surface of the earth. The orders of the Mississippi, Amazon, and other large rivers have not been determined accurately, but the Mississippi River quite certainly does not exceed the 20th order. From equation (17) drainage density should vary inversely as the drainage area $A$, other things equal. Actually other things are not equal in drainage areas of different sizes, and, although the bifurcation ratio, stream-length ratio, and average length of
QUANTITATIVE PHYSIOGRAPHIC FACTORS




| Order | streams | malcs | miles | Drainage area $=82.8$ sq. mi |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 146 | 72 | 0.49 |  |  |
| 2 | 32 | 41 | 1.28 3 | $D_{d}=2.06$ |  |
| 3 | 9 | 32.8 | 3.65 |  |  |
| 4 | 2 | $\frac{24.6}{170.4}$ | 12.30 |  |  |
| Figure 7.-Drainage nel, upper Hizuassee River |  |  |  |  |  |

 as follows and plotted as shown by Figure 8A.

䔍

 - .

From equation (5):
If $o=s-1:$

$$
N_{0}=r_{b}^{(a-o)} \text {. }
$$

This shows that the bifurcation ratio $r_{b}$ is equal to the number of streams of the next
to the highest order for the given drainage basin.
If the stream numbers for different stream orders are plotted on semilog paper
(Fig. 3), the bifurcation ratio $r_{b}$ can be determined by simply reading from the aver-
age line the number of streams of the second highest order.
From equation (7):
If $o=2$,

## If $o=2$,

 The stream length ratio $r_{l}$ can therefore be obtained by dividing the average stream length of any order by the average stream length of the next lower order, the values of stream lengths being read from the diagram of stream lengths plotted in terms of stream order. It is preferable to use these data rather than actual measured values, as the number of streams of a given order-particularly the higher order streamsmay not be exactly the normal number for the given drainage composition. Stream numbers can, of course, be only integers, and there may be either two, three, or four streams of the second highest order in a given drainage basin where there should be three.In Table 1 and Figures 3 and 4, the stream lengths and numbers of all orders were determined directly from topographic maps. Where this is done the order $s$ becomes known directly.

In analyzing the drainage net of a stream system it is desirable to trace, with different colors for each order, the stream system from the base map. When the higher-order streams are determined some of the lower-order streams may prove to be the head-water portions of higher-order streams. Figure 7 shows the drainage basin of Hiwassee River above Hiwassee, Georgia, with 1st order streams shown by dotted lines and stream orders indicated by figures.

The determination of stream lengths and orders by direct measurement from maps which are on a sufficiently large scale to show all 1st order streams is so laborious as to be practically prohibitive except for smaller drainage basins.

Fortunately, all the required quantities- $l_{s}, l_{1}, r_{b}, r_{l}$, and $D_{d}$-can be determined from smaller-scale maps from which the lower-order tributaries are omitted. The maps must show correctly the streams for several of the higher orders. The order of the main stream is of course unknown since it is not in general known which of the lower orders of streams are omitted from the map. The streams shown are assigned orders assuming that the main stream has an unknown order $s$, the next lower order of stream shown is designated 2, and so on. The number of streams of each assumed

If it is assumed that the main stream is of the
4 th order, then $l_{1}=1.38$ miles;
5 th order, then $l_{1}=0.50 \mathrm{mile}$;
6 th order, then $l_{1}=0.20$ mile.
Since $l_{1}$ is not far from half a mile, the main stream is of the 5 th order. From line $B$ (Fig. 8) the number of 2 d order streams is 3.15 . This is the bifurcation ratio From line $A$ the lengths of 2 d and 1st order streams are, respectively, 1.38 and 0.52 miles. This gives the stream length ratio:

$$
r_{l}=\frac{1.38}{0.52}=2.70 .
$$

Data for at least four stream orders are required to determine the order of the main stream from incomplete data by this method. Care must also be used in determining the lines $A$ and $B$ accurately to secure correct results.
The values of the stream lengths as far as known are then plotted on semilog paper (Fig. 8A), in terms of inverse stream orders, a line of best fit drawn to represent the plotted points and this line extended downward to stream length unity or less.

To determine the order of the main stream it is necessary to know the order of magnitude but not the exact value of the average length of streams of the 1st order The length $l_{1}$ of streams of the 1 st order is rarely less than a third of a mile, a value which is approached as a minimum limit in mountain regions with heavy rainfall, as in the southern Appalachians. Also it is rarely greater than 2 or 3 miles, values which are approached as maximum limits under some conditions in arid and semiarid regions. Data from which the order of magnitude of $l_{1}$ can be determined are always available from some source. In general all that is required is to know whether $l_{1}$ is of the order of half a mile, 1 mile, or 2 miles or more. The point at which the stream length shown by the line $a b$ (Fig. 8A) extended downward has a value about the same as the known value of $l_{1}$ for the given order indicates the order of the main stream.
This method for determining the order of the main stream is of limited value in some drainage basins, particularly large drainage basins, such as that of the Mississippi River, which are not homogeneous, and where there may be large variations in the length of 1st order streams in different portions of the drainage basins, so that the order of magnitude of $l_{1}$ may be difficult to determine. A small portion of a drainage basin, with suitable conditions of high rainfall, steep slopes, etc., may add several units to the value of $s$ for the main stream, although it has little effect on the weighted average value of $l_{1}$ for the drainage basin as a whole. For basins which are reasonably homogeneous the method is accurate. Proof of its validity is readily obtained by applying this method to a drainage basin where the values of $l_{1}$ and the drainage density $D_{d}$ have been determined from measurements on a map showing streams of all orders, but using in the determination only the data for streams of higher orders. This was done in preparing Figure 8, which is of the 5th order, although only data for the first four stream orders were used in the computation, it being assumed that $l_{1}$ was of an order of magnitude between 1 and 1.5 .


Inverse Order of stream
Figure 8.-Graphical determination of stream characteristics
This determination of $s$ gives also the average length $l_{1}$ of 1 st order streams. The bifurcation ratio $r_{b}$ and the stream-length ratio $r_{l}$ are determined by the slopes of the lines $A$ and $B$ on Figure 8. It is not necessary to know the order of the main stream to determine these quantities. When $r_{b}, r_{l}, A, s$, and $l_{1}$ are known, the drainage density can be determined by means of equation (17).
This method of determining $s$ has the advantage that it is at least as accurate when applied to large as when applied to smaller drainage basins. In general, data
for more stream orders will be available from a map for a large drainage basin than for a small basin.
Table 3 shows the drainage composition of Neshaminy, Tohickon, and Perkiomen Creek stream systems, derived in the manner described, together with the drainage

Table 3.-Observed and computed drainage densities, Neshaminy, Tohickon, and Perkiomen creeks Item

| 1 Stream |  |  |  |
| :---: | :---: | :---: | :---: |
| 2 Location | Neshaminy | Tohickon | Perkiomen |
| 3 Drainage area, square miles | Below Forks | Point Pleasant | Near Frederick |
| Computed values: | 139.3 | 102.2 | 152.0 |
| 4 Stream order from map | 5 |  |  |
| 5 l. | 35.0 | 5 | 5 |
| $6 r_{b}$ | 35.0 3.45 | 33.0 | 27.0 |
| $r_{l}$ | 2.92 | 3.00 | 3.15 |
| - $\rho=r_{l} / r_{t}$ | 0.85 | 2.85 | 2.70 |
| $f(\rho)$ | 0.85 3.75 | 0.95 | 0.86 |
| $r_{b^{a}-1}$ | 141.6 | 4.50 | 3.80 |
| $r^{b^{0-1} / A}$ | 141.6 | 81.0 | 98.4 |
| (11) $\times(9)$ | 1.02 | 0.79 | 0.65 |
| $l_{1}$ | 3.82 0.50 | 3.56 | 2.47 |
| (12) $\times(13)=D_{d}$ | 0.50 1.91 | 0.53 | 0.52 |
| Drainage density from map | 1.91 1.60 | 1.89 | 1.28 |
|  | 1.60 | 1.91 | 1.24 |

densities as computed by equation (17) and as derived from direct measurement from topographic maps.
Drainage densities computed by equation (17) will usually be somewhat higher than those derived directly from maps if stream lengths are measured directly and only to the fingertips of the stream channels, because the stream lengths and mesh lengths are sensibly identical for higher-order streams, whereas there may be 10 to 25 per cent or even 50 per cent difference between stream length and mesh length for low-order streams. In computing drainage density from values of $l_{1}, r_{b}$, and $r_{l}$ obtained graphically, the computed value corresponds more nearly to drainage density expressed in terms of mesh length than in terms of actual stream length for lowerorder streams.

## RELATION OF GEOLOGIC STRUCTURES TO DRAINAGE COMPOSITION

The examples of drainage composition shown in Table 1 and in Figures 3 and 4 in nearly all cases represent special or abnormal conditions, such as the presence of large lakes in several of the drainage basins. While this table agrees well with the laws of stream numbers and stream lengths even with such pronounced geologic control of topography as that afforded by the drumlin areas in the Ganargua Creek drainage basin, there are other conditions where geologic controls apparently exert a definite influence on drainage composition. Figure 9 shows two drainage basins the boundaries of which are definitely fixed by geologic structures.


Figure 9.-Drainage patterns of Laurel Fork and Glady Fork, Cheat River drainage basin (From Beverly, W. Va., quad., U. S. G. S.)
QUANTITATIVE Physiographic factors

 partures from the two laws will, however, be observed, and if other conditions are normal these departures may in general be ascribed to effects of geologic controls. As a rule the law of stream numbers is more closely followed than the law of stream



## $\frac{100.48}{55.44}=1.82$

In both strean
lengths is approximately obeyed for lower-order streams, but in the law of stream necessary, in order that the area should be dorder streams, but in both basins it is a length sensibly equal to that of the drainare basin; the main stream should have the main stream should be much greater thän it basin; this requires that the length of basin of the same order, of normal form.

One may naturally ask whether strean genetically similar should not have identical or nearly idenilar terrain and which are Data for the drainage basins of Neshaminy, Tohickon, identical stream composition. Delaware River drainage basin near Philadelphia, Pennsylvarkiomen creeks in the 3 and on Figure 10. The drainage patterns of these streams are sare given in Table The physiographic characteristics of these three drainage basinhown on Figure 11. Tables 4 and 5 show, respectively, drainage composition of are closely similar. Delaware River drainage basin and drainage composition of several in the upper of Genesee River in western New York.

The streams in the upper Delaware River drainage basin are generally similar, with the exception of Neversink River, in topography, geology, and climate. The various morphologic factors for these basins are of the same order of magnitude Table 5 represent areas at various. The tributaries of Genesee River listed in tween Lake Ontario and the New York-Pentions around the margins of this basin bedrainage basins, and there are correspondingly than occurs in the Delaware River factors, particularly bifurcation ratio, length of greater variations in the morphologic density.


Table 4.-Pkysiographic factors for drainage basins tributary to Delaware River

in a uniform manner, regardless of geologic controls. Stream lengths, on the other hand, may be definitely limited by geologic controls, such as fixed boundaries of the outline of the drainage basin.

Table 5.-Physiographic factors-tributaries of Genesee River, western New York

| $\begin{gathered} \text { Item } \\ \text { No. } \end{gathered}$ | Item | Stader Creek | Gates Creck | Rush Creek | Red Creek | Spring Creek | Stony Creek |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | Stream  <br> Location  <br> Drainage Area Sq.Mi <br> Width ratio  <br> Order main stream s <br> Stream numbers  <br> First order  <br> Second :  <br> Third  <br> Fourth :  | (v) | (4) | (s) | (6) |  |  |
|  |  | Slader Crk | Gates Crk. | Rush Crk. | Red Crk | (7) | ( ( ) |
|  |  | Canaseraga | at mouth | Fillmore | at mouth | at mouth | Stony Crk. at mouth |
|  |  |  | 20.2 | 43.3 | 25.3 | 20.3 | 22.2 |
|  |  | 3 |  | 0.39 | 065 | 144 | 0.89 |
|  |  |  |  | 3 | 3 | 3 | 4 |
|  |  | 24. | 32 | 38 | 14 |  |  |
|  |  | 4 | 10 | 10 | 4 | 4 | 8 |
|  |  | 1 | 3 | 1 | 1 | , | 3 |
| 7 | Average stream length -miles |  | 1 |  |  |  | 1 |
|  | First order secord | 0.61 | 0.49 | 0.48 | 129 |  |  |
|  | Third | 2.12 3.75 | 095 | 115 | 150 | 200 | 081 128 |
| o | Fourth . | 3.75 | 2.75 4.00 | 10.50 | 625 | 375 | 128 3.25 |
|  | Average stream elope ~ Ft. $/ \mathrm{mi}$ |  |  |  |  |  | 5.00 |
|  | First order second | 271 | 89 | 171 | 26 | 37 |  |
|  | Third : | 121 09 | 41 | eo | 18 | 39 | 287 196 |
|  | Fourth . | 09 | 39 | 49 | 7 | 11 | 169 |
| 0 | Eifurcation ratio $r_{b}$ | 4.40 | 25 310 |  |  |  | 120 |
|  | Stream kngth ratio $r_{l}$ | 2.21 | 2.00 | 8.10 4.59 | 390 257 | 390 | 3.10 |
| 112 | Total stream length mi | 27.00 | 57.50 | 6025 | 2.57 3025 | 1.78 300 | 1.85 |
| 12 | Drainage densityRatio $\rho$ | 1.71 | 1.86 | 6025 1.41 | 3025 120 | 30.00 | 38.75 |
|  |  | 0.50 | 064 | 0.57 | 066 | 147 046 | 1.73 0.60 |
| 14 | Latitude -north L.ongitude ~west |  |  |  |  |  |  |
|  |  | 77-45 | - $77-30$ | 42-25 $78-05$ | 43-05 | 43-09 | 42-30 |
|  |  |  |  |  | 77.40 | 78-05 | 77-40 |

Infiltration theory of surface runoff

## general statement

The factors and formulas given serve as measuring tools for the quantitative comparison of upland features of drainage basins. Quantitative science develops by the correlation of observed relationships through scientific laws and principles, which may therefore be described as operating tools. Two principal kinds of operating tools are needed in connection with upland erosion: (1) the laws governing the sheet flow of surface runoff, and (2) the laws governing (a) soil resistivity to erosion, (b) erosive force, (c) erosive power of sheet flow, and (d) transporting power of sheet flow. The first of these tools is supplied by the infiltration theory of surface runoff, developed by the author (Horton, 1935; 1937; 1938). Only a few salient features of this theory are pertinent to the present discussion

The infiltration theory of surface runoff is based on two fundamental concepts:
(1) There is a maximum limiting rate at which the soil when in a given condition can absorb rain as it falls. This is the infiltration-capacity (Horton, 1933),
(2) When runoff takes place from any soil surface, large or small, there is a definite functional relation between the depth of surface detention $\delta_{a}$ or the quantity of water which accumulates on the soil surface, and the rate of surface runoff or channel
inflow $q_{s}$.

These two concepts, in connection with the equation of continuity or storage equation, form the basis of the infiltration theory, It has hitherto been assumed that surface runoff was some definite fraction of rain. If that were true, then all rains, however low their intensity, should produce runoff. This is not an observed fact.

## INFILTRATION-CAPACITY

Infiltration-capacity, $f$, is governed by physical laws and processes which involve the simultaneous downward flow of water and the upward flow of displaced air through the same system of soil pores (Horton, 1940; Duley and Kelly, 1941) and is used in the sense of a limiting rate of flow, like the capacity of a water pipe.
The infiltration capacity of a given terrain, including soil and cover, is controlled chiefly by (1) soil texture, (2) soil structure, (3) vegetal cover, (4) biologic structures in the soil, especially at and near the surface, including plant roots and root perforations, earthworm, insect, and rodent perforations, humus, and vegetal debris, (5) moisture content of the soil, and (6) condition of the soil surface, whether newly cultivated, baked, or sun-cracked. Temperature is probably also a factor, although its effect is often masked by biologic factors, which also vary with temperature and season.

The infiltration-capacity of a given area is not usually constant during rain but, starting with an initial value $f_{0}$, it decreases rapidly at first, then after about half an hour to 2 or 3 hours attains a constant value $f_{c}$. The relation of the infiltrationcapacity to duration of rain can be expressed accurately by the following equation, with $f, f_{0}$, and $f_{c}$ in inches per hour:

$$
f=f_{c}+\left(f_{0}-f_{c}\right) e^{-K_{f} t}
$$

where $e$ is the base of Naperian logarithms, $t$ is time from beginning of rain, in hours, and $K_{f}$ is a proportionality factor (Horton, 1939; 1940). This equation can easily be derived on the assumption that infiltration-capacity is governed chiefly by the condition of the soil surface and is reduced at the beginning of rain by effects which result from the energy of falling rain and which operate after the manner of exhaustion phenomena. These effects include packing of the soil surface, breaking down of the crumb structure of the soil, swelling of colloids, and the washing of fine material into the larger pores in the soil surface.
As an example typical of many experimental determinations of the change of infiltration-capacity during rain, the values of $f$ have been computed at different times, $t$, from the beginning of rain for a soil with initial infiltration-capacity $f_{0}=$ 2.14 in . per hour and which drops to a constant value $f_{c}=0.26 \mathrm{in}$. per hour in 2 hours. The quantity $K_{f}$ determines the rate of change of infiltration-capacity during rain for a given rain intensity and in this case has the value 3:70.

| $t:$ | 0.0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.5 | 2.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f$, in. per hr.: | 2.14 | 1.16 | 0.69 | 0.46 | 0.36 | 0.31 | 0.28 | 0.26 |

These values of $f$ show that the infiltration-capacity drops off rapidly at first, then more slowly as it approaches $f_{c}$. Between rains drying out of the soil and restoration
of crumb structure leads to restoration of $f$ toward or to its initial value. The geomorphic significance of this deche of infiltration-capacity during rain illustrated by the fact that if infiltration-capacity remained constant at the high value it usually has at the beginning of rain, then there would be little surface runoff or soil erosion
It is the minimum value $f_{c}$ of infiltration-capacity which predominates during most of long or heavy rains which are chiefly effective in producing floods and sheet erosion. Infiltration-capacity is highest and least variable for pure coarse sands. For terrain with such soils, the infiltration-capacity may always exceed the rain intensity, so that even in winter, when the ground is frozen, no surface runoff occurs The infiltration-capacity concept accounts for the absence of sheet erosion and the meager development of drainage in many sandy regions, even with abundant rainfall.
"Transmission-capacity" is the volume of flow per unit of time through a column of soil of unit cross section, with a hydraulic gradient unity or with a hydraulic head equal to the length of the soil column. Infiltration-capacity and transmissioncapacity are related, but they are not identical; the infiltration-capacity is usually less than the transmission-capacity. Under conditions where transmission-capacity prevails, the soil column is fully saturated, and the entire cross section of the void space participates in hydraulic flow. When infiltration-capacity prevails, the soil column is not usually fully saturated, and air must escape upward through the soil as fast as water flows downward into the soil. This occupies a fraction, though usually only a small fraction, of the pore space. Also, because of the surface reduction of infiltration-capacity, already described, the soil surface cannot usually absorb water as fast as water can flow downward through the interior of the soil mass. As a result the soil is not saturated appreciably above its capillary-capacity, even during the heaviest rains. This fact can readily be verified during a rain by picking up a handful of garden soil at a depth of a few inches. As a rule, no water can be squeezed out of the moist soil although, if saturated, water could readily be squeezed out. A common fallacy is the statement that during a storm a severe flood was produced by the soil becoming saturated. This happens only in the case of heavy clay soils Even if the water table rises to the soil surface, as it sometimes does in swampy areas, the soil can still absorb water, which appears later, somewhere, as ground-water or wet-weather seepage. As an example, in the central New York flood of July 1935, analyses showed that, in the Cayuga and Seneca drainage basins, the terrain main tained an infiltration-capacity of 0.2 to 0.3 inch per hour over the areas where the most intense rainfall and runoff occurred.
Infiltration-capacity of a given terrain can be determined in several ways, either with fully controlled conditions or for a drainage basin as a whole, under natural conditions. Thousands of determinations of infiltration-capacity have been made These and other similar data, when more fully analyzed and classified, will, it is believed, form one of the most important tools for a quantitative study of drainagebasin morphology.
Rain falling at an intensity $i$ which is less than $f$ will be absorbed by the soil surface as fast as it falls and will produce no surface runoff. The rate of infiltration is then less than the infiltration-capacity and should not be designated "infiltration-capacity." If the rain intensity $i$ is greater than the infiltration-capacity $f$, rain will be
absorbed at the capacity rate $f$; the remaining rain is called "rainfall excess." This accumulates on the ground surface and for the most part produces runoff, and the difference between rain intensity and infiltration-capacity in such a case is denoted by $\sigma$ and designated the supply rate $(\sigma=i-f)$. For a constant rain intensity $i$, in inches per hour, the runoff intensity $q_{s}$, in inches per hour, approaches the supply rate $\sigma$ asympototically as a maximum or limiting value as the rain duration increases (Horton, 1939; Beutner, Gaebe, and Horton, 1940). The total surface runoff is approximately equal to the total supply $\sigma t_{e}$, where $t_{c}$ is the duration of rainfall excess.

OVERLAND OR SHEET FLOW
In the minds of most persons the term sheet flow probably implies a greater depth of flow than usually occurs. Sheet erosion is used in contradistinction to channel erosion, and the use of sheet flow to describe overland flow not concentrated in channels larger than rills is appropriate, but it may not imply flow to depths measured in feet or even in inches but rather in fractions of an inch.

Since 1 inch per hour equals approximately 1 second-foot per acre or 640 c.s.m. ${ }^{2}$, and an acre is 208 feet square, the surface-runoff intensity $q_{1}$ in cubic feet per second from a unit strip 1 foot wide and a slope length $l_{o}$ will be:

$$
\begin{equation*}
q_{\mathrm{t}}=0.000023 l_{o} q_{\mathrm{s}} \tag{21}
\end{equation*}
$$

where $q_{s}$ is the runoff intensity in inches per hour. Discharge $=$ Depth $\times$ Velocity, or if $\delta$ is the depth of sheet flow, in inches, and $v$ the velocity in feet per second, $q_{1}=$ $\frac{v \delta}{12}$.

It follows that the depth of sheet flow at any point on a slope where the slope length is $l_{o}$ will be:

$$
\begin{equation*}
\delta=\frac{0.000277 l_{o} q_{s}}{v} \tag{22}
\end{equation*}
$$

On a gently sloping lawn, with a length of overland flow of 100 feet and a velocity of a quarter of a foot per second, a depth of surface detention of 0.11 inch will produce 1 inch runoff per hour. Walking over such a lawn while this runoff intensity is occurring, one may not notice that surface runoff is taking place; yet it is this same unobtrusive and almost imperceptible overland flow which, with greater depths and larger volumes and on longer slopes, is largely responsible for carving the landscape of drainage basins into observed forms.

## LAW OF OVERLAND FLOW

The velocity of turbulent hydraulic flow is expressed in terms of the Manning formula:

$$
\begin{equation*}
i=\frac{1.486}{n} R^{2 / 3} \sqrt{ } \bar{S} \tag{23}
\end{equation*}
$$

where $v$ is the mean velocity in feet per second, $n$ is the roughness factor, having the same general meaning for sheet flow as for channel flow, $R$ is the hydraulic radius or


ratio of area of cross section to wetted perimeter. For sheet or overland flow, $R$ becomes identical with the depth $\delta . \quad S$ is the slope. ${ }^{3}$ Since discharge or volume of flow per time unit per unit width equals the product: Velocity $\times$ Depth $\times$ Width, the runoff intensity in inches per hour from a strip of unit width, for turbulent flow, can be expressed by:
where $K_{s}$ is a constant for a given strip of unit width, having a given slope, roughness,
and slope length.
A similar equation:

## $\varepsilon / 99^{\prime} Y={ }^{\circ} b$

can be derived from Poiseuille's law for nonturbulent or laminar flow.
Overland flow may be either wholly turbulent, wholly laminar, or partly turbulent and partly laminar-patches of laminar flow being interspersed with turbulent flow or vice versa. Since the equations for turbulent and laminar flow are of the same form, it follows that for either laminar or turbulent flow, or for mixed flow, the relation between depth of surface detention and runoff intensity, in inches per hour, should be a simple power function of the depth of surface detention or:

## $q_{\mathrm{s}}=K_{\mathrm{s}} \delta^{M}$

where $q_{s}$ is the runoff intensity in inches per hour, $\delta$ is the depth of surface detention at the lower end of the slope, in inches, $K_{s}$ is a coefficient involving slope, length of overland flow, surface roughness, and character of flow, and the exponent $M$ has a value of $5 / 3$ for fully turbulent flow.

Except for very slight depths of surface detention, this simple law of surface runoff is remarkably well verified by plot experiments (Fig. 12). The circles (Fig. 12) indicate points derived directly from the hydrograph, and the solid lines the resulting relation curves plotted logarithmically. The points fall almost precisely on the relation lines, indicating an accurate functional relationship between $\delta_{a}$ and $q_{s}$.

Except on steep slopes there are always depressions, often small but numerous, on a natural soil surface. If the derived points were plotted for smaller depths than those shown on Figure 12, the corresponding relation lines would curve off to the left, indicating that the power-function relation of $q_{s}$ to detention depth changes for very slight depths of surface detention. This represents the effect of depression storage. When runoff is taking place, flow through the depressions also occurs, although usually slowly, and hence the full cross sections of the depressions participate in determining the law of overland flow. The runoff becomes zero, however, when the depth of detention is reduced to the depth of depression storage $V_{d}$, although water still remains in the depressions. Consequently for slight depths the relation lines curve to the left.


-

[^0]
#### Abstract

A simitar equations


It is often found in runoff-plot experiments that the hydrograph does not have a smooth surface but is broken into irregular waves or surges. This type of flow may be designated "surge" flow and may be due to several causes:
(1) Under certain hydraulic conditions steady flow cannot occur even on a smooth, unchanging surface (Jeffreys, 1925).
(2) Plant debris, especially of the sand-burr type, may be loosened and carried along with the flow, forming debris dams, behind which the water piles up, and these hold back the water temporarily and then release it in relatively large volumes, producing irregular waves (Beutner, Gaebe, and Horton, 1940).
(3) Active surface erosion may produce a succession of irregular waves due either to mud or mud-and-debris dams of the type last described, to the breaking down of divides between natural depressions, or to the lateral incaving of the walls of gullies (Horton, 1939). Erosion may produce traveling mud dams or mud flows similar to those sometimes produced on a larger scale in mountain canyons by cloudburst storms. Wherever a mud or debris dam is formed, water accumulates behind it until presently the dam moves down the slope with the accumulated water behind it. In case of surge flow or traveling back-water due to debris dams, there is often no
consistent relation between depth of overland flow and runoff intensity.
 hydraulically impossible. The flow then takes the form of wave trains or series of uniformly spaced waves in which nearly all the runoff is concentrated. The author has twice observed such rain-wave trains in intense storms. They occur most commonly in rains of high intensity, particularly those of the cloudburst type, char-

 conditions and have been described in another paper (Horton, 1939). Observation


 The successive waves, with their concentration of runoff and energy, can strike

 the two cases is like that of breaking a rock with a few sledge-hammer blows, when a million taps with a pencil tip would expend the same amount of energy but produce

The following types of sheet or overland flow take place: Type of fow
${ }_{3}$ Pure laminar...................
Mixed laminar and turbulent. Subdivided or superturbulent

$-0 \underset{0}{-1} 0 \stackrel{-1}{-2}$ 11

## SNIVGL GAYM-NIVY


 right. This suggests that in these cases the flow was not wholly for the lines at the flow.

For fully turbulent flow the exponent $M$ should be $5 / 3$, while for fully laminar flow the exponent $M$ should be 3.0.

Where the exponent $M>5 / 3$, the larger exponent can readily be explained if part of the overland flow is laminar flow, and this is quite certain to occur where the flow is alternately in thin films on ridges in the form of laminar flow, and through to such a case is expressed by the equation flow. An index of turbulence applicable ( (z)
If the flow is fully turbulent and $M=5 / 3$, this gives $I=1.0$. If the flow is fully
laminar and $M=3.0$, this gives $I=0$.
By transposition, the runoff exponent $M$ can be expressed in terms of the index
of turbulence:

$$
M=3-\frac{1}{3} I \text {. }
$$

Turbulence in overland flow increases downslope from the watershed line. In
laboratory and field-plot experiments with plot lengths $l_{0}$ usually less than 25 feet,
the flow over surfaces without vegetal cover is usually partially turbulent. On long
natural slopes, with $l_{o}$ much greater-frequently 1000 feet or more--the flow is fully
turbulent except for extremely slight depths or close to the head of the slope.

## 

The study of overland flow in

various phenomena of microhydraulics not commonly present in ordinary channel
flow.
Partially turbulent flow described may be considered "mixed flow." In general it consists of turbulent flow interspersed with laminar flow.

If the area on which flow occurs is covered with grass or other close-spaced vegetation, the flow may be "subdivided." Part of the energy available for overcoming resistance is expended on the grass blades and stems, reducing the amount of energy avilable for expenditure on the soil surface. For the limiting condition of complete subdivision of the flow, all the resistance to flow would be due to the vegetation, and the law of overland flow would be:

## $\cdot{ }^{\cdot{ }_{g}{ }^{n} Y}={ }^{5} b$

(6z)

 rate of runoff is very greatly increased, and the detention required to carry a given

It can readily be shown from the infiltration theory that the profile of sheet or overland flow, or the relation of depth $\delta$ of surface detention to the distance $x$ downslope from the watershed line, is expressed by a simple parabolic or power function


Figure 13.-Half section of a small drainage basin Illustrating runofi phenomena. Vertical scale greatly exaggerated.
(Horton, 1938). This relation is illustrated on Figure 13. A similar power function expresses the relation of velocity of overland flow in terms of distance from the watershed line (Horton, 1937). For turbulent flow:

$$
\begin{gather*}
\delta_{x}=\left(\frac{\sigma}{K_{s}}, \frac{x}{l_{0}}\right)^{3 / 5}  \tag{30}\\
v_{x}=\frac{1.486}{n}\left(\frac{\delta_{x}}{12}\right)^{2 / 3} \sqrt{S} \tag{31}
\end{gather*}
$$

and, in general, for $\delta_{z}$ in inches, for any type of flow:

$$
\begin{equation*}
\delta_{x}=\sqrt[M]{\frac{\sigma}{K} \frac{x}{l_{0}}} \tag{32}
\end{equation*}
$$

and for velocity in feet per second:

$$
\begin{equation*}
v_{x}=0.2836 \frac{\sqrt{ } \bar{S}}{n}\left(\frac{\sigma}{K_{s}} \frac{x}{l_{0}}\right)^{\frac{2}{3 M}} \tag{33}
\end{equation*}
$$

where $\sigma=$ supply rate, in inches per hour; $l_{0}=$ total length of slope on which overland flow occurs, in feet; $x=$ distance, in feet, downslope from the watershed line; $K_{s}$ is a coefficient derived from the Manning formula for turbulent flow, and approximately applicable to other types of flow. Its value is:

$$
\begin{equation*}
K_{4}=\frac{1020 \sqrt{S}}{I n l_{0}} \tag{34}
\end{equation*}
$$

and the exponent:

$$
\begin{equation*}
\frac{2}{3 M}=\frac{2}{9.0-4 I} \tag{35}
\end{equation*}
$$

in which $S$ is the slope, $I$ the index of turbulence, $l_{o}$ the length of overland flow, and $n$ is a roughness factor, of the same type as the roughness factor in the Manning formula. The equations for turbulent flow are derived directly from the Manning formula and the law of continuity and are rational. The equations for other types of flow are closely approximate. The depth $\delta_{x}$ as given by these equations is the total depth of surface detention, including depression storage. The equations for $\delta_{x}$ fail at points close to the watershed line if, as is often the case, depression storage persists to the watershed line. In the equations both for turbulent and other types . of flow, it is assumed that the velocity varies as $\sqrt{S}$, as for turbulent flow. This may not be entirely correct although numerous experiments indicate that, in mixed flow, most of the resistance is that due to turbulence. Theoretically, for laminar flow the velocity should vary directly as the slope, not as $\sqrt{S}$.

These equations apply primarily to steady flow. Experiments show that they are, however, closely approximate during the early stages of runoff, while surface detention is building up to its maximum value. While detailed discussion of the effect of the various factors on surface-runoff phenomena cannot be undertaken here, comparison of the equations shows that the velocity of overland flow increases, while the depth at a given point $x$ decreases, as the slope increases. Increasing roughness of the surface decreases the velocity but increases the depth of surface detention.
The equations for depth and velocity profiles, in conjunction with that for $K_{s}$, are of fundamental importance in relation to erosional conditions, since they express the two factors, $\delta_{x}$ and $v_{x}$, which control the eroding and transporting power of sheet flow, in terms of the independent variables which govern surface-runoff phenomena. There are six variables: (1) rain intensity, $i$; (2) infiltration-capacity, $f$; (3) length of overland flow, $l_{0}$; (4) slope, $S$; (5) surface-roughness factor, $n$; (6) index of turbulence or type of overland flow, $I$. To apply these equations to erosion and gradational problems one must also have laws governing the relation of velocity and depth of overland flow to the eroding and transporting power of overland flow.

## SURFACE EROSION BY OVERLAND FLOW

## soil-erosion processes

There are always two and sometimes three distinct but closely related processes involved in surface erosion of the soil: (1) tearing loose of soil material; (2) transport
or removal of the eroded material by sheet flow; (3) deposition of the material in transport or sedimentation. If (3) does not occur, the eroded material will be carried into a stream.

Every farmer has noticed that the spots most vulnerable to erosion are the steeper portions of the hill or valley slopes, neither at the crest nor at the bottom of the hill


Figure 14.-Half profile of a valley slope
Illustrating soil-erosion processes.
but intermediate. All soils possess a certain resistivity to erosion, and this resistivity may be increased greatly by a vegetal cover, especially a good grass sod. The underlying soil may have a much smaller resistivity to erosion, and, if the surface conditions are changed by cultivation or otherwise so as to destroy the surface resistance, erosion will begin on land which has not hitherto been subject to erosion.
Figure 14 shows a half profile of a typical stream valley slope, with the vertical scale greatly exaggerated. The line oabc represents the soil-surface profile-flat in the region $o$, near the crest, steepest in the region $a b$, about mid-length of the slope, and relatively flat at the foot of the slope, in the region $b c$. The line odef represents the surface of sheet or overland flow in an intense rain, the depth of overland flow ncreasing downslope from $o$ toward $f$. In the region $o a$ no erosion occurs throughout
a distance $x_{\mathrm{c}}$ from the crest of the slope, and this is called the belt of no erosion. Here the energy of the sheet or overland flow is not sufficient to overcome the initial resistance of the soil surface to erosion, even in the most intense storm. In the belt $a b$, mid-length of the slope and where the slope is steepest, active erosion occurs.
Beginning at $a$ the amount of material carried in suspension by the overland flow is proportional to the ordinate between the dotted line $a b^{\prime} c^{\prime}$ and $a b c$. At $a$ it is zero; at $b$ it is represented by the vertical intercept $b b^{\prime}$.: Beginning at $a$ a given volume of water, for example, the water flowing over 1 square foot of soil surface, picks up a certain amount of eroded soil matter and carries it in suspension. Passing over the next adjacent square foot of area the same water picks up another increment of soil matter and holds it in suspension, and so on, the amount of material in suspension increasing until at some point $b$ the overland flow is fully charged with material in suspension and can carry no more. Between the point $b$ and the stream channel, no material is carried away because any material picked up must be replaced by an equal quantity of material deposited from that already in suspension. If the slope decreases as shown on the diagram, then the ability of the overland flow to carry away material may decrease, in which case deposition of material or sedimentation on the surface will occur instead of erosion.

## RESISTANCE TO EROSION

The physical factors governing soil erosion are: (1) initial resistivity, $R_{i}$; rain intensity, $i$; infiltration-capacity, $f$; velocity and energy of overland flow or eroding force, $F$. The breaking down of the soil structure, tearing the soil apart and lifting or rolling soil particles or aggregates, requires the expenditure of energy. Erosion can occur at a given location only where the amount of energy expended as frictional resistance on the soil surface exceeds the amount of energy required to overcome the initial resistance of the soil to erosion. An exception occurs in some cases where the soil is churned up into a semifluid mass by intense rain before surface runoff begins, producing high initial erosion rate. Sustained erosion can occur only where the condition above described is fulfilled.

The term "soil" as related to surface erosion includes not only the soil substance but also the vegetal cover and the structures-physical and biologic-in the surface layers of soil. Soils are of two general classes: (1) indigenous, or those formed by weathering of underlying parent rock, either igneous or sedimentary. Such soils generally prevail outside of glaciated and loess-covered regions. For some types of rock the formation of soil in situ is extremely slow. After a shallow surface layer of soil is formed, the formation of additional soil is restricted by the previously formed soil cover, but even in full exposure the rate of soil formation from many types of consolidated and igneous rocks is so slow that when the soil cover has been removed the land becomes worthless. (2) Preformed and transported soils. These consist of rock material comminuted by glacial or aeolian action and transported and deposited. Such soil is often a mixture of transported and indigenous soil material and includes sedimentary soils deposited on lake or ocean floors and afterward exposed. Transported soils, particularly those of glacial origin, are often highly fertile at the time they are laid down, as is evidenced by the growth of thrifty forest vegetation
-suent jo uolsorat
 make cultivation impracticable. With equal runoff intensity the resistance of soil material to erosion generally increases with the fineness of the soil particles or soil texture, the resistance being small for fine uncemented sands but so high for cemented hardpan and tough clay that erosion rarely if ever occurs even on bare soil.

Resistance to erosion is, however, governed more largely by vegetal cover, biologic structures, and physical structure of the soil in the surface layers than by soil structure. A soil which forms a hard crust on drying may be highly resistant to erosion although the same soil when newly cultivated erodes easily. The coherence of soil particles and consequently the resistance to erosion is generally increased by the presence of colloidal matter, particularly that of vegetal origin. Vegetal cover is the most important factor in relation to initial resistance to soil erosion. Its effects on the resistivity of the soil to erosion are complex but include:
(1) Vegetal cover breaks the force of raindrops, thereby reducing the effect of the energy of falling rain in breaking down the crumb structure of the soil and packing the soil surface. For some soils with little coherence, breaking down of the crumb structure by rain impact reduces the soil to a fluid condition, readily susceptible to erosion, while for other soils packing of the soil surface tends to increase the resistance to erosion.
(2) A grass sod operates somewhat like a carpet covering the underlying soil and tends strongly to inhibit erosion.
(3) Fine soil particles adhere to root hairs and plant roots near the soil surface and act strongly as a soil binder. In a forest similar effects are produced largely by the grass cover but are accentuated by differences in soil structure as between natural or undisturbed and cultivated soils and by the presence of an undisturbed humus layer near the soil surface. In addition there is often a dense matting of roots of trees, herbaceous vegetation, and litter within a forest. Some of the runoff may be subsurface runoff and pass through this mat of litter and roots but at so greatly reduced velocity as to inhibit erosion. Factors have been devised which stress the resistivity of soil material to erosion in terms of the chemical and physical composition of the soil. Such factors are, however, inadequate to express the resistivity of a given terrain to erosion because of the predominant effect of vegetation and soil structure and condition, which are not reflected in indexes of the erodibility of the soil material itself.

The resistivity of a given terrain to surface erosion can be expressed quantitatively
 quantity can readily be determined on a given soil surface from measurements of the distance from the watershed line downslope to a point where erosion begins.

Nearly all the factors which control resistance of a soil to erosion also control infiltration-capacity of the soil. At a given point on a given slope and with a given rain intensity the erosion rate is governed by various factors, one of the most important of which is the infiltration-capacity of the soil. In many instances factors which

mental physical laws and principles with respect to small and moderate slopes. For



function $f(S)$ must be considered as empirical, but its validity is confirmed by comparison with Renner's observations. This function is predicated on uniform turbulent flow. For very steep slopes such flow cannot occur.

The critical length $x_{c}$ is the most important factor in relation to the physiographic development of drainage basins by erosion processes and also in relation to erosion control. The value of $x_{c}$ (Table 6) is highly sensitive to changes in the variables by

 with a 10 -degree slope and a runoff intensity of 1 in . per hour, the width of the belt of
 developed grass sod to protect the soil, and $R_{i}$ increased to 0.5 lb . per square foot, the belt of no erosion would be 1573 feet wide. The width of the belt of no erosion varies with the rain intensity, and, consequently, regions with frequent storms of high rain intensity are much more subject to erosion, other things equal, than regions
Substituting this value of $\delta_{x}$ in (37) gives as the total eroding force at $x$ :
(6£) As indicated, erosion will not occur on a slope unless the available eroding force exceeds the resistance $R_{i}$ of the soil to erosion. The eroding force increases downslope from the watershed line (Equation 39). The distance from the watershed line to the point at which the eroding force becomes equal to the resistance $R_{i}$ is called the "critical distance" and is designated $x_{c}$. Between this point and the watershed line no erosion occurs. This strip adjacent to the watershed line, and immune to erosion, is designated the "belt of no erosion." An expression for the width of the belt of no erosion can readily be obtained from equation (39) by substituting $R_{i}$ for $F_{1}$, making $x=x_{c}$, and solving the equation for $x_{c}$. The runoff is free from sediment where erosion begins, and $w_{1}=62.4 \mathrm{lbs}$. per $\mathrm{cu} . \mathrm{ft}$.

Substituting this constant in (39) gives:

## $x_{c}=\frac{65}{q_{,} n}\left(\frac{R_{i}}{f(S)}\right)^{5 / 3}$

[^1]

Numerical values of the slope function $f(S)$ are given on Figure 15. For slopes less than $20^{\circ}, f(S)$ increases nearly in proportion to the slope. The critical length $x_{c}$
 ness factor $n$, and directly as the $5 / 3$ power of the resistance $R_{i}$ (equation 40).

Table 6 gives numerical values of $x_{c}$ for $R_{i}=0.01,0.05,0.10,0.20$, and 0.50 lb . per square foot, for slope angles of $5^{\circ}, 10^{\circ}$, and $20^{\circ}$, and for four different runoff in-
 applied to other roughness factors, since the value of $x_{c}$ is the same if the product $q_{s} n$ is the same.

Renner (1936) observed the percentages of areas having different slope angles
which were subject to erosion in the Boise River drainage basin, Idaho; his results increased to a maximum on a 40 -degree slope and thereafter decreased to zero approaching a 90 -degree slope angle.
 function $f(S)$ is also given on Figure 15, and the two curves are in close agreement.

For example, with a moderately good grass-covered slope, with $R_{i}=0.20$ and a slope
 intensities less than 1 in . per hour, whereas with 2 in . per hour runoff intensity nearly the entire lower half of the slope would be subject to erosion.
Most slopes do not have a uniform gradient from the watershed line to a stream but are flattest near the summit, steepest in the middle portion, and again flat adjoining the stream. For such a slope the belt of no erosion will usually comprise all the upper, flatter portion. If, for example, the slope length is 2000 feet, $q_{s}=1.5 \mathrm{in}$. per hour, and the mid-portion of the slope has a gradient of $10^{\circ}$ and a resistivity of 0.5 lb . per square foot, erosion will begin 1049 feet from the watershed line. If the lower 250 feet of the slope is flatter (its gradient being $5^{\circ}$ ), then the length of overland flow required to produce erosion with this slope would be 2350 feet. Consequently, no erosion would occur on the lower or flatter portion of the slope. This example shows why erosion is generally confined to the steeper, middle portion of a given slope (Fig. 14).
 cover, with $R_{i}=0.20$, slope angle $5^{\circ}$, and with the limiting maximum value of runoff intensity for the given terrain 2 in . per hour, the width of the belt of no erosion in the


 value, then the width of the belt of no erosion in a maximum storm would be reduced
 runoff intensity of 1 in . per hour the width of the belt of no erosion would be 243 feet.



 intensity, resistivity to erosion may be built up by the growth of grass or trees so
 increased, and the areal extent of erosion greatly diminished. In this manner Nature tends to correct the deleterious effects of surface erosion. Another result of im-




 Not uncommonly the entire surface of the soil is removed in a century or less.
Another factor of importance in relation to erosion is that the soil surface, if protected by vegetation, has commonly a resistance to erosion many times greater than the underlying, unprotected soil. If the surface protection is removed and a maximum storm occurs, erosion will then take place at a rate governed by the lower re-

 deposited farther downslope. The manner in which these combined effects develop and control the forms of valley cross sections is considered later.
325
The average depth of erosion is commonly expressed in terms of depth on the
entire area, not merely the depth on the part of the area where erosion occurs. When
so expressed the average depth of erosion is:

$$
E_{a}=\frac{E_{t}}{x}=B\left(l_{o}^{3 / 5}-x_{c}^{3 / 5}\right) \text {. }
$$

The coefficient $B$ in this equation is $5 / 8$ of the coefficient of the term containing $x$
in equation (43). Consequently, the average erosion depth over a given area is, for
turbulent flow, $5 / 8$ of the erosion depth for the same time interval at the point $x$.
If the value of $x_{c}$ is determined from field observation, together with the average
erosion depth, the slope length and runoff intensity being known, it becomes possible
to determine for a given field or area the erosion force $F_{1}$ and the constant $k_{e}$. The latter is:

## $k_{d}=\frac{\text { Erosion depth }}{\text { Eroding force }}$


 moved per hour, then the erosion rate at the point $x$ would be, making $F_{1}=e_{r} \cdot \frac{1}{k_{0}}$ :

$$
e_{r}=k_{0} v_{1} \frac{\delta_{x}}{12} \sin \alpha .
$$

This equation is rational in form and in fact if the rate at which soil material is torn loose is proportional to the force available from frictional resistance on the soil surface It relates, however, only to the rate at which soil material can be torn loose and does not take into account the ability of overland flow to transport material in suspension. Equation (42) is limited in its applicability to cases where the erosion rate is less than the transporting power.
TOTAL EROSION AND EROSION DEPTH

 $k$, in equation (39) to reduce erosion force to Introducing a proportionality factor removed from the surface per unit of time, and making $F_{\text {p }}$ of solid soil material and subtracting the value of $F_{1}$ at $x_{c}$ gives: -

$$
e_{r}=\frac{k_{c} w v_{1}}{12}\left(\frac{q_{s} n}{1020}\right)^{3 / 5} f(S)\left(x^{3 / 5}-x_{c}^{3 / 5}\right)
$$

mass of soil may accumulate on the surface until it becomes sufficiently fluid, or the
 It is then carried into the stream by surface runoff en masse. The combination of sudden high rain intensity on previously dried soil of low coherence is not uncommon
in summer storms in semiarid regions. In addition the initial infiltration-capacity of the dry soil is likely to be abnormally high, and this intensifies the effect of rain impact by increasing the time during which the soil is directly exposed without a protective cover of surface detention.

The combination of the conditions described frequently produces what is referred to as a "cloudburst flood." The term "cloudburst flood" is used because of the characteristics of the flood rather than those of the rain which produces it. Meteorological conditions are, however, involved. Measurements show that, while such floods may carry large volumes of solids, they often carry surprisingly little water as runoff.

In Figure 18 with a rain pattern $o p q$, conditions for initially high and initially low infiltration-capacity are shown by solid and dotted lines, respectively. With a high initial infiltration-capacity og there is no surface detention or runoff during the interval $o b$ during which rain intensity has risen nearly to the maximum. With a previously wet and packed soil and low initial infiltration-capacity oj, surface detention and runoff begin earlier at $a$, while the rain intensity is still low. Conditions such as those first described occur both on the upland and in stream channels previously dry. These conditions in both cases usually produce a cloudburst flood, characterized by a wall of turbid water or fluid mixed with debris traveling down the stream channel. The results of these experiments cannot be directly compared with equation (48) because $x_{c}$ is unknown, and $x_{c}$ was probably much greater in winter than in summer.

Figure 17.-Relation of erosion to slope length
From field experiments of U. S. Soil Conservation Service.

Allowing for differences, the results are entirely consistent with equation (48). As shown by equation (48) and also by these experiments, the greater the rain intensity and erosion, the greater, in general, will be the variation of erosion rate with slope ength. Rains of low intensity may produce erosion on scattered patches of soil as a result of local variations of infiltration-capacity and resistivity and with little relation to slope length.

RAIN INTENSITY AND EROSION
Maximum rain intensities in a given locality generally occur in storms of the summer thunderstorm type. For such storms the highest rain intensity usually occurs before the middle of the storm and frequently within a few minutes after the beginning of rain. Some soils are easily pulverized when excessively dry but possess coherence through the operation of capillary force when partially dried after a gradual wetting. If an abrupt intense rain occurs on such a noncoherent soil the soil may be beaten into a pasty semifluid mass by rain of high intensity before runoff begins and before the soil surface becomes protected by surface detention. Such a semifluid








 pəq ‘яu!












## NOILVLNGWIGGS anv NOILVL\&OdSNVAL

 IOU UOISOIว əsneว of suo!ipuoว วาisin



































 current in the eddies. The upward velocit equal in volume to that of the upward eddies increase with the velocity of flow and withe magnitude and frequency of surface. The eddies are slowly dissipated by withe roughness of the boundary upward. Both experiment and theory indicy viscous resistance as they proceed boundary of the fluid as a vortex ring system chat an eddy originates near the surrounding field. The fluid comprised in the ring ting of the vortex ring and its the life of the ring, as in the case of the familiar smoke ring tidentity throughout field is continually changing, like the water in a wave - The fluid comprising the Saltation in its simplest form ine water in a wave. eddies. Those lifted and transported by ticking up of solid particles by ascending
 carried much farther, until they are thro of the section of a vortex-ring may be These two processes are more or less distinct out of the ring by centrifugal force. vortex motion. For this reason mathematical anough both depend on the laws of transport without taking vortex motion into accoulyses of bed load and suspension and unsatisfactory. A given particle may account are likely to prove inadequate level above the channel bottom, picked up by thrown out of one eddy at a certain buffeted about, like a player in a football scrimmather, and carried forward, and so in suspension, finally reaching the bottom, only to rest for may remain a long time on another wild escapade.
been such that it cannot be determined the conditions of the experiments have rate at which the given surface runoff could erode soil sheet flow to transport such eroded material.

Most of the work done on sediment transpor
channels. Turbulent flow consists of laminar fas been in connection with stream of the transverse motion of eddies. If the flow is which is superposed the effect fraction of the energy consumed would be required is turbulent, then only a minute of laminar flow. The remaining energy becomes in provide an equal mean velocity by conversion into rotational energy of vortex motin effect, latent at the boundary Two principal retalional energy of vortex motion.
to that for turbulent flow; (2) the velocity distribution is cham that for laminar laminar to that for turbulent flow.

For the usual slight depths of shee
motion of the fluid is a much larger fraction of the total energed in translational types of flow commonly occurring in stream channels. Thergy available than for usually much greater for overland flow than for channel flow. Selative roughness is foot in diameter with overland flow 0.01 foot in depth correspond in particles 0.001 ness to boulders 1 foot in diameter in a stream channel 10 feet in depth nels are applicable differences the extent to which experiments and analyses for chan-
disappearance of glacial ice. In the latter case $x_{c}$ on the newly formed surface may exceed the values of $l_{o}$ pertaining to the drainage of melt-water from the ice sheet, a rilled surface may not develop, and the topography will remain much the same as when the ice disappeared, except that gradation by solution may take place. In desert regions, with suitable relations between the rain intensity, infiltration-capacity, surface resistivity, and the slope, a rilled surface may develop with little or no cross-grading, so that surface gradation may never extend beyond the rill stage.

## origin of rill channels

"Sheet erosion" implies the formation of either a rilled or gullied surface. From the discussion thus far it would appear that overland flow downstream from the critical point $x_{c}$ on a smooth uniform surface should remove a uniform layer of soil instead of producing a rilled surface.
The question may fairly be asked: Why does a drainage basin contain a stream system? Surface runoff starts at the watershed line as true sheet flow, without channels. Even below the critical distance $x_{c}$ it should apparently continue as such sheet flow combined with sheet erosion. Why, then, do rill channels develop? The answer is that channels start to develop where there is an accidental concentration of sheet flow. Accidental variations of configuration may provide the requisite initial conditions where a local area has a lateral slope joining a longitudinal slope or where two lateral slopes join and form a trough.
Most cases of active erosion observed at present represent conditions where there is or has been a protective vegetal cover and the initial resistivity of the soil surface is greater than that of the immediately underlying subsoil.
Consider a point upslope from $x_{c}$. If, as a result of change in cover conditions, either the resistance $R_{i}$ or the infiltration-capacity is reduced, the point $x_{c}$ may move upslope from the given point, which will then be susceptible to erosion. When the remaining protective cover is broken through at a given point, a channel or gully will form which will proceed rapidly upslope, chiefly by headward erosion, because of the lower resistivity of the underlying soil.
This, however, is not the mode of origin of rill channels, which, it must be presumed, often form on new terrain without vegetal cover and with a value of $R_{i}$ sensibly the same at and to some depth below the soil surface. Slight accidental variations of topography may produce a sag in which the depth of sheet flow is a maximum at the point $a$ (Fig. 20), the line $b b^{\prime}$ representing the water surface at maximum runoff intensity. As a result of the greater depth at $a$, erosion will be most rapid at that point, and increased channel capacity will be provided at $a$, and part of the water which originally flowed in shallower depths on the adjacent area will be diverted into this enlarged channel. This may accelerate the process until the entire flow is concentrated in the rill channel (Fig. 20). This does not involve headward erosion in the ordinary sense. However, when a rill channel has once formed, sheet flow coming down the slope upstream from the head of the rill will be deflected toward and diverted into the rill channel, thus providing a means of rapid headward extension of the rill.
This process of rill formation can often be observed on a cultivated slope during
heavy runoff. The size and spacing of the rill channels vary with the slope, runofl intensity, and length of overland flow, ranging from a few inches apart on a cultivated slope to many feet or yards apart on long slopes with low runoff intensity and higher erosive resistance. In some areas in abandoned lake beds or exposed coastal


Figure 20.-Successive slages of rill-channel development
belts in arid regions stream development has never progressed beyond the rill stage. Such an example is givety on the Moon Mountain, Arizona-California, quadrangle, U. S. G. S. topographio (Fig. 21). Later stages of stream-channel development belong to the domain of channel dynamics and involve velocity distribution, silt equilibrium, and other factors which cannot be considered fully here.
The ultimate dimensions of a stream channel are, as indicated by Playfair's law, such that it is adapted to the area which it drains. Stream channels tend to acquire ultimate dimensions such as to carry all or most of the flood waters of the stream. This is largely because most surface erosion and channel erosion occur during floods.

## cross-grading and micropiracy

A system of parallel shoestring gullies is transformed to a dendritic drainage net as the result of the tendency of the water to flow along the resultant slope lines and
 areas, the divide between two rills may be broken down at its weakest point by (1) caving in of the divide between two rills, diverting the higher into the lower rill; (2) erosion of the divide by the deeper or lower rill, thus diverting the higher rill; (3) overtopping of the divide at the low point by the higher rill, again diverting it into
 diverting the higher into the lower rills is described as micropiracy. Micropiracy much resembles stream capture by lateral corrasion, but micropiracy results chiefty
 piracy obliterates the original system of rills and their intermediate ridges on a
 of a stream system and its accompanying valleys destroys most of the record of their
 side of the stream by a new slope deflected toward the stream. This process is described as "cross-grading."

The initiation of cross-grading is illustrated on Figure 22, which shows a plan of a small area of newly exposed land, $a a^{\prime} b b^{\prime}$. The line $c c^{\prime}$ marks the downslope limit

 slope from $c c^{\prime}$, and their development is followed by cross-grading, as shown on the cross sections taken on the line $d d^{\prime}$ and numbered 1 to 4 , inclusive. The line of resultant slope in each case is in the direction shown by the arrows, and the rills increase in depth and degree of gradation at a given time proceeding away from the.


 рә!!um ssoro pəsrorวu! чı! Кโן


 scale on Figure 23, and in detail for a single pair of rills on Figure 24. This process
 parallel with the contours, the tillage marks corresponding to the original rills above described.

In Figure 22, section 5, the original serrated rilled surface has been obliterated by cross-grading and is replaced by an irregularly roughened surface on which a new rilled surface tends to develop, with flow lines parallel with the resultant slope. This represents the end point of the first stage of valley gradation and stream develop-




natural conditions the results are rarely so uniform as those shown on Figure 22.
A break across a rill divide may result from numerous causes, such as a rock or

is a direct consequence of the overtopping and breaking down of intermediate ridges between gullies by overland flow during heavier storms.

The deepest and widest rill develops where the net length $l_{o}-x_{c}$ in which erosion can occur is greatest. If $x_{c}$ varies, this may not occur where the total length $l_{o}$ of overland flow is greatest. The longest, deepest, and strongest rill channel will be called the "master" rill. Owing to smaller values of $l_{o}-x_{c}$, proceeding away from the master rill on each side, the rills will be shallower, or, considering two adjacent

Molf pundano jo
uolfonlip funtinsod
Figure 23.-Successive stages of rill obliteration
obstruction in the path of the rill, causing back-water upstream therefrom, or the





R. E. HORTON-EROSIONAL DEVELOPMENT OF STREAMS

Figure 22.-Development of a valley by cross-grading
or no flow, and erosion will cease, while erosion just above the break will continue below $x$ abe $x$ will quickly become deeper than the abandoned rill channel ated by the downslope arrows on Figure 24, at the point of diversion, resulting in a tendency toward the formation of a rounded

Micropiracy tends to give the resulting stream at first a more or less angular course (Fig. 24) which, as the angular bends are rounded by erosion, will finally develop a more or less tortuous stream course following generally the line of resultant slope. On steeper slopes the resulting stream tends strongly to maintain a straight course and has eroding power sufficient to do so. On flatter slopes, with greatly reduced eroding power, centrifugal force around the initial angular stream bends tends to enlarge their radii. Weak bends merge with stronger ones until ultimately a system of stream meanders is developed. Since the master rill either initially or by cross-grading, on a given slope, ultimately becomes a permanent stream, it appears that conditions favoring the formation of stream bends on flatter slopes are inherent with the origin of the streams.
ent of mation of rill systems on gentle slopes is very different from the developwhere stream bends originats such as those observed in natural streams. Even eliminated in the course of the process.
ward development or downward gradation, or both, of the valley of stream 1 may have occurred.

Subsequent stages.-At the end of the second stage the maximum remaining length of overland flow in the area has been again halved or reduced to $\frac{1}{2} l_{g}$, and a still more intense flood is required to reduce the critical length $x_{c}$ to a value less than this and permit the development of a third group of lateral tributaries. When such a flood
 nated " 3 " on Figure 25 c .

The development of lateral slopes adjacent to a given stream brings in overland flow from additional areas, increasing downstream, and accelerates grading of the main stream and its immediate valley. The stream system at the end of the fourth

 at the end of the 1st stage, and of the 4th order at the end of the 4th stage.

Development of lateral tributaries and the manner in which they develop is the direct consequence of (1) the existence of a critical length $x_{c}$ of overland flow required
 invariably following the two fundamental geometric-series laws as to stream length and stream numbers, can still develop in an infinite variety of ways.

Two questions naturally arise: (1) What would happen if the newly exposed area was a continuous belt along the coast line, with no lateral boundaries? (2) Why and how are the boundaries of drainage basins developed? This case will be considered later.

## adventitious streams

 and those assumed in the example because:
(1) The drainage area is usually not rectangular but ovoid.
(2) Newly formed tributaries follow in general the resultant slope of the crossgraded areas on which they develop and hence enter the parent stream at more or less
 Tributaries thus tend to be longer than if they entered at right angles, and the streamlength ratio is consequently usually greater than 2.0 .
(3) There are nearly always variations-sometimes large variations-of infiltra-tion-capacity in different parts of the area.
(4) There are also variations-sometimes extreme--in the initial resistance of the terrain to erosion, as, for example, where part of the area is in consolidated and part in unconsolidated material, or part covered with vegetation and part bare. As a result of these departures from hypothetical conditions, the following results often occur:

In certain parts of the area the length of overland flow to the parent stream or its larger tributaries may be less relative to $x_{c}$ than on the remaining areas tributary to the last group of streams developed. Then some 1st, and perhaps 2nd, order tributaries develop, entering the main stream or larger streams directly and not through higher-order tributaries. These streams, which result from accidental
taries have not yet developed because (1) Lateral flow cannot occur unless there is a
 the main stream so that in a given storm the value of the critical length $x_{c}$ is reduced

tof a drainage net in a stream basin
(Schematic).

to less than the width of the lateral slope, or in case of complete development of the initial valley, the value $x_{c}$ must be reduced to less than $\frac{1}{2} l_{b}$.
The second stage involves the development of lateral tributaries and their valleys, During a storm of sufficient intensity to meet the prerequisites described, a pair of master rills or lateral tributaries with accompanying shoestring gullies will develop, one from each of the equal areas on opposite sides of stream 1 (Fig. 25b). These lateral streams are designated " 2 ," and their development and that of their lateral slopes will follow the same course as in the case of stream 1. At the end of the second

variations of conditions within the area, may appropriately be designated "adventitious" streams. The development of adventitious streams increases the number of streams of lower orders and tends to make the bifurcation ratio greater than 2.0, as it usually is for natural streams. Lateral slope also increases the length of tributaries and makes the stream-length ratio also greater than 2.0. An increase of $r_{l}$ is also


Figure 26.-Beginning of erosion on newly exposed land
produced because streams do not extend to the watershed line although they may extend by headward erosion to a distance less than the critical minimum value of $x_{c}$ from the watershed line. Adventitious streams usually increase the bifurcation ratio more than the stream-length ratio is increased by the conditions described, with the result that the ratio $\frac{r_{l}}{r_{b}}$ is in general a fraction, and the total length of streams of a given order is not constant but decreases proceeding from the lowest to the highest stream orders. Adventitious streams do not in general develop simultaneously with larger streams in the basin but are developed later as the development of the stream system approaches maturity.

Stream development with progressively increasing land-exposure competition
For illustration the exposure of coast marginal lands will be assumed to be nearly a uniform homogeneous sloping plane, extending from a divide line $a a^{\prime}$ (Fig. 26) to the new coast line $c c^{\prime}$. It is assumed that the soil surface in the newly exposed belt $a a^{\prime} c c^{\prime}$ is initially bare and has a certain infiltration-capacity $f$ and a surface resistance to erosion $R$, such that the critical length $x_{c}$ required to permit surface erosion to occur in the most intense rain is as shown on the diagram. The dashed line $b b^{\prime}$ is at a distance $x_{c}$ from the watershed line $a a^{\prime}$. As long as the coast line is within the belt $a a^{\prime} b b^{\prime}$, no streams will develop, runoff will be in the form of direct sheet flow to the new coast line, and no erosion takes place. There will be irregularities in the watershed line $a a^{\prime}$ and in the coast line $c c^{\prime}$, and, when the length of overland flow exceeds $x_{c}$ at some point $d$, erosion will begin at that point. When the coast line has reached the position $c c^{\prime}$ there will be a small area, as outlined by a dashed line, within which $l_{o}>x_{c}$, and within this area sheet flow will produce erosion and a series of rill
channels parallel with the direction of the initial slope surface. The first rill channel will be at $d d^{\prime}$, where the length of overland flow first exceeds the critical length $x_{c}$. As the coast line recedes the belt in which erosion can occur will increase laterally and longitudinally, and the system of rill channels will be extended correspondingly


Figure 27.-Development of first pair of tributaries on new stream system
in both directions. The rill at $d d^{\prime}$ was first formed and has been longest subject to erosion and will become the master rill. Cross-grading will take place, producing new components of slope toward the rill $d d^{\prime}$ and obliterating the original rill channels. New rill channels will develop following the new direction of slope, on each side of the original stream $d d^{\prime}$ (Fig. 27). In general the lengths of these new rill channels will increase proceeding down the slope from the line $c c^{\prime}$. At some point o (Fig. 27) a new rill channel will have a greater length oq and greater runoff than rills between $o$ and $d$. It will have developed earlier than rill channels entering the parent stream $d d^{\prime}$ between $o$ and $d^{\prime}$. It therefore has greater runoff and a longer duration of runoff in which to cut its channel than rills formed farther down the slope. Such rill channels will survive as a tributary stream. Such a rill channel occurs on each side of the parent stream in the vicinity of $o$, and cross-grading toward these tributary streams will also occur. Cross-grading of the areas adjacent to these two tributaries will produce cross-graded slopes on either side of each tributary (Fig. 28), until there is again a location on each of these areas favorable for the development of tributaries, and new tributaries will develop, usually one on each of the two preceding tributaries, as at $m, n$, and $p$ (Fig. 28). This process will continue until finally there is no land surface above the mouths of the original tributaries where the length of overland flow exceeds the critical length $x_{c}$.
the main stream to develop. Furthermore, the tributary $q^{\prime} r$, having developed much later than the tributary $o q$, will extend its drainage area laterally more slowly than the latter, with the result that the drainage basin will tend to have an ovoid outline (Fig. 29).


Another stream may also develop at $z z^{\prime}$ in the same manner as the stream at $d d^{\prime}$.

 drainage basins will be determined by the conditions of competition. The older

 If the length of overland flow here becomes sufficient, an intermediate subordinate stream will develop.

The appearance of the final stream systems in the two drainage basins will be somewhat as shown by Figure 30.

Two major factors control the development not only of the drainage basin of a given stream but the systems of drainage basins tributary to a new coast line:
(1) Streams develop successively at points where the length of overland flow becomes greater than the critical length $x_{c}$.
(2) Competition results in the survival of those streams which have the earliest start or had the greatest length of overland flow, or both, and which are therefore able to absorb their competitors by cross-grading.
If the coast line recedes farther (Fig. 29), the area upslope from $0 o^{\prime}$ on the right hand side of the stream $d d^{\prime}$ is tributary to the stream oq. The original rill channels parallel with $d d^{\prime}$ upslope from $o o^{\prime}$ have been obliterated, and the runoff from the area

$o o^{\prime} o^{\prime \prime}$ now enters stream oq. As the coast line recedes a new system of rill channels
 graded toward $d d^{\prime}$. When the length of overland flow within the area $o o^{\prime} d^{\prime} d^{\prime \prime}$ becomes sufficiently great at some point $q^{\prime}$, a new tributary $q^{\prime} r$ will develop along the line of the resultant slope, and its basin will in turn be developed by cross-grading. There must be a certain minimum space or intercept between tributaries of the main stream to provide adequate length of overland flow to permit a lower tributary to

Stream development on a newly exposed slope continues until the greatest remain-
ing length of overland flow is less than the critical distance $x_{c}$ required to institute erosion.

Figure 30.-Final development of two adjacent drainage basins on newly exposed land
At a certain stage of gradation (Fig. 31) the stream oa has developed with a drainage basin ocd. Before cross-grading of this area the critical length $x_{c}$ is, for example, equal to that shown by the line $\mathrm{mm}^{\prime}$ on the insert, and this is less than oa. After cross-grading of the area ocd this critical length is somewhat reduced by increased resultant slope and is now $m n$. The greatest lengths of overland flow on the areas $o c a$ and oad are now along the slope lines $d e$ and $c e$, but these are both less than $m n$. Hence no additional streams will develop in the area ocd.
The upper ends of the streams in a drainage basin will extend at least to the distance $x_{c}$ from their watershed line, measured in the direction of slope. They may be extended closer to the watershed line by headward erosion, under suitable conditions. For streams to be perennial at their sources there must be ground-water flow at the head of the stream channel. In regions where there is a permanent ground-water horizon under the drainage basin the most common condition is that the stream is intermittent for a distance downstream from the point where its channel begins.


belt of no erosion $a b$, the maximum ground-water table is at $c c^{\prime}$, and the minimum at $d d^{\prime}$. Between $c c^{\prime}$ and $d d^{\prime}$ the stream is intermittent. At $c^{\prime}$ part of the infiltration on the upper drainage area enters the stream. At times of maximum surface runoff the ground-water flow may represent a considerable fraction of the total flow. If,


Figure 33.-Drainage basin of Pennypack Creek
Above Valley Falls, Pa., showing subareas from which surface runoff is derived.
for example, the ground-water flow is one fourth of the total flow at $c^{\prime}$, then, if the channel extended a little farther upslope to $e$, the maximum runoff would be reduced one fourth by elimination of ground water. There is therefore an abrupt and sometimes considerable change in the total runoff at about the point where the maximum level of the water table intersects the stream channel. Surface runoff plus groundwater flow can generally extend the channel upstream farther by headward erosion than could surface runoff alone. Hence the channel usually ends near the point where ground-water flow is no longer effective. Ground-water flow at $c^{\prime}$ is intermittent, but it usually continues much longer than surface runoff and by maintaining the soil at the head of the stream channel moist and soft it promotes extension of the channel by headward erosion and bank caving.
The final results of stream development under natural conditions are illustrated by Figure 33. Some of the streams in the lower part of the basin are clearly adventitious. There are several drainage basins, such as $A$ and $B$, where tributaries have
developed only on one side of the parent stream, leaving, in this case, an isolated plateau in the interfluve area, although the drainage development of the basin is evidently mature.

## STREAM-ENTRANCE ANGLES

From geometrical considerations the following equation has been obtained for the entrance angle between a tributary and the higher-order stream which it enters (Horton, 1932) ${ }^{4}$ :

$$
\cos z_{c}=\frac{\tan s_{c}}{\tan s_{0}}
$$

where $z_{c}$ is the entrance angle between the two streams; $s_{c}$ is the channel slope of the parent or receiving stream; $s_{0}$ is the ground slope or resultant slope, which is here assumed to be the same as the slope of the tributary stream.

Values of the entrance angle computed by this equation for different values of the ratio $s_{c} / s_{o}$ are as follows:

$$
\begin{array}{lccccccccc}
s_{c} / s_{o} & = & 0.9 & 0.8 & 0.7 & 0.6 & 0.5 & 0.4 & 0.3 & 0.2 \\
z_{c} & = & 25.5^{\circ} & 36.8^{\circ} & 45.5^{\circ} & 37.0^{\circ} & 60.0^{\circ} & 66.2^{\circ} & 72.3^{\circ} & 78.3^{\circ} \\
84.2^{\circ}
\end{array}
$$

As shown by Table 4, stream slopes are always less than the adjacent ground slope, and tributaries should enter the confluent stream at acute angles when the slopes of the channels of the tributary and confluent streams are nearly the same. The equation takes on the indeterminate form $0 / 0$ if the two slopes $s_{c}$ and $s_{g}$ are equal. This means that the two streams will be parallel and will not join. Three cases will be considered for purposes of illustration.

Case 1-Flat Streams Developed on a Flat Area: When the parent stream has developed and cross-grading has proceeded to a point where a pair of tributaries develop, the parent stream will in general have cut into the initial surface to some depth, and its stream slope in the vicinity of the debouchure of the tributaries will be materially less steep than the original slope, while the slopes of the tributaries as they approach the parent stream will be materially steeper than the original slope. As a consequence, instead of the ratio $s_{c} / s_{a}$ being close to unity, this ratio will seldom have a value greater than $1 / 2$ or $1 / 3$, and the tributaries will not enter the main stream at acute angles, as would be the case if $s_{c}$ and $s_{g}$ were nearly equal, but will more generally enter the parent stream at angles of $60^{\circ}$ to $80^{\circ}$. On extremely flat surfaces in humid regions a swampy condition often prevails, and stream-entrance angles are but little subject to control by erosion conditions. On semiarid plains where little erosion occurs, acute entrance angles of tributaries to the parent stream may sometimes be observed.
Case 2-Flat Valley Slope with Moderate to Steep Adjacent Ground Slope: Under these conditions the ratio $s_{c} / s_{g}$ is nearly always low, and the streamentrance angles to the main or parent stream are commonly $60^{\circ}$ or greater. As the

[^2]stream system develops, the slope of the main stream steepens proceeding upstream, and the lateral ground slopes also steepen proceeding upstream. The ratio $s_{c} / s_{o}$ may remain sensibly constant, or it may either increase or decrease. Most commonly it decreases to some extent. Quite generally the entrance angles of tributaries to the main or initial stream are quite uniform and range from $60^{\circ}$ upward, decreasing somewhat upstream.
Case 3-Tributaries on a Steep Slope: Tributaries developed on the same slope generally run nearly parallel, and if the main valley is relatively flat they will enter the parent stream at an angle of $90^{\circ}$, representing a limiting condition which is approached but not often attained. Tributaries developed on the same lateral slope may of course join and are especially likely to join where drainage development is incipient, as on steep, rocky slopes and in semiarid regions where tributary development has been arrested at the end of the rill stage. Parallel tributaries which join on a steep slope under these conditions commonly have an acute angle of juncture. In this case the ratio $s_{c} / s_{v}$ is close to unity.

## DRAINAGE PATTERNS

Much has been written regarding the forms of drainage patterns. They are usually classified as dendritic (treelike), rectangular or trellised, radial, and centripetal. The terms radial and centripetal commonly refer to the arrangement of a group of drainage patterns originating at or converging to a common point and do not refer in general to the pattern in an individual drainage basin. All drainage patterns of individual drainage basins are treelike, but different patterns resemble the branchings of different kinds of trees and range from those with branches entering the parent stream nearly at right angles, to those with tributaries nearly parallel and entering their parent streams at small angles. The form of the drainage pattern depends to a large extent on the relation of the slope of the parent stream to the resultant ground slope after cross-grading. If this ratio increases with successive cross-gradings, stream-entrance angles of successive tributaries are somewhat more acute for successively lower-order streams, affording the most usual type of dendritic drainage pattern.

On a relatively flat surface the directions of resultant overland flow after the first cross-grading are nearly at right angles to the initial stream, and the second series of streams developed enter the parent stream nearly at right angles. Crossgrading of the areas tributary to these streams produces but a slight change in the slope ratio $s_{c} / s_{b}$, so that the next order of streams also enters the parent streams more or less nearly at right angles. In this way a rectangular drainage pattern is developed.

If, on a steep, sloping, original surface, the headwater divide forms roughly an arc of a circle, then the first two tributaries developed will enter the parent stream from opposite sides at nearly the same point (Fig. 34). These streams will develop long tributaries nearly parallel with the initial stream, giving rise to a centripetal drainage
pattern (Fig. 34). pattern (Fig. 34).
On flat slopes each successive cross-grading of a given subarea changes the direction of the next stream to develop on the area through an angle approaching $90^{\circ}$ as a


Figure 34.-Centripetal drainage pattern
Payne Creek, Ga., Mulky Gap quad., U. S. G. S.-T. V. A.
limit and changes the direction of overland flow through a corresponding angle. The direction of resultant cross-graded slope at the end of a given stage becomes the direction of the stream of the next succeeding stage. The directions of streams and of resultant slopes will change through nearly a right angle with each successive stage of stream development and cross-grading, and the directions of streams and of resultant slopes tend generally to be the same in any two stages of stream development which are either both even numbered or both odd numbered.

## ASYMMETRICAL DRAINAGE PATTERNS

Because newly developed tributaries enter their parent streams at acute angles, they divide their tributary areas into two parts such that the remaining upslope tributary areas are larger than those on the downslope side, using the terms "upslope" and "downslope" with reference to the two sides of the tributary. Because of inequality of area, width, and slope on the two sides of a tributary, the next lower order of tributaries may develop with two or three tributaries on the upslope side and fewer or none on the downslope side, a common phenomenon, particularly in mountain areas. Since the average elevation of the upslope area is greater than that of the downslope area, this phenomenon is sometimes attributed to increase of rainfall with elevation. It may occur, however, as the result of differences of tributary area and length of overland flow on the upslope and downslope sides of the parent streams, independently of variation of rainfall or runoff on the drainage basin. Burch Creek and Reels Creek drainage basins (Utica, New York, quad., U. S. Geological Survey) afford examples of asymmetrical drainage-basins.

## PERCHED or Sidehill streams

In general, streams follow the bottoms of the valleys in which they are located. Small-usually 1st order-streams are occasionally perched precariously on the side slopes of graded valleys of higher-order streams. The course of such a stream is often more nearly parallel with the antecedent slope than with the cross-graded slope. At the foot of the slope the stream often turns abruptly and debouches into the parent stream at nearly a right angle (Fig. 35). Evidently gradation of the valley of the parent stream $c d$ reached the stage shown in the figure before the slope became steep enough to reduce the critical length $x_{c}$ below the maximum length $l_{g}$ of overland flow on the right-hand side, and $l_{g}$ became greater than $x_{c}$ only when gradation of the valley slope had reached the end point. A weak stream, $a b$, then developed by micropiracy and cross-grading, but owing to some local cause, such as increased resistivity of the soil to erosion at increased depth below the original surface, this stream was unable to develop a valley of its own by further cross-grading and so remained high above the parent stream on the antecedent rilled surface, until, with increasing volume and slope, it turned nearly a right angle as it entered the parent stream.

## rejuvenated streams; epicycles of erosion

In the preceding sections it has been assumed that: (1) Uplift or exposure of new terrain took place continuously though not necessarily at a uniform rate, the region finally becoming stable; (2) the initial resistance $R_{i}$ of the soil surface to erosion remained constant. The effect of subsequent further elevation or subsequent subsidence of an area on which a stream system has already developed has been extensively discussed in connection with the Davis erosion cycle (Wooldridge and Morgan, 1937) and will not be considered further here. Before leaving the general subject of stream development and valley gradation consideration will be given to the effect of (1) differences between surface and subsurface resistivity to erosion, (2) changes in the surface resistivity to erosion.

The term "rejuvenated stream" is applied to a stream system in which a renewed cycle of erosion begins and which may extend the drainage net after it has reached maturity. Rejuvenation may result from several causes, although in the Davis


Figure 35.-Perched or hillside stream
sense the term is applied chiefly where it results from widespread geologic changes such as renewed uplift, folding, and tilting.
Accelerated or decreased erosion may result without any such geologic changes if the original terrain varies in erosional resistivity or infiltration-capacity proceeding downward from the surface. Then, as erosional gradation takes place, changes in the critical length of overland flow $x_{c}$ will occur, and if these changes are abrupt they may result in important effects, either (1) marked increase in drainage density and extension and number of minor tributaries, if $R_{i}$ and $x_{c}$ decrease downward
from the surface, or (2) abandonment and fossilization of pre-existing streams and tributaries, if $R_{i}$ and $x_{c}$ increase with increased gradation.
A third condition may also bring about changes in erosion rate and stream development which is more common than rejuvenation due to strictly geologic causes. This occurs where, as the result chiefly of climatic or cultural changes, there is a change in the surface-erosional.resistivity or infiltration-capacity of the terrain which brings about changes in the critical length $x_{c}$ and in the consequent development of drainage.
Accelerated erosion due to the removal or replacement of an initially resistant surface by a less resistant surface has been appropriately described by Bailey (1935) as an epicycle of erosion. This term is appropriate since it implies a marked changed in erosional and gradational activity, superposed on the normal erosional conditions. Changes in erosional conditions brought about by dust storms and the formation of loess veneer on soil surfaces, and changes in erosional activity resulting from improper cultivation of the soil, deforestation, fires, or overgrazing of range lands, afford excellent examples of epicycles of erosion.
Where a less permeable and more resistant surface layer of soil or sod overlies weaker or more permeable subsoil, there will be in effect two different values of $x_{c}$, one pertaining to the surface layer, the other to the underlying material. This occurs where well-established grass or other vegetal cover overlies a noncohesive sandy soil or where there is a layer of loess or similar fine-textured material, with moderate or high cohesiveness, overlying more permeable and less cohesive material, such as sand.
If the overlying resistive mateial is broken through, the value of $x_{c}$ pertaining to the underlying material governs subsequent stream development. In such cases the development of a drainage net is likely to be erratic and sporadic. On much of the area there may be but few streams. This will be true where the larger or surficial value of erosive resistance $R_{i}$ and critical distance $x_{c}$ are effective. At other locations where the smaller subsurface values of $R_{i}$ and $x_{c}$ have become effective, active and extensive stream development may take place. Extensive plains, for the most part undisturbed by erosion, may be dissected by rapidly growing and irregularly branching systems of gullylike channels. This condition exists in the Pontotoc Ridge region of the Little Tallahatchie, Mississippi, drainage basin, where deep incoherent sand is overlain with a thin veneer of fine uniform loessal silt. In this region $x_{c}$ for the underlying sand is practically zero, and stream development may extend far above the $x_{c}$ limit for the surface material as a result of headward erosion. The author has observed gullies in the Pontotoc Ridge region which in some cases have extended not only to but somewhat beyond the topographic boundaries of their drainage basins (Happ et al., 1940). This has resulted from the slumping of masses of earth from the nearly vertical and sometimes undermined scarp formed by the erosion of the deep, incoherent sand
The destruction of vegetation by smelter fumes early in the present century in the vicinity of Ducktown and Copper Hill, Tennessee, brought about a new erosion cycle. Glenn's early report (1911) and the author's later observations show that forest and hills sometimes protected the sod locally even where the trees were killed,
and where the sod was protected no erosion occurred. As described by Glenn (1911, p. 78):
"The erosion starts near the bottom of a slope, and where the soil is porous rapidly cuts a steepsided gully to a depth of 5 to 12 feet below the surface, where the underlying schist is as a rule still sided gully to a depth of 5 to 12 feet below the surface, where the underlying schist is as a rule still
measurably firm. After a gully has reached its limit in depth it widens until its walls coalesce with the walls of adjacent gullies, by which time most of the soil has been removed."

Over much of the denuded area erosion has not been as complete as that above described. Narrow flat lands still persist between the parallel gullies, and uneroded, nearly flat summits of the hills are conspicuous. In some cases the gullies afford excellent examples of cross-grading in progress, with remnants of the antecedent rill surface still visible.

The erosional topography of this region was essentially mature before denudation took place wherever there was a well-established sod cover. The resistivity of the underlying soil to erosion is, however, so small that, lacking protection, the critical distance $x_{c}$ is reduced nearly but not quite to zero. Consequently the walls between initial parallel ridges on steep slopes have sometimes coalesced, as described by Glenn. Within a few years after destruction of the vegetation the drainage density was increased locally from ten to one hundred fold, and where this occurred the end point of the new erosion cycle was quickly attained.

In the gully formation in the Pontotoc Ridge region in Mississippi and in the vicinity of Ducktown, Tennessee, surface and subsurface resistance $R_{i}$ differed, the surface resistance being initially greater and the terrain initially stable against erosion. Reduction of surface resistance resulted from improper cultivation in the Pontotoc Ridge region and from partial destruction of vegetal cover by smelter fumes in the Ducktown region, and an active epicycle followed in each case. The formation of arroyos on overgrazed land affords another example of an epicycle of erosion where the value of $x_{c}$ is less for underlying soil than for undisturbed surface cover.

## DRAINAGE-BASIN TOPOGRAPHY

## MARGINAL BELT OF NO EROSION; GRADATION OF DIVIDES

In addition to controlling the drainage density and the composition of the drainage pattern and fixing the end point of development of a stream system on a given area, the critical distance $x_{c}$ and the belt of no erosion which it produces govern the degree of gradation which can occur on a given area and the extent of gradation along and adjacent to both exterior and interior watershed lines or divides.

If the angle between the watershed line $a a^{\prime}$ (Fig. 36A) and the direction of overland flow is $A$, then for a given critical length $x_{c}$ there will be a belt of no erosion on the given side of the watershed line having a width

$$
w_{v}=x_{c} \sin A
$$

This marginal belt of no erosion $a a^{\prime} c c^{\prime}$ is relatively permanent. It is widest, other things equal, where the direction of overland flow is most nearly normal to the watershed line; this is usually around the headwaters of an exterior divide. The width of the marginal belt of no erosion decreases for a given $x_{c}$ as the direction of overland
antecedent to, and solid arrows the corresponding directions with, cross-grading This belt has, however, been previously subject to sheet erosion since its-grading slope from the headward belt of no erosion, and the direction of overlaes downparallel with the slope. The profile of the belt $f f^{\prime} g g^{\prime}$ is concave of overland flow is at its ends, considerably below the original subject to cross-grading. Slight variations in surface conditions well $f f^{\prime} g g^{\prime}$ is still the surface runoff at a given location, as at $h$ into one sitions will divert most of divide between the streams will move away from the one stream or the other. The occurs. The direction of overland flow on the diverteam into which the diversion it is more or less parallel with that on the adjaiverted area will swing around until no erosion will develop on the side of the divident cross-graded slope, and a belt of belt will have a width $x_{c} \cos A$, where $A$ is the on which diversion occurs. This surface runoff and the antecedent slope. This runoff angle between the diverted and the width of the belt of no erosion on the given side will vary from zero to $\mathrm{mm}^{\prime} n$, At some other location accordingly. with $g g^{\prime}$, and the watershed line will be deflected toward ffr ${ }^{\prime}$, shed line will become sinuous, as shown by the dashed $f f^{\prime}$. As a result the watermediate between $h$ and $j$ the streams will divide the runoff on Figure 36B. Interwatershed line will cross the center of the belt $f f^{\prime} g g^{\prime}$, but at more or less equally. The runoff will have been diverted at $h$, and there will be less erosion location most of the As a consequence of the competitive development of divides the than at either $h$ or $j$. no erosion will vary from point to.point, governed locally by the slope, the the belt of

 'әууo.d pue urfd ut snonu!s әq

 only as a result of the manner of their developm ment by aqueous erosion but also by A favorable lesses, such as earth slips and rain-impact erosion.
and a cross divide. Such junctions commonly oceur the junction of a longitudinal
 extending out onto the interior divide. Fions the flat-top hill usually has an arm intermediate locations where there is a relatively hills and plateaus may also occur at On Figure 37, $a a^{\prime}$ and $b b^{\prime}$ there is a relatively wide belt of no erosion.
or less simultaneously on the same side of tributary streams which developed more parallel, and crosswise of the original slope. When these stre which flow nearly
 each stream. Dashed arrows show directions, spreading laterally on both sides of
 streams $a a^{\prime}$ and $b b^{\prime}$. Most of the surface runoff on рәұәл! Downslope from $a a^{\prime}$ ito stream $a a^{\prime}$ by cross-grading.

Overland flow on the area upslope from the watershed line $a c$ will be the area $a a^{\prime} c$. line, while on the area acde the antecedent direction of ove $a c$ will be parallel to this

 basin basin.
then, with sufficient newly exposed surface, streams will dead of a newly exposed area, The entire slope from $c c^{\prime}$ to the outlet is subject to sheet begins adjacent to the streams and spreads laterally until there Cross-grading
 in the vicinity of saddles between crestal hills it may have been subject to cross grading during its development. If a divide runs crosswise of the drainage basin (acde, Fig. 37), the belt of no erosion will temporarily be subject to longitudinal erosion, but presently, as a result of erosional competition, hills and saddles will develop, breaking up the longitudinal components of overland flow into elements each less than $x_{c}$, as in case of a longitudinal divide. A crosswise belt of no erosion
 the original slope. the original slope.
As a drainage system develops, additional belts of no erosion are introduced along the new interior divides, thereby reducing the portion of the total area over which sheet erosion can occur, other things equal. These later divides have been longer subject to gradation than those developed earlier, and they are generally at lower elevations relative to the original surface. Streams that ultimately become the higher-order streams of the drainage basin usually develop early in the erosion cycle, and their divides are usually higher relative to the original surface than those of lower-order tributaries.
A belt of no erosion once developed persists throughout subsequent stages of gradation although subject to variations in width with subsequent cross-grading of the adjacent terrain.
If the drainage basin of a tributary is narrow and steep on one side, with overland flow at right angles to the divide, the belt of no erosion may extend from the watershed line to the stream on that side, while a flatter slope or overland flow at an acute ange-on the opposite side may permit erosion over all or a part of the area on that范
Discussion thus far has related chiefly to the earlier stages of gradation of a drainage basin where the length of overland flow is generally much greater than the critical
 by successive subdivisions, with the birth of new tributaries, until finally there re mains little or no intermediate length of overland flow between the belts of no erosion and the streams.
A practical illustration of a belt of no erosion is afforded by slope terracing. Thi introduces a system of artificial watershed lines or cross divides on the terraced slope such that the remaining lengths of overland flow are everywhere less than the critical distance $x_{c}$, and the area between a terrace divide and the next one downslope constitutes a belt of no erosion.
Nature accomplishes a similar result in the development of a drainage-basin system by the successive development of tributaries of lower orders, thereby cutting down the length of overland flow until it does not exceed the critical length $x_{c}$ anywhere erane basin. The drainage net is then complete. Since the development of tributaries of successively lower orders in a stream system does not go on indefinitely, the drainage density approaches a finite limit. Drainage density active, as shown in commonly is 1.0 to 2.0 in humid regions where soil erosion is active, as shown in column 9 of Table 1. area $b b^{\prime} f$ on the upslope side and from the area $b b^{\prime} g$ on the downslope side. The areas $a c a^{\prime}$ and $b g b^{\prime}$ will have been subject to at least two cross-gradings, and as a result the direction of overland flow on these areas will have been turned nearly

 streams running crosswise of the original slope may, of course, have either a downslope component (Fig. 37), or it may have its direction of flow reversed with respect to the original slope. This happens if the direction of overland flow is deflected through more than $90^{\circ}$.

A longitudinal section along the line $x x^{\prime}$ is shown on Figure 37A. The initial surface is shown by a dashed line. In spite of the fact that $e$ is higher than $f$, the resultant slope is not materially different on the wide and narrow sides of the valley, a fact often noticed on topographic maps.

It has been shown that the occurrence of a belt of no erosion along an interior divide between streams parallel with the original slope is contingent on the development of components of flow across the divide by micropiracy. A belt of no erosion

| Distance above (miles) | Elevation of finat $_{\text {(feet) }}$ | q. miles) <br> $\underset{(S q . \text { miles) }}{\substack{\text { Approximate area }}}$ | $\underset{\substack{\text { Average elevation, } \\ \text { major divide } \\ \text { (feet) }}}{ }$ | $\underset{\text { (feet) }}{\text { Elevation of stream }}$ |
| :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) |
| 3.5 | 1500 | 0.09 | 1600 |  |
| 3.7 | 2000 | 0.61 | 1650 | 610 |
| 5.7 | 2500 | 0.11 | 2200 | 640 |
| 6.4 | 2500 | 0.03 | 2350 | 660 |
| 7.35 | 3500 | 0.06 | 3000 | 700 |
| 7.35 | 2500 | 0.51 | 3000 | 700 |
| 9.2 | 3500 | 0.05 | 3150 | 740 |
| 9.2 | 2500 | 0.23 | 3150 | 740 |
| 9.2 | 2500 | 0.16 | 3150 | 740 |
| 9.7 | 2500 | 0.24 | 3400 | 760 |
| 10.6 | 3000 | 0.15 | 3300 | 800 |
| 10.6 | 2500 | 1.00 | 3300 | 800 |
| 11.9 - | 3000 | 1.85 | 3100 | 900 |
| 13.4 | 2500 | 0.14 | 3200 | 950 |
| 14.3 | 3500 | 0.05 | 3450 | 1000 |
| 18.3 | 3000 | 0.04 | 3200 | 1500 |

The topographic map of Esopus Creek drainage basin above Olive Bridge in southeastern New York shows several residual flat-top hills and plateaus, all located along the lines of interior cross divides (Phoenicia, Kaaterskill, Margaretville, and Slide Mountain quads., U. S. G. S. topographic maps). Column 2 of Table 7 shows the elevations of the highest closed 500 -foot contours. They are given in order of occurrence proceeding upslope from Olive Bridge. Column 3 shows the area within the contour. Above these contours the summits are relatively flat. Column 4 gives the average elevation of the main divide at the same cross section. Flat tops on the same

 the one located on the divide which developed later is usually lower.

At the head of the drainage basin the marginal belt of no erosion along the main divide represents a portion of the original surface. While the elevations of the summits of flat tops usually increase upslope, those on lateral divides near the head of the drainage basin have been graded somewhat and are consequently usually at a lower elevation than the divide at the head of the basin.

Interior interfluve hills and plateaus are, however, not always lower than the adjacent peripheral divide because of conditions of exposure of the original surface. If the original surface was warped upward or is domelike, interfluve hills may rise above the adjacent main divide. The occurrence of flat-top, interfluve hills and
360
Within almost any drainage basin approaching maturity, especially with steeper slopes, relatively flat-topped interfluve hills and plateaus are scattered over the

Figure 38.-Topography of an interior cross divide
(Coosa Bald, Ga., quad., U. S. G. S.-T. V. A.)
They represent remnants of antecedent as sometimes described, ungraded areas. They represent remnants of antecedent slopes and are therefore areas on which
gradation was arrested when the adjacent streams and valleys developed Interior divides running crosswise of the drainage basin developed.
erosion and are more permanent than either interior divides or lateral segments of the main divide running parallel with the original slope. Interior, flat-top, residual hills



 stream. 'Stream and valley gradation proceed together, but valley gradation tends to lag behind stream gradation.

In the development of the stream and valley of a first-order tributary, runoff volume adequate to produce erosion close to the stream will be most frequent, and this part of the valley will be cut down rapidly to stream level, progressing backward toward the divide. At any point in the drainage basin downstream from the critical

 the eroding and transporting power may be in equilibrium, and further erosion may thereby be inhibited.

Figure 40 represents the cross section typical of a mature tributary stream valley produced by aqueous erosion. As a result of cross-grading and re-cross-grading, the initial surface $a a^{\prime}$ was cut down to $b f h$ when the stream developed. At each side is a belt of no erosion. For homogeneous material, valley side-slope erosion will not stop at the line $b c$. If erosion continues until the profile on the left-hand side is $b d$, the sheet flow, charged with eroded material, arriving at $d$ must be disposed of. Slope is required to carry the water from $d$ to $c$, and the segment $d c$ will not be graded below this minimum slope. A steeper slope may be maintained from $d$ to $c$ because of sedimentation if the shect flow from above $d$ is overcharged with sediment with respect to its transporting power at the reduced slope $d c$.

For turbulent flow the critical length $x_{c}$ varies inversely as the surface-runoff intensity $q_{s}$. Rainstorms range from those with intensities less than infiltrationcapacity, and which produce no surface runoff, up to the maximum intensity possible in the given locality. In lighter storms $x_{c}$ will extend to the stream at $c$, and no
plateaus results from the development of a divide between two streams under competitive conditions and requires only aqueous erosion. The locations and sizes of such hills may, however, be governed by secondary causes.

There may be, on a newly exposed region, local areas where high infiltration-


Figure 39.-Origin of ungraded or partially graded interfluve hills and plateaus
capacity $f$, large initial resistance $R_{i}$, or local flatness of slope, or these combined, make the critical distance $x_{c}$ abnormally large-for illustration, 100 times as great as for the region in general. On Figure 39, $A, B$, and $C$ represent such local areas, the lines of overland flow in the first stage of gradation being as indicated. The area $A$ receives such intense runoff at its upslope edge that it may be eroded actively
 downslope portion, while area $C$ will be immune to erosion. In the second and sub-
 sional gradation, but they will remain as flat-topped interfluve hills, some of them at the elevations of the original surface, others at somewhat lower elevations.

## CONCORDANT STREAM AND VALLEY JUNCTIONS

 stream. Thus the new stream enters the parent stream concordantly. A tributary valley has, in general, steeper side slopes and a smaller value of $x_{c}$ than its parent
 gradation of its parent valley, and, although younger, if its stream does not initially








 at the head of the main divide. Hence the head of a main drainage basin is usually somewhat rounded.

As a result of change of direction of overland flow by cross-grading (Fig. 30), the



 laterally until a permanent competitive divide $c c^{\prime}$ is established.

Similar competitive divides will be established to the right of stream $b b^{\prime}$ and to the

 pear-shaped or ovoid.

 pear-shaped figure with the apex at the outlet end. Also, assuming valley cross


 ч̊̊
 통․
semblance to the typical ovoid form is still preserved in most drainage basins.
of the operation of hydrophysical processes. In the Davis theory the same subject
 subsequent geologic changes. The two views bear much the same relation as two pictures of the same object taken in different lights-the results are not necessarily in conflict; each supplements the other. The hydrophysical concept appears to be

 "youth," "youthful," "maturity," and "peneplain.'

As commonly applied in connection with the Davis erosion cycle, "young" and "youthful" relate to an area where there has been but little erosional gradation. "Mature" means that all or nearly all the gradation which can result from the operation of existing agencies has been accomplished. On an area where infiltrationcapacity and surface resistance are sufficiently high, little erosional gradation may be possible under existing conditions. Such an area is actually mature although from its surface appearance it would be classified as youthful.

Incipient drainage and low drainage density are accepted as prima facie evidence of youth. Extensive dissection and high drainage density on a given area are accepted as necessary and sufficient proof of maturity. These are usually sufficient, but they are not necessary as conditions precedent to maturity. An area of low drainage density and with little dissection may have been born mature if the original infiltration-capacity, initial resistance, and rainfall appurtenant to the drainage area
 part of the area. Such an area represents erosionally mature topography. It is

 and cultural changes.

Conversely, but less frequently, an area occurs with moderate dissection and a fairly high drainage density which is in a youthful stage because of a small value of $x_{c}$. Such areas are most likely to be found where an epicycle of erosion is in progress.
 drainage basins is far more generally complete with respect to pre-existing conditions than is usually supposed or assumed. The error has resulted largely from a careless


 York; Parmelee, North Carolina; Anson, Texas; Fargo, North Dakota-Minnesota; and Oberlin, Ohio, topographic sheets of the U. S. Geological Survey have all been




 conditions which have induced either a local or general epicycle of erosion over part or all of the area

Waters of the earth are probably chiefly of volcanic origin. If at an early stage in geologic history a continent was exposed at a time when rainfall was light and fall, then a stream system would develop with a tendency to greater concentration in large drainage basins than occurs where exposure of the area is gradual.

If an entire continent was exposed before erosion begins, the maximum length of basins would be more limited in their extension inland the start. Smaller coastal of a coastal margin. For such a continental exposure a few major drainage basins would generally develop, draining the greater part of the area. The development of ach drainage basin would take place in much the same manner as one of the larger basins on a progressively exposed coastal margin. Smaller coastal streams would be restricted in tributary area by competition with the stronger major streams in much the same way in the two cases.

There would be certain differences in the operation of the processes of erosional gradation for the continental area:
(1) Even an approximation to homogeneity of the area with respect to the controlling factors: rain intensity, infiltration-capacity and surface resistivity to erosion, would not be likely to occur.
(2) A single maximum storm covering the whole of the continent is improbable. A
 There would be opportunities for large-scale stream piracy, such as appears to have occurred in the upper part of the area originally tributary to Colorado River.

 of major stream systems, barring such catastrophic events as lava overflows or glacial submergence, suggests that a re-examination of the early erosional history of the


## ятอגอ noisozs-wvauls sinva



-     - man lon st

In discussions of the Davis erosion cycle the cycle is
 structures and is largely taken for granted (Davis, 1909). The author has considered stream development and drainage-basin topography wholly from the viewpoint
The plysical and mathiematical treatment of the subject estabishes rational quantitative relationships between the interpretation of observed phenomena ac－





 and the requisite spacing of soil conservation terraces．
In conclusion，what has been given is a framework or outline of drainage－basin development along hydrophysical lines rather than the completed picture．It is

 erosion cycle．It is also hoped that the reader will find stimulation to further study and research．
REFERENCES CI＇TED Bailey，R．W．，Forsling，C．L．，and Becraft，R．J．（1934）
Ulah，U．S．Dept．Agric．，Misc．Pub．196．©
Geol．，vol．43，p．337－355．
Bennett，H．H．（1939）Soil conservation，McGraw－Hill Book Co．，New York， 958 pages．
Geol．，vol．43，p．337－355．
Bennett，H．H．（1939）Soil conservation，McGraw－Hill Book Co．，New York， 958 pages．
水
合in
Davis，W．M．（1909）Geographical essays，Ginn \＆Co．，Boston， 777 pages．
Dutey，L．，Anr．Agric．Res．，vol．45，no．6，P．349－360．
（1941）Surface condition of soil and time of application as related to

（1941）Erodibility investigations on some soils of the Upper
Tric．，Tech．Bull．794，Washington，D．C．

G．K．（1880）Geology of the Henry Mountains［Utah］（2d ed．），U．S．Geog．Geol．Survey
1914）The transportation of debris by running water，U．S．Geol．Survey，Prof．Paper 86.
C．（1911）Denudation and crosion in the Southern Appalachian region and the Mononga－
hela basins，U．S．Geol．Survey，Prof．Paper 72 ．

 ：告


ن
volume，slope，and low local resistivity to erosion，or where an epicycle of erosion
occurs．
cipal differences between the Davis concept and thent of a drainage basin the prin－ be that the former does not provide any definite end poind ophysical concept seem to


（．） ＂little dissected＂and＂well dissected＂seem preferable to＂youthful＂and＂mature＂ dissected；（2）young，well dissected；（3）old，little dissected；（4）are（1）young，little The term＂peneplain＂seems inappropriate．The ultimate surface of erosion within a main basin boundary is neither＂almost a plane，＂as the prefix＂pene＂ from which it has been derived．It seems better to call it a＂base surfac＂in area parison with the original surface below wetter to call it a＂base surface＂in com－ base surface at its downslope end is at＂base level＂in the usual sense．The base surface is，however，generally concave upward except along divides，and its margins intersect the initial surface around the upstream portion of the drainage area．The ultimate base surface is，under ideal conditions，closely similar to a segment of a parabaloid cut by a plane which is not parallel with the axis of the parabaloid．The parabaloidal surface is ribbed with ridges which represent the divides between streams．
Wooldridge and Morgan（1937）use＂the invaluable concept of the cycle of erosion They state（p．184）：
＂Some writers have argued that the cycle of erosion can never have run its full course and that the
peneplain is an unrealized and unrealizable abstraction．＂
in other words，the Davis erosion cycle is not completed by erosion per se cycle－ It caries the matter of basin denies the effects nor invokes the operation of uplift． It carries the matter of basin development only so far as it can be carried by purely
erosional processes，and it shows that there is a definite of streams and valleys by aqueous erosion and leaves room for the development and plateaus between valleys and which are not subject to further erosion or pene－ planation．It provides a better foundation than has heretofore existed for the inter pretation of the effects of changes of geologic conditions in relation both to the subse－ quent march of the erosion cycle and in relation to changes of drainage patterns and drainage composition occasioned thereby．
divides takes place before the streams which are separated by the given divide of developed－in other words，the terrain where the divide is located is graded in ad－ vance at a time when sheet erosion is taking place along or across the line which subz sequently becomes the divide．Interfluve hills and plateaus are remnants of this pregraded surface，and when once formed they are permanent features of the topogra－ phy．The whole concept of ultimate development of a peneplain appears to be founded on the idea that grading of interior divides continues indefinitely and is accomplished by the streams they separate，whereas in the case of the hydrophysical concept the gradation is already，for the most part，accomplished when the adjacent streams originate．

[^3]Horton, Robert E. (1932) Drainage basin characteristics, Am. Geophys. Union, Tr., p. 350-361. - (1933) The role of infiltration in the hydrologic cycle, Am. Geophys. Union, Tr., p. 446-460,

(1937) Hydrologic interrelations of zwater and soils, Soil Sci. Soc. Am., Pr., vol. 1, p. 401-
(1938) The interpretation and application of runoff plat experiments wilh reference to soil erosion problems, Soil Sci. Soc. Am., Pr., vol. 3, p. 340-349.
(1938) Raing (1938) Rain-wave Irains, Am. Geophys. Union, Tr., p. 368-374.
phys. Union, Tr., p. 693-711. (1940) An approach toward Soc. Am., Pr., vol. 5, p. 399-417. ser. 6, vol. 49, p. 793-803
Jeffreys, Harold (1925) The flow of water in an inclined channel of rectangular section, Philos. Mag.,
Middleton, H. E., and Slater, C. S. (1932) Physical and chemical characteristics of the soils from the erosion experiment stations, U. S. Dept. Agric., Tech. Bull. 316, Washington, D. C.
Neal, Jesse H. (1938) The effect of the degree of slope and rainfall characteristics on rund a Renner, F. G. (1936) Conditions influencing erosion on the Boise River watershed Agric. Exper. Sta., Res. 280. Agric., Tech. Bull. 528, Washington, D. C. R. D., and Atwood, W. W. (1908) D. C.
Salisbury, R. D., and Atwood, W. W. (1908) The interpretation of topographic maps, U. S. Geol.
Survey, Prof. Paper 60. Tarr, R. S., and Martin, Lawrence
Tipton, R. J. (1937) Characteristics of floods in the Southern Rocky Mountain region, Am. Geophys. Union, Tr., vol. 2, p. 592-600.
Unwin, W. C. (1898) Hydromechanics, Encyl. Brit., 9 th ed.
(1937) The physical basis of geography, Longmans, Green \& Co., London, 435 pages.
Voorheesville, N. Y.
Manuscript Received hy the Secretary of the Society, August 5, 1943.
Presented before Section E, December 27, 1940.


[^0]:    

[^1]:    where $f(S)$ is a function expressing the effect of slope on the critical length $x_{c}$ and is given by the equation:

[^2]:    ${ }^{4}$ Derivation of this equation is given correctly in the reference cited. Interpretation of the equation as there given is incomplete and not wholly correct.

[^3]:    

