Optimal Supply Networks II: Blood, Water, and Truthicide

Last updated: 2025/10/28, 08:39:47 EDT

Principles of Complex Systems, Vols. 1, 2, 3D, 4 Fourever, V for Vendetta

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Institute
University of Vermont | Santa Fe Institute

Licensed under the Creative Commons Attribution 4.0 International

The PoCSverse Optimal Supply Networks II 1 of 125

Metabolism and Truthicide

Measuring exponents

0 1

River networks

Earlier theories

Geometric argument

Conclusion

These slides are brought to you by:

The PoCSverse Optimal Supply Networks II 2 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Optimal Supply Networks II 3 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Outline

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References

The PoCSverse Optimal Supply Networks II 4 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Stories—The Fraction Assassin:

The PoCSverse Optimal Supply Networks II 5 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

The PoCSverse Optimal Supply Networks II 6 of 125

Metabolism and Truthicide Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

"In the scientific integrity system known as peer review,

The PoCSverse Optimal Supply Networks II 6 of 125

Metabolism and Truthicide Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

"In the scientific integrity system known as peer review, the people are represented by two highly overlapping yet equally important groups:

The PoCSverse Optimal Supply Networks II 6 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

"In the scientific integrity system known as peer review, the people are represented by two highly overlapping yet equally important groups: the independent scientists who review papers The PoCSverse Optimal Supply Networks II 6 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

"In the scientific integrity system known as peer review, the people are represented by two highly overlapping yet equally important groups: the independent scientists who review papers and the scientists who punish those who publish garbage.

The PoCSverse Optimal Supply Networks II 6 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

"In the scientific integrity system known as peer review, the people are represented by two highly overlapping yet equally important groups: the independent scientists who review papers and the scientists who punish those who publish garbage. This is one of their stories."

The PoCSverse Optimal Supply Networks II 6 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Animal power

Fundamental biological and ecological constraint:

$$P = c M^{\alpha}$$

P =basal metabolic rate

 $M={
m organismal\ body\ mass}$

Does 1 elephant equal 1 million shrews in a elephant suit in a trenchcoat?

The PoCSverse Optimal Supply Networks II 7 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Animal power

Fundamental biological and ecological constraint:

 $P = c M^{\alpha}$

P =basal metabolic rate

M =organismal body mass

Does 1 elephant equal 1 million shrews in a elephant suit in a trenchcoat?

The PoCSverse Optimal Supply Networks II 7 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

$P = c M^{\alpha}$

Prefactor c depends on body plan and body temperature:

The PoCSverse Optimal Supply Networks II 8 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

$$P = c M^{\alpha}$$

Prefactor c depends on body plan and body temperature:

Birds	39–41 $^{\circ}C$
Eutherian Mammals	$36 38 {}^{\circ} C$
Marsupials	$34 36 {}^{\circ} C$
Monotremes	$30-31^{\circ}C$

The PoCSverse Optimal Supply Networks II 8 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

$$\alpha = 2/3$$

The PoCSverse Optimal Supply Networks II 9 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

 $\alpha = 2/3$ because ...

Dimensional analysis suggests an energy balance surface law:

 $P \propto S \propto V^{2/3} \propto M^{2/3}$

The PoCSverse Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

 $\alpha = 2/3$ because ...

Dimensional analysis suggests an energy balance surface law:

$$P \propto S \propto V^{2/3} \propto M^{2/3}$$

Assumes isometric scaling (not quite the spherical cow).

The PoCSverse Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

 $\alpha = 2/3$ because ...

Dimensional analysis suggests an energy balance surface law:

$$P \propto S \propto V^{2/3} \propto M^{2/3}$$

Assumes isometric scaling (not quite the spherical cow).

& Lognormal fluctuations:

Gaussian fluctuations in $\log_{10} P$ around $\log_{10} cM^{\alpha}$.

The PoCSverse Optimal Supply Networks II 9 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

 $\alpha = 2/3$ because ...

Dimensional analysis suggests an energy balance surface law:

$$P \propto S \propto V^{2/3} \propto M^{2/3}$$

Assumes isometric scaling (not quite the spherical cow).

& Lognormal fluctuations:

Gaussian fluctuations in $\log_{10}P$ around $\log_{10}cM^{\alpha}.$

Stefan-Boltzmann law
 for radiated energy:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sigma \varepsilon S T^4 \propto S$$

The PoCSverse Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

Latrici tricories

Geometric argument

Conclusion

The PoCSverse Optimal Supply Networks II 10 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References

 $\alpha = 3/4$

 $P \propto M^{3/4}$

The PoCSverse Optimal Supply Networks II 10 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References

 $\alpha = 3/4$

 $P \propto M^{3/4}$

Huh?

The PoCSverse Optimal Supply Networks II 11 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Farlier theories

Lariter theorie

Geometric argument

Conclusion

References

Most obvious concern:

3/4 - 2/3 = 1/12

An exponent higher than 2/3 points suggests a fundamental inefficiency in biology.

The PoCSverse Optimal Supply Networks II 11 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Farlier theories

Geometric argumen

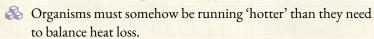
Conclusion

References

Most obvious concern:

3/4 - 2/3 = 1/12

An exponent higher than 2/3 points suggests a fundamental inefficiency in biology.



Related putative scalings:

Wait! There's more!:

 $\red {
m \&}$ number of capillaries $\propto M^{3/4}$

 $\red {
m \&}$ time to reproductive maturity $\propto M^{1/4}$

 \red{lambda} heart rate $\propto M^{-1/4}$

 \Leftrightarrow cross-sectional area of aorta $\propto M^{3/4}$

 \Leftrightarrow population density $\propto M^{-3/4}$

The PoCSverse Optimal Supply Networks II 12 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Assuming:

 $\red A$ Average heart rate $\propto M^{-eta}$

 $\mbox{\&}$ Irrelevant but perhaps $\beta = 1/4$.

The PoCSverse Optimal Supply Networks II 13 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

Assuming:

Average lifespan $\propto M^{\beta}$

 $\red{solution}$ Average heart rate $\propto M^{-\beta}$

 \Longrightarrow Irrelevant but perhaps $\beta = 1/4$.

Then:

The PoCSverse Optimal Supply Networks II 13 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents River networks

Farlier theories

Geometric argument

Conclusion

Assuming:

 $\red{solution}$ Average heart rate $\propto M^{-\beta}$

 $\mbox{\&}$ Irrelevant but perhaps $\beta = 1/4$.

Then:

Average number of heart beats in a lifespan

The PoCSverse Optimal Supply Networks II 13 of 125

Metabolism and Truthicide Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

Assuming:

 $\red A$ Average heart rate $\propto M^{-\beta}$

 $\mbox{\&}$ Irrelevant but perhaps $\beta = 1/4$.

Then:

Average number of heart beats in a lifespan

The PoCSverse Optimal Supply Networks II 13 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

Assuming:

 $\red{solution}$ Average heart rate $\propto M^{-\beta}$

 \clubsuit Irrelevant but perhaps $\beta = 1/4$.

Then:

Average number of heart beats in a lifespan ≃ (Average lifespan) × (Average heart rate) $\propto M^{\beta-\beta}$

The PoCSverse Optimal Supply Networks II 13 of 125

Metabolism and Truthicide

Measuring exponents River networks

Farlier theories.

Geometric argument

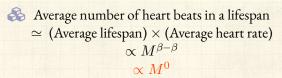
Conclusion

Assuming:

 $\red{solution}$ Average heart rate $\propto M^{-\beta}$

A Irrelevant but perhaps $\beta = 1/4$.

Then:



The PoCSverse Optimal Supply Networks II 13 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Farlier theories.

Geometric argument

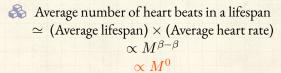
Conclusion

Assuming:

Average heart rate $\propto M^{-\beta}$

A Irrelevant but perhaps $\beta = 1/4$.

Then:



Number of heartbeats per life time is independent of organism size!

The PoCSverse Optimal Supply Networks II 13 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

Assuming:

 \red{sol} Average heart rate $\propto M^{-\beta}$

A Irrelevant but perhaps $\beta = 1/4$.

Then:

Average number of heart beats in a lifespan ≃ (Average lifespan) × (Average heart rate) $\propto M^{\beta-\beta}$ $\propto M^0$

Number of heartbeats per life time is independent of organism size!

 \Rightarrow \approx 1.5 billion

The PoCSverse Optimal Supply Networks II 13 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

From earlier in PoCS:

"How fast do living organisms move: Maximum speeds from bacteria to elephants and whales"

Meyer-Vernet and Rospars, American Journal of Physics, **83**, 719–722, 2015. ^[36]

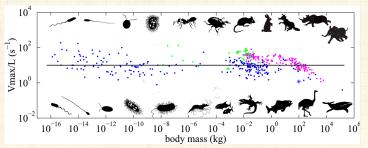


Fig. 1. Maximum relative speed versus body mass for 202 running species (37 mammals plotted in magenta and 45 non-mammals plotted in green), 127 was winning species and 91 micro-organisms (plotted in blue). The source (see 16 micro) are given in Ref. and 45 non-mammals plotted in green), 127 (Eq. (13)) estimated in Sec. III. The human world records are plotted as asterisks (upper for running and lower for swimming). Some examples of organisms of various masses are sketched in black (drawings by Francisco) Mever.

The PoCSverse Optimal Supply Networks II 14 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

Earlier theories

Geometric argumen

Conclusion

"A general scaling law reveals why the largest animals are not the fastest" [2]

Hirt et al.,

Nature Ecology & Evolution, 1, 1116, 2017. [24]

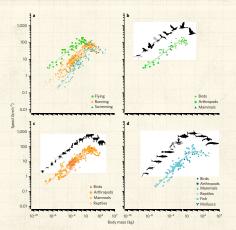


Figure 2 [Empirical data and time-dependent model fit for the allometric scaling of maximum speed, a. Comparign on excaling for the different of the common of the common of scaling for the differences are instituted separately common of scaling for the difference are instituted separately common of the common

The PoCSverse Optimal Supply Networks II 15 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories.

Larner theories

Geometric argument

Conclusion

"A general scaling law reveals why the largest animals are not the fastest"

Hirt et al., Nature Ecology & Evolution, **1**, 1116, 2017. [24]

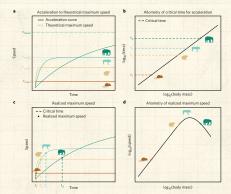


Figure 1 [Concept of time-dependent and mass-dependent realized maximum speed of animals, a Acceleration of animals follows a saturation continued to the continued of time-depending on solory mass (solitows) and solitows and time of the continued to the continued to the continued of the continued to the continu

The PoCSverse Optimal Supply Networks II 16 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argumen

Conclusion

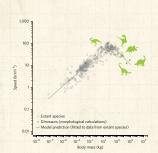


Figure 4 | Predicting the maximum speed of extinct species with the timedependent model. The model prediction (grey line) is fitted to data of extant species (grey circles) and extended to higher body masses. Speed data for dinosaurs (green triangles) come from detailed morphological model calculations (values in Table 1) and were not used to obtain model parameters.

Maximum speed increases with size: $v_{\text{max}} = aM^b$

The PoCSverse Optimal Supply Networks II 17 of 125

Metabolism and Truthicide

Death by fractions Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

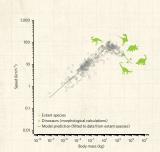


Figure 4 | Predicting the maximum speed of extinct species with the timedependent model. The model prediction (grey line) is fitted to data of extant species (grey circles) and extended to higher body masses. Speed data for dinosaurs (green triangles) come from detailed morphological model calculations (values in Table 1) and were not used to obtain model parameters.

Maximum speed increases with size: $v_{\text{max}} = aM^b$

 $\text{ Takes a while to get going:} \\ v(t) = v_{\max}(1-e^{-kt})$

The PoCSverse Optimal Supply Networks II 17 of 125

Metabolism and Truthicide

Death by fractions Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

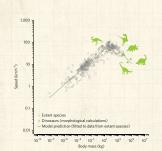


Figure 4 | Predicting the maximum speed of extinct species with the timedependent model. The model prediction (grey line) is fitted to data of extant species (grey circles) and extended to higher body masses. Speed data for dinosaurs (green triangles) come from detailed morphological model calculations (values in Table 1) and were not used to obtain model parameters.

Maximum speed increases with size: $v_{\text{max}} = aM^b$

- Rakes a while to get going: $v(t) = v_{\text{max}}(1 - e^{-kt})$
- $k \sim F_{\text{max}}/M \sim cM^{d-1}$ Literature: $0.75 \lesssim d \lesssim 0.94$

The PoCSverse Optimal Supply Networks II 17 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Farlier theories.

Conclusion

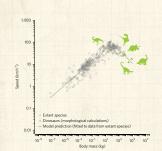


Figure 4 | Predicting the maximum speed of extinct species with the timedependent model. The model prediction (grey line) is fitted to data of extant species (grey circles) and extended to higher body masses. Speed tas for dinosaurs (green triangles) come from detailed morphological model calculations (volues in Table 1) and were not used to obtain model parameters.

- Maximum speed increases with size: $v_{max} = aM^b$
- A Takes a while to get going: $v(t) = v_{\text{max}}(1 - e^{-kt})$
- $k \sim F_{\rm max}/M \sim c M^{d-1}$ Literature: $0.75 \lesssim d \lesssim 0.94$
- Acceleration time = depletion time for anaerobic energy: $\tau \sim f M^g$ Literature: $0.76 \lesssim g \lesssim 1.27$

The PoCSverse Optimal Supply Networks II 17 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

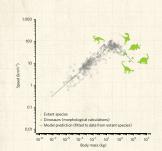


Figure 4 | Predicting the maximum speed of extinct species with the timependent model. The model prediction (grey line) is fitted to data of extant species (grey circles) and extended to higher body masses. Speed data for dinosaurs (green triangles) come from detailed morphological model calculations (values in Table) and were not used to obtain model parameters.

Maximum speed increases with size: $v_{max} = aM^b$

A Takes a while to get going: $v(t) = v_{\text{max}}(1 - e^{-kt})$

 $k \sim F_{\rm max}/M \sim c M^{d-1}$ Literature: $0.75 \lesssim d \lesssim 0.94$

Acceleration time = depletion time for anaerobic energy: $\tau \sim f M^g$ Literature: $0.76 \lesssim g \lesssim 1.27$

 $v_{\text{max}} = aM^b \left(1 - e^{-hM^i} \right)$

The PoCSverse Optimal Supply Networks II 17 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References

0 70 80 90 100 1 10 1 50 1 60 70 6 1:5 1:4 1:3 1:2

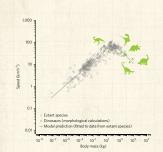


Figure 4 | Predicting the maximum speed of extinct species with the timedependent model. The model prediction (grey line) is fitted to data of extant species (grey circles) and extended to higher body masses. Speed tas for dinosaurs (green triangles) come from detailed morphological model calculations (volues in Table 1) and were not used to obtain model parameters.

Maximum speed increases with size: $v_{max} = aM^b$

A Takes a while to get going: $v(t) = v_{\text{max}}(1 - e^{-kt})$

 $k \sim F_{\rm max}/M \sim c M^{d-1}$ Literature: $0.75 \lesssim d \lesssim 0.94$

Acceleration time = depletion time for anaerobic energy: $\tau \sim f M^g$ Literature: $0.76 \lesssim q \lesssim 1.27$

 $\qquad \qquad \& \quad v_{\max} = a M^b \left(1 - e^{-h M^i} \right)$

3 i = d - 1 + g and h = cf

The PoCSverse Optimal Supply Networks II 17 of 125 Metabolism and

Truthicide

River networks

Earlier theories

Geometric argument

Conclusion

References

0 70 80 90 100

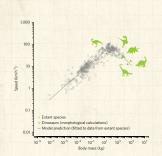


Figure 4 | Predicting the maximum speed of extinct species with the timedependent model. The model prediction (grey line) is fitted to data of extant species (grey circles) and extended to higher body masses. Speed data for dinosaurs (green triangles) come from detailed morphological mode calculations (values in Table 1) and were not used to obtain model parameters.

- Maximum speed increases with size: $v_{\text{max}} = aM^b$
- Takes a while to get going: $v(t) = v_{\text{max}}(1 - e^{-kt})$
- $k \sim F_{\text{max}}/M \sim cM^{d-1}$ Literature: $0.75 \lesssim d \lesssim 0.94$
- Acceleration time = depletion time for anaerobic energy: $\tau \sim f M^g$ Literature: $0.76 \lesssim q \lesssim 1.27$
- $v_{\text{max}} = aM^b \left(1 e^{-hM^i} \right)$
- i = d 1 + q and h = cf

The PoCSverse Optimal Supply Networks II 17 of 125

Metabolism and Truthicide

River networks

Farlier theories.

Conclusion

References

Literature search for for maximum speeds of running, flying and swimming animals.

Search terms: "maximum speed", "escape speed" and "sprint speed".

Note: [36] not cited.

A theory is born:

1840's: Sarrus and Rameaux $^{[45]}$ first suggested $\alpha=2/3$.

The PoCSverse Optimal Supply Networks II 19 of 125 Metabolism and

Trutnicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

A theory grows:

1883: Rubner [43] found $\alpha \simeq 2/3$.

The PoCSverse Optimal Supply Networks II 20 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Theory meets a different 'truth':

1930's: Brody, Benedict study mammals. [6] Found $\alpha \simeq 0.73$ (standard).

The PoCSverse Optimal Supply Networks II 21 of 125 Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Our hero faces a shadowy cabal:

4 1932: Kleiber analyzed 13 mammals. [26]

Found $\alpha = 0.76$ and suggested $\alpha = 3/4$.

🙈 Scaling law of Metabolism became known as Kleiber's Law 🗹 (2011 Wikipedia entry is embarrassing).

The PoCSverse Optimal Supply Networks II 22. of 125 Metabolism and

Truthicide Death by fractions

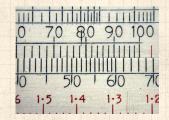
Measuring exponents

River networks

Farlier theories.

Conclusion

Our hero faces a shadowy cabal:



4 1932: Kleiber analyzed 13 mammals. [26]

Found $\alpha = 0.76$ and suggested $\alpha = 3/4$.

Scaling law of Metabolism became known as Kleiber's Law (2011 Wikipedia entry is embarrassing).

4 1961 book: "The Fire of Life. An Introduction to Animal Energetics". [27]

The PoCSverse Optimal Supply Networks II 22. of 125

Metabolism and

Death by fractions

Measuring exponents

River networks

Farlier theories

Conclusion

When a cult becomes a religion:

1950/1960: Hemmingsen $^{[21,\,22]}$ Extension to unicellular organisms. $\alpha=3/4$ assumed true.

The PoCSverse Optimal Supply Networks II 23 of 125 Metabolism and

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

The Cabal assassinates 2/3-scaling:

🚳 1964: Troon, Scotland.

3rd Symposium on Energy Metabolism.

 $\approx \alpha = 3/4$ made official ...

The PoCSverse Optimal Supply Networks II 24 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

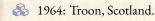
River networks

Earlier theories

Geometric argument

Conclusion

The Cabal assassinates 2/3-scaling:



3rd Symposium on Energy Metabolism.

 $\alpha = 3/4$ made official ...

... 29 to zip.

Death by fractions

Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion References

The Cabal assassinates 2/3-scaling:

- 1964: Troon, Scotland.
- 3rd Symposium on Energy Metabolism.
- $\alpha = 3/4$ made official ...

... 29 to zip.

But the Cabal slipped up by publishing the conference proceedings ...

The PoCSverse Optimal Supply Networks II 24 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

The Cabal assassinates 2/3-scaling:

- 1964: Troon, Scotland.
- 3rd Symposium on Energy Metabolism.
- $\alpha = 3/4$ made official ...

... 29 to zip.

- But the Cabal slipped up by publishing the conference proceedings ...
- Energy Metabolism; Proceedings of the 3rd symposium held at Troon, Scotland, May 1964," Ed. Sir Kenneth Blaxter [4]

The PoCSverse Optimal Supply Networks II 24 of 125

Metabolism and Truthicide

Death by fractions

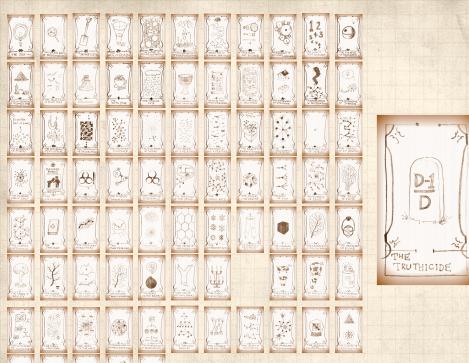
Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion



So many questions ...

The PoCSverse Optimal Supply Networks II 26 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

So many questions ...

Did the truth kill a theory? Or did a theory kill the truth?

The PoCSverse Optimal Supply Networks II 26 of 125 Metabolism and

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

So many questions ...

Did the truth kill a theory? Or did a theory kill the truth?

Or was the truth killed by just a lone, lowly hypothesis?

The PoCSverse Optimal Supply Networks II 26 of 125 Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

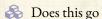
Geometric argument

Conclusion

So many questions ...

Did the truth kill a theory? Or did a theory kill the truth?

Or was the truth killed by just a lone, lowly hypothesis?



Does this go all the way to the top?

The PoCSverse Optimal Supply Networks II 26 of 125 Metabolism and

Death by fractions

Truthicide

Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

So many questions ...

Did the truth kill a theory? Or did a theory kill the truth?

Or was the truth killed by just a lone, lowly hypothesis?

Does this go all the way to the top? To the National Academies of Science?

The PoCSverse Optimal Supply Networks II 26 of 125 Metabolism and

Death by fractions

Truthicide

Measuring exponents

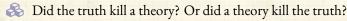
River networks

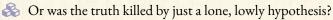
Farlier theories.

Geometric argument

Conclusion

So many questions ...





Does this go all the way to the top?

To the National Academies of Science?

Is 2/3-scaling really dead?

The PoCSverse Optimal Supply Networks II 26 of 125 Metabolism and Truthicide

Death by fractions

Measuring exponents

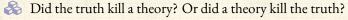
River networks

Earlier theories

Geometric argument

Conclusion

So many questions ...



Or was the truth killed by just a lone, lowly hypothesis?

Does this go all the way to the top?

To the National Academies of Science?

Is 2/3-scaling really dead?

Sould 2/3-scaling have faked its own death?

The PoCSverse
Optimal Supply
Networks II
26 of 125
Metabolism and
Truthicide

Death by fractions

Measuring exponents

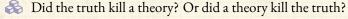
River networks

Earlier theories

Geometric argument

Conclusion

So many questions ...



Or was the truth killed by just a lone, lowly hypothesis?

Does this go all the way to the top?

To the National Academies of Science?

Is 2/3-scaling really dead?

Sould 2/3-scaling have faked its own death?

What kind of people would vote on scientific facts?

The PoCSverse Optimal Supply Networks II 26 of 125 Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Modern Quarterology, Post Truthicide

3/4 is held by many to be the one true exponent.

In the Beat of a Heart: Life, Energy, and the Unity of Nature—by John Whitfield

The PoCSverse Optimal Supply Networks II 27 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories.

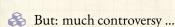
Geometric argument

Conclusion

Modern Quarterology, Post Truthicide

3/4 is held by many to be the one true exponent.

In the Beat of a Heart: Life, Energy, and the Unity of Nature—by John Whitfield



The PoCSverse Optimal Supply Networks II 27 of 125 Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

Modern Quarterology, Post Truthicide

3/4 is held by many to be the one true exponent.

In the Beat of a Heart: Life, Energy, and the Unity of Nature—by John Whitfield

But: much controversy ...

See 'Re-examination of the "3/4-law" of metabolism' by the Heretical Unbelievers Dodds, Rothman, and Weitz [14], and ensuing madness ...

Death by fractions

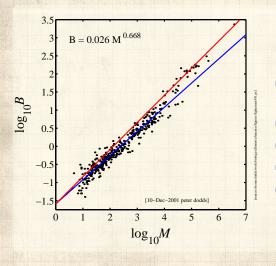
Measuring exponents

River networks

Farlier theories.

Conclusion

Some data on metabolic rates



Heusner's data (1991) [23]

<page-header> 391 Mammals

& blue line: 2/3

red line: 3/4.

The PoCSverse Optimal Supply Networks II 28 of 125

Truthicide

Death by fractions

Measuring exponents

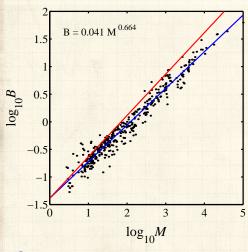
River networks

Earlier theories

Geometric argument

Conclusion

Some data on metabolic rates



Bennett and Harvey's data (1987) [3]

398 birds

💫 blue line: 2/3

& red line: 3/4.

The PoCSverse Optimal Supply Networks II 29 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

Farlier theories

Geometric argument

Conclusion

References

Passerine vs. non-passerine issue ...

Linear regression

Important:

8

Ordinary Least Squares (OLS) Linear regression is only appropriate for analyzing a dataset $\{(x_i,y_i)\}$ when we know the x_i are measured without error.

The PoCSverse Optimal Supply Networks II 30 of 125

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Linear regression

Important:

Ordinary Least Squares (OLS) Linear regression is only appropriate for analyzing a dataset $\{(x_i,y_i)\}$ when we know the x_i are measured without error.

 \Leftrightarrow Here we assume that measurements of mass M have less error than measurements of metabolic rate B.

The PoCSverse Optimal Supply Networks II 30 of 125 Metabolism and

Truthicide

Measuring exponents

Farlier theories

Larner theories

Geometric argument

Conclusion

Linear regression

Important:

Ordinary Least Squares (OLS) Linear regression is only appropriate for analyzing a dataset $\{(x_i,y_i)\}$ when we know the x_i are measured without error.

 \Leftrightarrow Here we assume that measurements of mass M have less error than measurements of metabolic rate B.

Linear regression assumes Gaussian errors.

The PoCSverse Optimal Supply Networks II 30 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

Measuring exponents

More on regression:

If (a) we don't know what the errors of either variable are,

The PoCSverse Optimal Supply Networks II 31 of 125

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

More on regression:

If (a) we don't know what the errors of either variable are, or (b) no variable can be considered independent,

The PoCSverse Optimal Supply Networks II 31 of 125

Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

More on regression:

If (a) we don't know what the errors of either variable are, or (b) no variable can be considered independent, then we need to use Standardized Major Axis Linear Regression. [44, 42]

The PoCSverse Optimal Supply Networks II 31 of 125

Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

More on regression:

If (a) we don't know what the errors of either variable are, or (b) no variable can be considered independent, then we need to use Standardized Major Axis Linear Regression. [44, 42] (aka Reduced Major Axis = RMA.)

The PoCSverse Optimal Supply Networks II 31 of 125

Truthicide

Measuring exponents

River networks

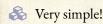
Earlier theories

Geometric argument

Conclusion

For Standardized Major Axis Linear Regression:

$$slope_{SMA} = \frac{standard\ deviation\ of\ y\ data}{standard\ deviation\ of\ x\ data}$$



The PoCSverse Optimal Supply Networks II 32 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

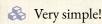
Earlier theories

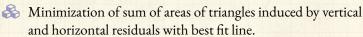
Geometric argument

Conclusion

For Standardized Major Axis Linear Regression:

$$slope_{SMA} = \frac{standard\ deviation\ of\ y\ data}{standard\ deviation\ of\ x\ data}$$





The PoCSverse Optimal Supply Networks II 32 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

For Standardized Major Axis Linear Regression:

$$slope_{sma} = \frac{standard\ deviation\ of\ y\ data}{standard\ deviation\ of\ x\ data}$$

- Wery simple!
- Minimization of sum of areas of triangles induced by vertical and horizontal residuals with best fit line.

The PoCSverse Optimal Supply Networks II 32 of 125 Metabolism and

Truthicide

Measuring exponents
River networks

Farlier theories

Geometric argument

Conclusion

For Standardized Major Axis Linear Regression:

 $slope_{SMA} = \frac{standard\ deviation\ of\ y\ data}{standard\ deviation\ of\ x\ data}$

- Wery simple!
- Minimization of sum of areas of triangles induced by vertical and horizontal residuals with best fit line.
- Attributed to Nobel Laureate economist Paul Samuelson , [44] but discovered independently by others.

The PoCSverse Optimal Supply Networks II 32 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

For Standardized Major Axis Linear Regression:

 $slope_{sma} = \frac{standard\ deviation\ of\ y\ data}{standard\ deviation\ of\ x\ data}$

- Wery simple!
- Minimization of sum of areas of triangles induced by vertical and horizontal residuals with best fit line.
- Attributed to Nobel Laureate economist Paul Samuelson , [44] but discovered independently by others.
- #somuchwin

The PoCSverse Optimal Supply Networks II 32 of 125

Truthicide

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

Relationship to ordinary least squares regression is simple:

$$\operatorname{slope}_{\operatorname{SMA}} = r^{-1} \times \operatorname{slope}_{\operatorname{OLS} y \text{ on } x}$$
 $= r \times \operatorname{slope}_{\operatorname{OLS} x \text{ on } y}$

where r = standard correlation coefficient:

$$r = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}}$$

Groovy upshot: If (1) a paper uses OLS regression when RMA would be appropriate, and (2) r is reported, we can figure out the RMA slope. [42, 30]

The PoCSverse Optimal Supply Networks II 33 of 125

Metabolism and Truthicide

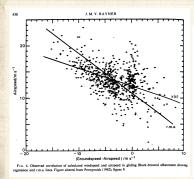
Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion



LINEAR RELATIONS IN BIOMECHANICS

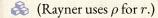
TABLE II

Calculated statistics of airspeed V_s and windspeed V_w in the Black-browed albatross Diomedea melanophris in gliding flight, after Pennycuick (1982)

means x, y	-3.14	13-35	ms - 1
variances S_{xx} , S_{yy}	13-91	8-218	(ms-1)2
covariance Sxv	-4.653		,
correlation p	-0.435		
mod	lel of speed	correction	n: $V_a = \alpha + \beta V_w$

model intercept 2 gradient # range (95%) y(x) regression 12:30 -0.334-0:384 to -0:284 10-93 -0.769-0.894 to -0.661 x(v) regression 7-80 -1.766-2:076 to -1:536 s.r. b. = 0.510-66 -0.855-0.997 to -0.737 $b_{-} = 1$ or m.a. 11-59 -0.560-0.648 to -0.479 $b_{-} = 2$ 12:00 -0.431-0.496 to -0.367

8	Disparity between slopes for y on x and x on y regressions is	a
	factor of r^2 (r^{-2})	



Here:
$$r^2 = .435^2 = 0.189$$
, and $r^{-2} = .435^{-2} = 2.29^2 = 5.285$.

The PoCSverse Optimal Supply Networks II 34 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Heusner's data, 1991 (391 Mammals)

range of M	N	\hat{lpha}
$\leq 0.1\mathrm{kg}$	167	0.678 ± 0.038
1	2=1	0.000 . 0.000
$\leq 1 \mathrm{kg}$	276	0.662 ± 0.032
$\leq 10 \mathrm{kg}$	357	0.668 ± 0.019
= 10 kg	331	0.000 ± 0.010
$\leq 25\mathrm{kg}$	366	0.669 ± 0.018
$\leq 35 \mathrm{kg}$	371	0.675 ± 0.018
< 250 l	389	0.706 + 0.016
$\leq 350 \mathrm{kg}$	389	0.706 ± 0.016
$\leq 3670\mathrm{kg}$	391	0.710 ± 0.021

The PoCSverse Optimal Supply Networks II 35 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Bennett and Harvey, 1987 (398 birds)

M_{max}	N	\hat{lpha}
≤ 0.032	162	0.636 ± 0.103
≤ 0.1	236	0.602 ± 0.060
≤ 0.32	290	0.607 ± 0.039
≤ 1	334	0.652 ± 0.030
≤ 3.2	371	0.655 ± 0.023
≤ 10	391	0.664 ± 0.020
≤ 32	396	0.665 ± 0.019
≤ 100	398	0.664 ± 0.019

The PoCSverse Optimal Supply Networks II 36 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

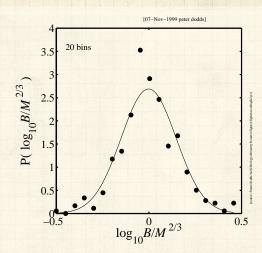
Earlier theories

Geometric argument

References

70 80 90 100

Fluctuations—Things look normal ...



$$P(B|M) = 1/M^{2/3}f(B/M^{2/3})$$

Use a Kolmogorov-Smirnov test.

The PoCSverse Optimal Supply Networks II 37 of 125

Metabolism and

Measuring exponents

River networks

Earlier theories

Geometric argument

Test to see if α' is consistent with our data $\{(M_i,B_i)\}$:

$$H_0: \alpha = \alpha'$$
 and $H_1: \alpha \neq \alpha'$.

The PoCSverse Optimal Supply Networks II 38 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

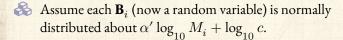
Earlier theories

Geometric argument

Conclusion

Test to see if α' is consistent with our data $\{(M_i,B_i)\}$:

$$H_0: \alpha = \alpha'$$
 and $H_1: \alpha \neq \alpha'$.



The PoCSverse Optimal Supply Networks II 38 of 125 Metabolism and

Truthicide

Measuring exponents

ivieasuring exponent

River networks

Farlier theories.

Geometric argument

Conclusion

Test to see if α' is consistent with our data $\{(M_i,B_i)\}$:

$$H_0: \alpha = \alpha'$$
 and $H_1: \alpha \neq \alpha'$.

- Assume each \mathbf{B}_i (now a random variable) is normally distributed about $\alpha'\log_{10}M_i+\log_{10}c$.
- Follows that the measured α for one realization obeys a t distribution with N-2 degrees of freedom.

The PoCSverse Optimal Supply Networks II 38 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Test to see if α' is consistent with our data $\{(M_i,B_i)\}$:

$$H_0: \alpha = \alpha'$$
 and $H_1: \alpha \neq \alpha'$.

- Assume each \mathbf{B}_i (now a random variable) is normally distributed about $\alpha'\log_{10}M_i+\log_{10}c$.
- $\ \, \mbox{$\stackrel{<}{\sim}$} \,$ Follows that the measured α for one realization obeys a t distribution with N-2 degrees of freedom.

The PoCSverse Optimal Supply Networks II 38 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Test to see if α' is consistent with our data $\{(M_i,B_i)\}$:

$$H_0: \alpha = \alpha'$$
 and $H_1: \alpha \neq \alpha'$.

- Assume each \mathbf{B}_i (now a random variable) is normally distributed about $\alpha'\log_{10}M_i+\log_{10}c$.
- $\ \, \mbox{$\stackrel{<}{\sim}$} \,$ Follows that the measured α for one realization obeys a t distribution with N-2 degrees of freedom.
- Calculate a p-value: probability that the measured α is as least as different to our hypothesized α' as we observe.
- See, for example, DeGroot and Scherish, "Probability and Statistics." [11]

The PoCSverse Optimal Supply Networks II 38 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Revisiting the past—mammals

Full mass range:

	N	\hat{lpha}	$p_{2/3}$	$p_{3/4}$	
Kleiber	13	0.738	$< 10^{-6}$	0.11	
Brody	35	0.718	$< 10^{-4}$	$< 10^{-2}$	
Heusner	391	0.710	$< 10^{-6}$	$< 10^{-5}$	
Bennett	398	0.664	0.69	$< 10^{-15}$	
and Harvey					

The PoCSverse Optimal Supply Networks II 39 of 125 Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Revisiting the past—mammals

$M \leq 10 \, \mathrm{kg}$:

	N	\hat{lpha}	$p_{2/3}$	$p_{3/4}$	
Kleiber	5	0.667	0.99	0.088	
			0	9	
Brody	26	0.709	$< 10^{-3}$	$< 10^{-3}$	
				15	
Heusner	357	0.668	0.91	$< 10^{-15}$	

$M \ge 10 \, \mathrm{kg}$:

	N	\hat{lpha}	$p_{2/3}$	$p_{3/4}$	
Kleiber	8	0.754	$< 10^{-4}$	0.66	
			9		
Brody	9	0.760	$< 10^{-3}$	0.56	
			10		
Heusner	34	0.877	$< 10^{-12}$	$< 10^{-7}$	

The PoCSverse Optimal Supply Networks II 40 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

1. Presume an exponent of your choice: 2/3 or 3/4.

The PoCSverse Optimal Supply Networks II 41 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

- 1. Presume an exponent of your choice: 2/3 or 3/4.
- 2. Fit the prefactor $(\log_{10} c)$ and then examine the residuals:

$$r_i = \log_{10} B_i - (\alpha' \log_{10} M_i - \log_{10} c).$$

The PoCSverse Optimal Supply Networks II 41 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

- 1. Presume an exponent of your choice: 2/3 or 3/4.
- 2. Fit the prefactor $(\log_{10} c)$ and then examine the residuals:

$$r_i = \log_{10} B_i - (\alpha' \log_{10} M_i - \log_{10} c).$$

3. H_0 : residuals are uncorrelated H_1 : residuals are correlated.

The PoCSverse Optimal Supply Networks II 41 of 125

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

- 1. Presume an exponent of your choice: 2/3 or 3/4.
- 2. Fit the prefactor $(\log_{10} c)$ and then examine the residuals:

$$r_i = \log_{10} B_i - (\alpha' \log_{10} M_i - \log_{10} c).$$

- 3. H_0 : residuals are uncorrelated H_1 : residuals are correlated.
- 4. Measure the correlations in the residuals and compute a *p*-value.

The PoCSverse Optimal Supply Networks II 41 of 125

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

We use the spiffing Spearman Rank-Order Correlation Coefficient

The PoCSverse Optimal Supply Networks II 42 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

We use the spiffing Spearman Rank-Order Correlation Coefficient 3

Basic idea:

 \mathfrak{S} Given $\{(x_i, y_i)\}$, rank the $\{x_i\}$ and $\{y_i\}$ separately from smallest to largest. Call these ranks R_i and S_i .

The PoCSverse Optimal Supply Networks II 42. of 125

Metabolism and Truthicide

Measuring exponents

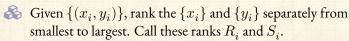
River networks

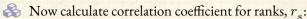
Farlier theories.

Conclusion

We use the spiffing Spearman Rank-Order Correlation Coefficient

Basic idea:





The PoCSverse Optimal Supply Networks II 42 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

We use the spiffing Spearman Rank-Order Correlation Coefficient

Basic idea:

Siven $\{(x_i, y_i)\}$, rank the $\{x_i\}$ and $\{y_i\}$ separately from smallest to largest. Call these ranks R_i and S_i .

Now calculate correlation coefficient for ranks, r_s :

2

$$r_s = \frac{\sum_{i=1}^n (R_i - \bar{R})(S_i - \bar{S})}{\sqrt{\sum_{i=1}^n (R_i - \bar{R})^2} \sqrt{\sum_{i=1}^n (S_i - \bar{S})^2}}$$

The PoCSverse Optimal Supply Networks II 42 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

We use the spiffing Spearman Rank-Order Correlation Coefficient

Basic idea:

 $\text{Given } \{(x_i,y_i)\} \text{, rank the } \{x_i\} \text{ and } \{y_i\} \text{ separately from smallest to largest. Call these ranks } R_i \text{ and } S_i.$

 \ref{Now} Now calculate correlation coefficient for ranks, r_s :

 $r_s = \frac{\sum_{i=1}^{n} (R_i - \bar{R})(S_i - \bar{S})}{\sqrt{\sum_{i=1}^{n} (R_i - \bar{R})^2} \sqrt{\sum_{i=1}^{n} (S_i - \bar{S})^2}}$

 $\ \, \& \ \,$ Perfect correlation: x_i 's and y_i 's both increase monotonically.

The PoCSverse Optimal Supply Networks II 42 of 125

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

We assume all rank orderings are equally likely:

The PoCSverse Optimal Supply Networks II 43 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

We assume all rank orderings are equally likely:

 r_s is distributed according to a Student's t-distribution ${\cal C}$ with N-2 degrees of freedom.

The PoCSverse Optimal Supply Networks II 43 of 125 Metabolism and

Truthicide

Death by fractions

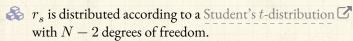
Measuring exponents

River networks Farlier theories.

Geometric argument

Conclusion

We assume all rank orderings are equally likely:



Excellent feature: Non-parametric—real distribution of x's and y's doesn't matter.

The PoCSverse Optimal Supply Networks II 43 of 125

Truthicide

Death by fractions

Measuring exponents

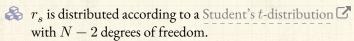
River networks

Farlier theories

Geometric argument

Conclusion

We assume all rank orderings are equally likely:



Excellent feature: Non-parametric—real distribution of x's and y's doesn't matter.

Bonus: works for non-linear monotonic relationships as well.

The PoCSverse Optimal Supply Networks II 43 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

We assume all rank orderings are equally likely:

- $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\$ $\ \$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\$ $\ \$ $\$
- \Leftrightarrow Excellent feature: Non-parametric—real distribution of x's and y's doesn't matter.
- 🙈 Bonus: works for non-linear monotonic relationships as well.
- See Numerical Recipes in C/Fortran which contains many good things. [40]

The PoCSverse Optimal Supply Networks II 43 of 125

Truthicide

Measuring exponents

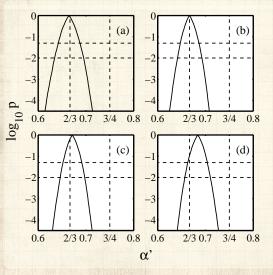
River networks

Farlier theories

Geometric argument

Conclusion

Analysis of residuals—mammals



(a) $M < 3.2 \,\mathrm{kg}$,

- (b) $M < 10 \,\mathrm{kg}$,
- (c) M < 32 kg,
- (d) all mammals.

The PoCSverse Optimal Supply Networks II 44 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

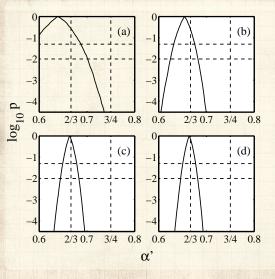
River networks

Earlier theories

Geometric argument

Conclusion

Analysis of residuals—birds



(a) M < 0.1 kg,

- (b) $M < 1 \,\mathrm{kg}$,
- (c) M < 10 kg,
- (d) all birds.

The PoCSverse Optimal Supply Networks II 45 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Other approaches to measuring exponents:

Clauset, Shalizi, Newman: "Power-law distributions in empirical data" [10]
SIAM Review, 2009.

See Clauset's page on measuring power law exponents (code, other goodies).

See this collection of tweets for related amusement.

The PoCSverse Optimal Supply Networks II 46 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

So: The exponent $\alpha = 2/3$ works for all birds and mammals up to 10-30 kg

The PoCSverse Optimal Supply Networks II 47 of 125 Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

So: The exponent $\alpha=2/3$ works for all birds and mammals up to 10– $30~{\rm kg}$

For mammals > 10-30 kg, maybe we have a new scaling regime

The PoCSverse Optimal Supply Networks II 47 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

So: The exponent $\alpha=2/3$ works for all birds and mammals up to 10– $30~{\rm kg}$

For mammals > 10−30 kg, maybe we have a new scaling regime

Possible connection?: Economos (1983)—limb length break in scaling around 20 kg [15]

The PoCSverse Optimal Supply Networks II 47 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

 $\ \, \ \,$ So: The exponent $\alpha=2/3$ works for all birds and mammals up to 10–30 kg

For mammals > 10–30 kg, maybe we have a new scaling regime

Possible connection?: Economos (1983)—limb length break in scaling around 20 kg [15]

But see later: non-isometric growth leads to lower metabolic scaling. Oops. The PoCSverse Optimal Supply Networks II 47 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

Now we're really confused (empirically):

Representation of the White and Seymour, 2005: unhappy with large herbivore measurements [57]. Pro 2/3: Find $\alpha \simeq 0.686 \pm 0.014$.

The PoCSverse Optimal Supply Networks II 48 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

Now we're really confused (empirically):

White and Seymour, 2005: unhappy with large herbivore measurements [57]. Pro 2/3: Find $\alpha \simeq 0.686 \pm 0.014$.

Glazier, BioScience (2006) [19]: "The 3/4-Power Law Is Not Universal: Evolution of Isometric, Ontogenetic Metabolic Scaling in Pelagic Animals."

The PoCSverse Optimal Supply Networks II 48 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Now we're really confused (empirically):

- White and Seymour, 2005: unhappy with large herbivore measurements [57]. Pro 2/3: Find $\alpha \simeq 0.686 \pm 0.014$.
- Glazier, BioScience (2006) [19]: "The 3/4-Power Law Is Not Universal: Evolution of Isometric, Ontogenetic Metabolic Scaling in Pelagic Animals."
- Glazier, Biol. Rev. (2005) [18]: "Beyond the 3/4-power law': variation in the intra- and interspecific scaling of metabolic rate in animals."

The PoCSverse Optimal Supply Networks II 48 of 125

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Now we're really confused (empirically):

- White and Seymour, 2005: unhappy with large herbivore measurements [57]. Pro 2/3: Find $\alpha \simeq 0.686 \pm 0.014$.
- Glazier, BioScience (2006) [19]: "The 3/4-Power Law Is Not Universal: Evolution of Isometric, Ontogenetic Metabolic Scaling in Pelagic Animals."
- Glazier, Biol. Rev. (2005) [18]: "Beyond the 3/4-power law': variation in the intra- and interspecific scaling of metabolic rate in animals."
- Savage et al., PLoS Biology (2008) [46] "Sizing up allometric scaling theory" Pro 3/4: problems claimed to be finite-size scaling.

The PoCSverse Optimal Supply Networks II 48 of 125

Truthicide

Death by fractions

Measuring exponents

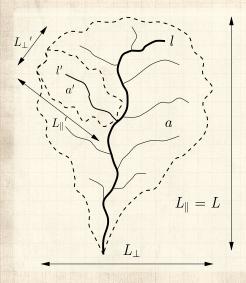
River networks

Farlier theories.

Geometric argument

Conclusion

Somehow, optimal river networks are connected:



a = drainage basinarea

 $\ell = \text{length of longest}$ (main) stream

 $L = L_{\parallel} =$ longitudinal length of basin

The PoCSverse Optimal Supply Networks II 49 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

1957: J. T. Hack [20]

"Studies of Longitudinal Stream Profiles in Virginia and Maryland"

 $\ell \sim a^h$

 $h \sim 0.6$

The PoCSverse Optimal Supply Networks II 50 of 125 Metabolism and

Truthicide Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

1957: J. T. Hack [20]

"Studies of Longitudinal Stream Profiles in Virginia and Maryland"

 $\ell \sim a^h$

 $h \sim 0.6$

Anomalous scaling: we would expect $h = 1/2 \dots$

The PoCSverse Optimal Supply Networks II 50 of 125 Metabolism and

Truthicide Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

1957: J. T. Hack [20]

"Studies of Longitudinal Stream Profiles in Virginia and Maryland"

 $\ell \sim a^h$

 $h \sim 0.6$

Anomalous scaling: we would expect $h = 1/2 \dots$

Subsequent studies: $0.5 \lesssim h \lesssim 0.6$

The PoCSverse Optimal Supply Networks II 50 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

3 1957: J. T. Hack [20]

"Studies of Longitudinal Stream Profiles in Virginia and Maryland"

 $\ell \sim a^h$

 $h \sim 0.6$

 \clubsuit Anomalous scaling: we would expect $h = 1/2 \dots$

Subsequent studies: $0.5 \lesssim h \lesssim 0.6$

Another quest to find universality/god ...

The PoCSverse Optimal Supply Networks II 50 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

1957: J. T. Hack [20]

"Studies of Longitudinal Stream Profiles in Virginia and Maryland"

 $\ell \sim a^h$

 $h \sim 0.6$

Anomalous scaling: we would expect $h = 1/2 \dots$

Subsequent studies: $0.5 \leq h \leq 0.6$

Another quest to find universality/god ...

A catch: studies done on small scales.

The PoCSverse Optimal Supply Networks II 50 of 125

Metabolism and Truthicide

Measuring exponents

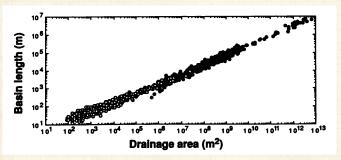
River networks

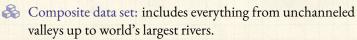
Farlier theories

Conclusion

Large-scale networks:

(1992) Montgomery and Dietrich [37]:





& Estimated fit:

 $L \simeq 1.78a^{0.49}$

Mixture of basin and main stream lengths.

The PoCSverse Optimal Supply Networks II 51 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

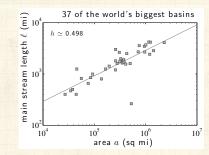
River networks

Earlier theories

Geometric argument

Conclusion

World's largest rivers only:



Data from Leopold (1994) [32, 13]

Estimate of Hack exponent: $h = 0.50 \pm 0.06$

The PoCSverse Optimal Supply Networks II 52 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Building on the surface area idea:

McMahon (70's, 80's): Elastic Similarity [33, 35]

The PoCSverse Optimal Supply Networks II 53 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Building on the surface area idea:

McMahon (70's, 80's): Elastic Similarity [33, 35]

Idea is that organismal shapes scale allometrically with 1/4 powers (like trees ...)

The PoCSverse Optimal Supply Networks II 53 of 125

Metabolism and Truthicide

Death by fractions

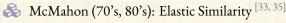
Measuring exponents River networks

Earlier theories

Geometric argument

Conclusion

Building on the surface area idea:



Idea is that organismal shapes scale allometrically with 1/4 powers (like trees ...)

Disastrously, cites Hemmingsen [22] for surface area data.

The PoCSverse Optimal Supply Networks II 53 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

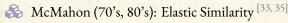
River networks

Earlier theories

Geometric argument

Conclusion

Building on the surface area idea:



Idea is that organismal shapes scale allometrically with 1/4 powers (like trees ...)

Disastrously, cites Hemmingsen [22] for surface area data.

Appears to be true for ungulate legs ... [34]

The PoCSverse Optimal Supply Networks II 53 of 125

Metabolism and Truthicide

Death by fractions

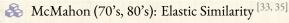
Measuring exponents

Earlier theories

Geometric argument

Conclusion

Building on the surface area idea:



Idea is that organismal shapes scale allometrically with 1/4 powers (like trees ...)

Disastrously, cites Hemmingsen [22] for surface area data.

Appears to be true for ungulate legs ... [34]

Metabolism and shape never properly connected.

The PoCSverse Optimal Supply Networks II 53 of 125

Metabolism and Truthicide

Death by Tractions

Measuring exponents

Earlier theories

Geometric argument

Conclusion

"Size and shape in biology" ... T. McMahon, Science, **179**, 1201–1204, 1973. [33]

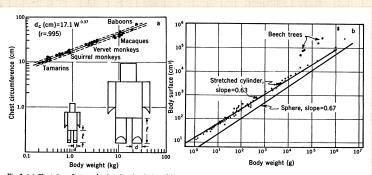


Fig. 3. (a) Chest circumference, d_n plotted against body weight, W, for five species of primates. The broken lines represent the standard error in this least-squares fit [adapted from (2/1)]. The model proposed here, whereby each length, l, increases as the 34 power of diameter, d_n , is illustrated for two weights differing by a factor of 16. (b) Body surface area plotted against weight for vertebrates. The animal data are reasonably well fitted by the stretched cylinder model [adapted from (3)].

The PoCSverse Optimal Supply Networks II 54 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

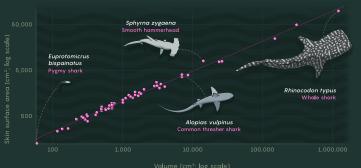
Geometric argument

Conclusion

Sharks: "No."

The Geometric Scaling of Sharks

The biggest study of geometric scaling in large animals found that life follows math's rules. As a 3D object grows while maintaining its shape, its surface area scales as the two-thirds power of volume. This is also true for a diverse set of shark species.



"The geometry of life: Testing the scaling of whole-organism surface area and volume using sharks"

Gayford et al.,

Royal Society Open Science, 12, 242205, 2025. [17]

The PoCSverse Optimal Supply Networks II 55 of 125

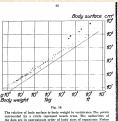
Metabolism and Truthicide

Measuring exponents

River networks

Earlier theories

Conclusion



the data are in approximate order of hody sizes of organisms: Fishes (Yinca, Esox, Salmo, Pleuronectes flesus, Anguilla, Creniisbrus, Lubrus: 9.86 g-2 kg), Jan Boltrus (unpublished). Frogs (3.5-32 g), linards (3-13 g), Fay, 1914, p. 191. Rong exculente (23 and 50 g), Krosu, 1904, p. 404. Lizards (Luceria muralis and piridis, Aspais fragilis: 5-26 g) and Ringed Snake (47-100 g), Isana, 1911, pp. 7-8. Teuch (Times: 211 g), frog (44 g), rabbit (3.6 kg), Very, 1930, pp. 239, 244, 245. Dogs (7 and 30 kg), pigs, (3 and 160 kg), horses (175 and 190 kg), moreon (175 and 190 kg), monkeys (2.5 and 5.5 kg), man (6 and 65 kg), Baster, Convers and Marristwa, 1928, pp. 8, 30, 33 and 51. Stakes (ruttle-smake, small and lands nython, box: 8,5-32 kg), Disensert, 1932, p. 166. Rats (20 and 250 g), cattle (20 and 400 kg), Becov, 1945, pp. 360, 361. Giant shark (2.75 t), rhinoceres (1 t), Heassessess, 1950, pp. 30 and 43. Beech trees without leaves and roots (30 kg-1.3 t), Mallin, Nintson and Michael, 1954, tables 2-4 on pp. 277-281.

assuming a specific gravity of 1.0. Naturally, the inclination of this line corresponds to a proportionality power of 0.87.

Of the unicellular organisms represented in fig. 1 not a few are spherical in shape (the bacterium Sarcella, Saccharomyces, murine eggs); and most of the others have surfaces exceeding those of subcress of equal volume by rarely more than what correseconds to 0.1 decode in the log, ordinate system (Photoborterium phosphorescenz: 12 %, i. c. 0.05 decade, Escherichia coli: 34 %, i.e. 0.13 decade, the ciliates Colpidium and Paramaccium: 19-22 %, i. c. about 0.68-0.09 decade; calculated on the basis of data of Pürrez, 1924, table 7 on p. 108, and Harvey, 1928, table 1). Similar figures probably hold for other ciliates. Only the flagellates represented (Trypomosomidus, Astasia Riebsii) and certain amorbae are likely to deviate by higher figures. The surface values of the unicellular organisms represented in fig. 1 will, therefore, fall either on, or in most other cases less than 0.1 decade above, a line representing the relation between surface and volume of suberes.

It will be seen from fig. 10 that the points representing the hody surfaces of the metacoic minuals in question are grouped norallel to the sphere line; that is, also corresponding to a proportionality power of 0.67. An average line through the points would fall about 0.30 logarithmic decade above the sphere line, meaning that on the average the body surface is roughly 2 (antilog, 0,30) times higher in the animals under study than in soberry of rough weight or volume. In organisms of extreme shapes as the python (1045 g) and the beech trees (especially marked in fig. 3) the surface is about 3 and 10 times, respectively, greater than in a sphere of equal weight and volume. These facts agree well with the values 9-11.8 for the constant k in the

body surface in $cm^2 = k \cdot body weight^{0.65}$

as tabularized by Besonecy (1938, p. 175) for various birds and mammals weighing 8 g-14 kg; because this is about double the value of k for sphere surface (4.83). The value of k (18.95) found by Kabsus (1940) for Azcariz is 2.9 times 4.83, and this corresponds well with the above mentioned figure 3 for the much larger python of similar shape.

Optimal Supply Networks II 56 of 125

Metabolism and

Measuring exponents

River networks

Earlier theories

Conclusion

References

Hemmingsen's "fit" is for a 2/3 power, notes possible 10 kg transition.

p 46: "The energy metabolism thus definitely varies interspecifically over similar wide weight ranges with a higher power of the body weight than the body surface."

Building on the surface area idea ...

Blum (1977) [5] speculates on four-dimensional biology:

 $P \propto M^{(d-1)/d}$

The PoCSverse Optimal Supply Networks II 57 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Building on the surface area idea ...

Blum (1977) [5] speculates on four-dimensional biology:

$$P \propto M^{(d-1)/d}$$

$$d = 3$$
 gives $\alpha = 2/3$

The PoCSverse Optimal Supply Networks II 57 of 125 Metabolism and

Truthicide Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Building on the surface area idea ...

& Blum (1977) [5] speculates on four-dimensional biology:

$$P \propto M^{(d-1)/d}$$

$$d = 3$$
 gives $\alpha = 2/3$

$$4 = 4$$
 gives $\alpha = 3/4$

The PoCSverse Optimal Supply Networks II 57 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Building on the surface area idea ...

& Blum (1977) [5] speculates on four-dimensional biology:

$$P \propto M^{(d-1)/d}$$

$$d = 3$$
 gives $\alpha = 2/3$

$$4 = 4$$
 gives $\alpha = 3/4$

So we need another dimension ...

The PoCSverse Optimal Supply Networks II 57 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

Treasuring expone

River networks

Earlier theories

Geometric argument

Conclusion

Building on the surface area idea ...

& Blum (1977) [5] speculates on four-dimensional biology:

$$P \propto M^{(d-1)/d}$$

$$\Leftrightarrow$$
 $d=3$ gives $\alpha=2/3$

$$\Leftrightarrow$$
 $d = 4$ gives $\alpha = 3/4$

So we need another dimension ...

Solution Obviously, a bit silly... [47]

The PoCSverse Optimal Supply Networks II 57 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

1960's: Rashevsky considers blood networks and finds a 2/3 scaling.

The PoCSverse Optimal Supply Networks II 58 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

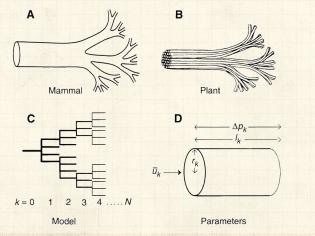
Earlier theories

Geometric argument

Conclusion

1960's: Rashevsky considers blood networks and finds a 2/3 scaling.

3/4 scaling. 1997: West *et al.* 4 use a network story to find 3/4 scaling.



The PoCSverse Optimal Supply Networks II 58 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

West et al.'s assumptions:

1. hierarchical network

The PoCSverse Optimal Supply Networks II 59 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

West et al.'s assumptions:

- 1. hierarchical network
- 2. capillaries (delivery units) invariant

The PoCSverse Optimal Supply Networks II 59 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

West et al.'s assumptions:

- 1. hierarchical network
- 2. capillaries (delivery units) invariant
- 3. network impedance is minimized via evolution

The PoCSverse Optimal Supply Networks II 59 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

West et al.'s assumptions:

- 1. hierarchical network
- 2. capillaries (delivery units) invariant
- 3. network impedance is minimized via evolution

Claims:

 $P \propto M^{3/4}$

The PoCSverse Optimal Supply Networks II 59 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

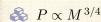
Conclusion

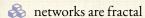
Nutrient delivering networks:

West et al.'s assumptions:

- 1. hierarchical network
- 2. capillaries (delivery units) invariant
- 3. network impedance is minimized via evolution

Claims:





The PoCSverse Optimal Supply Networks II 59 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

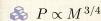
Conclusion

Nutrient delivering networks:

West et al.'s assumptions:

- 1. hierarchical network
- 2. capillaries (delivery units) invariant
- 3. network impedance is minimized via evolution

Claims:



networks are fractal

quarter powers everywhere

The PoCSverse Optimal Supply Networks II 59 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Impedance measures:

Poiseuille flow (outer branches):

$$Z = \frac{8\mu}{\pi} \sum_{k=0}^{N} \frac{\ell_k}{r_k^4 N_k}$$

Pulsatile flow (main branches):

$$Z \propto \sum_{k=0}^N \frac{h_k^{1/2}}{r_k^{5/2} N_k}$$

Wheel out Lagrange multipliers ...

 $\ensuremath{\mathfrak{S}}$ Poiseuille gives $P \propto M^1$ with a logarithmic correction.

Pulsatile calculation explodes into flames.

The PoCSverse Optimal Supply Networks II 60 of 125

Metabolism and Truthicide

Measuring exponents River networks

Earlier theories

Conclusion

Actually, model shows:

 $Rrac{1}{4}$ $Rrac{1}{4}$ $Rrac{1}{4}$ does not follow for pulsatile flow

The PoCSverse Optimal Supply Networks II 61 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Actually, model shows:

 $Rrac{1}{4}$ $Rrac{1}{4}$ $Rrac{1}{4}$ does not follow for pulsatile flow

networks are not necessarily fractal.

The PoCSverse Optimal Supply Networks II 61 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Actually, model shows:

 $P \propto M^{3/4}$ does not follow for pulsatile flow

networks are not necessarily fractal.

Do find:

Murray's cube law (1927) for outer branches: [38]

$$r_0^3 = r_1^3 + r_2^3$$

The PoCSverse Optimal Supply Networks II 61 of 125

Metabolism and Truthicide

Death by fractions

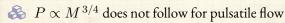
Measuring exponents River networks

Earlier theories

Geometric argument

Conclusion

Actually, model shows:



networks are not necessarily fractal.

Do find:

Murray's cube law (1927) for outer branches: [38]

$$r_0^3 = r_1^3 + r_2^3$$

Impedance is distributed evenly.

The PoCSverse Optimal Supply Networks II 61 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Actually, model shows:

 $\ref{P} \propto M^{3/4}$ does not follow for pulsatile flow

networks are not necessarily fractal.

Do find:

Murray's cube law (1927) for outer branches: [38]

$$r_0^3 = r_1^3 + r_2^3$$

- Impedance is distributed evenly.
- Can still assume networks are fractal.

The PoCSverse Optimal Supply Networks II 61 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

1. Ratios of network parameters:

$$R_n = \frac{n_{k+1}}{n_k}, \; R_\ell = \frac{\ell_{k+1}}{\ell_k}, \; R_r = \frac{r_{k+1}}{r_k}$$

Note: $R_\ell, R_r < 1, \mbox{inverse of stream ordering definition.}$

The PoCSverse Optimal Supply Networks II 62 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

1. Ratios of network parameters:

$$R_n = \frac{n_{k+1}}{n_k}, \; R_\ell = \frac{\ell_{k+1}}{\ell_k}, \; R_r = \frac{r_{k+1}}{r_k}$$

Note: $R_\ell, R_r < 1,$ inverse of stream ordering definition.

2. Number of capillaries $\propto P \propto M^{\alpha}$.

The PoCSverse Optimal Supply Networks II 62 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents
River networks

Earlier theories

Geometric argument

Conclusion

1. Ratios of network parameters:

$$R_n = \frac{n_{k+1}}{n_k}, \; R_\ell = \frac{\ell_{k+1}}{\ell_k}, \; R_r = \frac{r_{k+1}}{r_k}$$

Note: $R_\ell, R_r < 1,$ inverse of stream ordering definition.

2. Number of capillaries $\propto P \propto M^{\alpha}$.

$$\Rightarrow \boxed{\alpha = -\frac{\ln\!R_n}{\ln\!R_r^2R_\ell}}$$

(also problematic due to prefactor issues)

The PoCSverse Optimal Supply Networks II 62 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argumen

Conclusion

1. Ratios of network parameters:

$$R_n = \frac{n_{k+1}}{n_k}, \; R_\ell = \frac{\ell_{k+1}}{\ell_k}, \; R_r = \frac{r_{k+1}}{r_k}$$

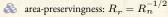
Note: $R_\ell, R_r < 1,$ inverse of stream ordering definition.

2. Number of capillaries $\propto P \propto M^{\alpha}$.

$$\Rightarrow \boxed{\alpha = -\frac{\ln\!R_n}{\ln\!R_r^2R_\ell}}$$

(also problematic due to prefactor issues)

Obliviously soldiering on, we could assert:



space-fillingness: $R_{\ell} = R_n^{-1/3}$

$$\Rightarrow \alpha = 3/4$$

The PoCSverse Optimal Supply Networks II 62 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Data from real networks:

Network	R_n	R_r	R_{ℓ}	$-\frac{\ln R_r}{\ln R_n}$	$-rac{\ln\!R_\ell}{\ln\!R_n}$	α
West et al.	_	-	-	1/2	1/3	3/4
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
cat (PAT)	3.67	1.71	1.78	0.41	0.44	0.79
(Turcotte et al. [51])						
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
pig (LCX)	3.57	1.89	2.20	0.50	0.62	0.62
pig (RCA)	3.50	1.81	2.12	0.47	0.60	0.65
pig (LAD)	3.51	1.84	2.02	0.49	0.56	0.65
human (PAT)	3.03	1.60	1.49	0.42	0.36	0.83
human (PAT)	3.36	1.56	1.49	0.37	0.33	0.94

The PoCSverse Optimal Supply Networks II 63 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks Earlier theories

Geometric argument

Attempts to look at actual networks:

"Testing foundations of biological scaling theory using automated measurements of vascular networks"

Newberry, Newberry, and Newberry, PLoS Comput Biol, **11**, e1004455, 2015. [39]

«» [

Newberry et al., PLoS Comput Biol, **11**, e1004455, . [?]

The PoCSverse Optimal Supply Networks II 64 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Some people understand it's truly a disaster:

"Power, Sex, Suicide: Mitochondria and the Meaning of Life" **a**
by Nick Lane (2005). [31]

"As so often happens in science, the apparently solid foundations of a field turned to rubble on closer inspection." The PoCSverse Optimal Supply Networks II 65 of 125

Death by fractions

Measuring exponents

River networks

Truthicide

Earlier theories

Geometric argument

Conclusion

"The fourth dimension of life: Fractal geometry and allometric scaling of organisms"

West, Brown, and Enquist, Science, 284, 1677-1679, 1999. [55]

No networks: Scaling argument for energy exchange area a.

The PoCSverse Optimal Supply Networks II 66 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Earlier theories

Conclusion

"The fourth dimension of life: Fractal geometry and allometric scaling of organisms"

West, Brown, and Enquist, Science, 284, 1677-1679, 1999. [55]

No networks: Scaling argument for energy exchange area a.

Distinguish between biological and physical length scales (distance between mitochondria versus cell radius).

The PoCSverse Optimal Supply Networks II 66 of 125

Metabolism and Truthicide

Measuring exponents

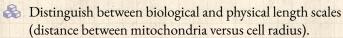
River networks Earlier theories

Conclusion

"The fourth dimension of life: Fractal geometry and allometric scaling of organisms"

West, Brown, and Enquist, Science, 284, 1677-1679, 1999. [55]

No networks: Scaling argument for energy exchange area a.



The PoCSverse Optimal Supply Networks II 66 of 125

Metabolism and Truthicide

Measuring exponents

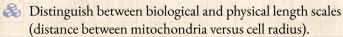
River networks Earlier theories

Conclusion

"The fourth dimension of life: Fractal geometry and allometric scaling of organisms"

West, Brown, and Enquist, Science, 284, 1677-1679, 1999. [55]

No networks: Scaling argument for energy exchange area a.



Arrive at $a \propto M^{D/D+1}$ and $\ell \propto M^{1/D}$.

The PoCSverse Optimal Supply Networks II 66 of 125

Metabolism and Truthicide

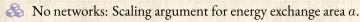
Measuring exponents

River networks Earlier theories

Conclusion

"The fourth dimension of life: Fractal geometry and allometric scaling of organisms"

West, Brown, and Enquist, Science, **284**, 1677–1679, 1999. [55]



Distinguish between biological and physical length scales (distance between mitochondria versus cell radius).

 $\begin{cases} \& \& \end{cases}$ Buckingham π action. [9]

 $\red Arrive$ at $a \propto M^{D/D+1}$ and $\ell \propto M^{1/D}$.

New disaster: after going on about fractality of a, then state $v \propto a\ell$ in general.

The PoCSverse Optimal Supply Networks II 66 of 125

Metabolism and Truthicide

Measuring exponents

weasuring exponent

River networks

Earlier theories

Geometric argument

Conclusion

"It was the epoch of belief, it was the epoch of incredulity"

"A General Model for the Origin of Allometric Scaling Laws in Biology"

West, Brown, and Enquist, Science, **276**, 122–126, 1997. ^[54]

"Nature"

West, Brown, and Enquist, Nature, **400**, 664–667, 1999. ^[56]

"The fourth dimension of life: Fractal geometry and allometric scaling of organisms"

West, Brown, and Enquist, Science, **284**, 1677–1679, 1999. [55] The PoCSverse Optimal Supply Networks II 67 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Really, quite confused:

Whole 2004 issue of Functional Ecology addresses the problem:

J. Kozlowski, M. Konrzewski. "Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?" Functional Ecology 18: 283–9, 2004. [29]

The PoCSverse Optimal Supply Networks II 68 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Really, quite confused:

Whole 2004 issue of Functional Ecology addresses the problem:

J. Kozlowski, M. Konrzewski. "Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?" Functional Ecology 18: 283–9, 2004. [29]

J. H. Brown, G. B. West, and B. J. Enquist. "Yes, West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant." Functional Ecology 19: 735–738, 2005. [7]

The PoCSverse Optimal Supply Networks II 68 of 125

Metabolism and Truthicide

Death by fraction

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Really, quite confused:

Whole 2004 issue of Functional Ecology addresses the problem:

J. Kozlowski, M. Konrzewski. "Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?" Functional Ecology 18: 283–9, 2004. [29]

J. H. Brown, G. B. West, and B. J. Enquist. "Yes, West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant." Functional Ecology 19: 735–738, 2005. [7]

J. Kozlowski, M. Konarzewski. "West, Brown and Enquist's model of allometric scaling again: the same questions remain." Functional Ecology 19: 739–743, 2005. The PoCSverse Optimal Supply Networks II 68 of 125

Metabolism and Truthicide

Death by fractio

Measuring exponents

River networks

Earlier theories

Conclusion

"Curvature in metabolic scaling"

Kolokotrones, Savage, Deeds, Fontana, and Rummer.

Nature, **464**, 753, 2010. [28]

Let's try a quadratic:

$$\log_{10} P \sim \log_{10} c + \alpha_1 \log_{10} M + \alpha_2 \log_{10} M^2$$

The PoCSverse Optimal Supply Networks II 69 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Yah:

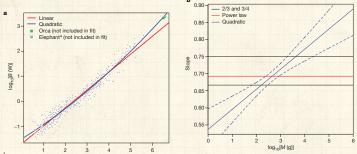


Figure 1 (Luvature in metabolic scaling, a. Linear (red) and quadratic followle fits (not including temperature) of log₁₀B versus log₁₀M. The orca (green square) and Asian elephant (ref. 4; turquoise square at larger mass) are not included in the fit, but are predicted well. Differences in the quality of that when the continuous dependence of the error, estimated by the lowest (locally-weighted scatterplot smoothing) fit of the residuals (Supplementary information). See Table 1 for the values of the coefficients obtained from the fit. b, Slope of the quadratic fit (including temperature) with pointwise 95% confidence intervals (bluc.) It solpe of the power-law fit (red) and models with fixed 2/3 and 3/4 exponents (black) are included for comparison. This pand suggests that exponents estimated by assuming a power law will be highly sensitive to the mass range of the data set used, as shown in Fig. 2.

The PoCSverse Optimal Supply Networks II

70 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents
River nerworks

Earlier theories

Geometric argumen

Conclusion

"This raises the question of whether the theory can be adapted to agree with the data" 1

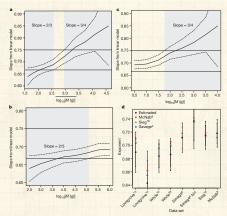


Figure 2 [Scaling exponent depends on mass range, a. Nope critimated by linear regression within a three log-unit mass range (smaller near the boundaries). Values on the abscissa denote mean $\log_2 M$ within the range. When the 95% on officiare regions (dashed lines) include the 25° or 34° lines, the local alope is consistent with a 25° or 34° exponent, respectively. These cases are indicated by the shaded regions (25° on the left and 34′ on the region is consistent with 27° 30° of 10° on 10° of 10° of

estimates. A. Exponents estimated for eight historical data sets using linear regression (black filled circles). Lengogov⁽¹⁾, While⁽²⁾, Whise⁽²⁾, While⁽²⁾, While⁽²⁾, Whise⁽²⁾, Sieg⁽²⁾, McNals⁽²⁾, and Savage⁽²⁾ using species average data ("Savage") and binned data ("Savage") bin.). Exponents predicted using coefficients from quadratic fits to McNals⁽²⁾ (see [3, 62] segren), or Savage⁽²⁾ (blue) data and the first three moments of log₂M (Supplementary Information). Thick lines represent uncorrected 95% confidence intervals. Thin lines are multiplicity corrected intervals.

The PoCSverse Optimal Supply Networks II 71 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argumen

Conclusion

¹Already raised and fully established 9 years earlier. ^[14]

Evolution has generally made things bigger¹

"The Phantom Tollbooth" **a** Dy Norton Juster (1961). [25]

The PoCSverse Optimal Supply Networks II 72 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

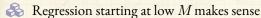
Geometric argument

Conclusion

¹Yes, yes, yes: insular dwarfism with the shrinkage

Evolution has generally made things bigger¹

"The Phantom Tollbooth" **3**, **2** by Norton Juster (1961). [25]



The PoCSverse Optimal Supply Networks II 72. of 125 Metabolism and

Truthicide Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

¹Yes, yes, yes: insular dwarfism with the shrinkage

Evolution has generally made things bigger¹

"The Phantom Tollbooth" **2**, **2** by Norton Juster (1961). [25]

 \clubsuit Regression starting at low M makes sense

 \aleph Regression starting at high M makes ... no sense

The PoCSverse Optimal Supply Networks II 72 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

¹Yes, yes, yes: insular dwarfism 🗹 with the shrinkage 🗹

Still going:

"A general model for metabolic scaling in self-similar asymmetric networks"

Brummer, Brummer, and Enquist, PLoS Comput Biol, **13**, e1005394, 2017. [8]

Wut?:

"Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks."

The PoCSverse Optimal Supply Networks II 73 of 125 Metabolism and

Death by fractions

Measuring exponents

River networks

Truthicide

Earlier theories

Geometric argument

Conclusion

"Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies" (2017). [53]

Amazon reviews excerpts (so, so not fair but ...):

The PoCSverse Optimal Supply Networks II 74 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

"Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies" 3, 2 by Geoffrey B. West (2017). [53]

Amazon reviews excerpts (so, so not fair but ...):

Full of intriguing, big ideas but amazingly sloppy both in details and exposition, especially considering the author is a theoretical physicist."

The PoCSverse Optimal Supply Networks II 74 of 125

Metabolism and Truthicide

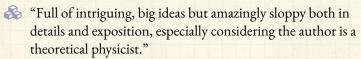
Measuring exponents

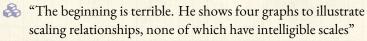
River networks Earlier theories

Conclusion

"Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies" **3**, by Geoffrey B. West (2017). [53]

Amazon reviews excerpts (so, so not fair but ...):





The PoCSverse Optimal Supply Networks II 74 of 125

Metabolism and Truthicide

Measuring exponents

vicasuring exponer

River networks

Earlier theories

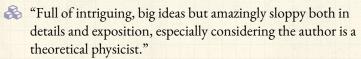
Latrier theories

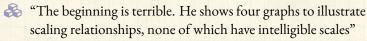
Geometric argument

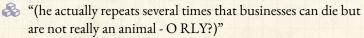
Conclusion

"Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies" (2017). [53]

Amazon reviews excerpts (so, so not fair but ...):







The PoCSverse Optimal Supply Networks II 74 of 125

Metabolism and Truthicide

Measuring exponents

River networks

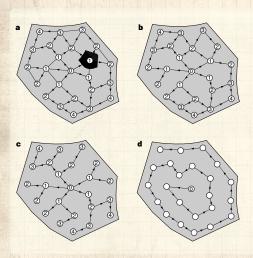
Earlier theories

Earlier theorie

Geometric argumen

Conclusion

Simple supply networks:



Banavar et al., Nature, (1999) [1].

Flow rate argument.

Ignore impedance.

Wery general attempt to find most efficient transportation networks.

The PoCSverse Optimal Supply Networks II 75 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Banavar et al. find 'most efficient' networks with

$$P \propto M^{\,d/(d+1)}$$

The PoCSverse Optimal Supply Networks II 76 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Banavar et al. find 'most efficient' networks with

$$P \propto M^{\,d/(d+1)}$$

-...but also find

$$V_{
m network} \propto M^{\,(d+1)/d}$$

The PoCSverse Optimal Supply Networks II 76 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Banavar et al. find 'most efficient' networks with

$$P \propto M^{\,d/(d+1)}$$

-...but also find

$$V_{\rm network} \propto M^{\,(d+1)/d}$$

$$d = 3$$
:

$$V_{
m blood} \propto M^{4/3}$$

The PoCSverse Optimal Supply Networks II 76 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Banavar et al. find 'most efficient' networks with

$$P \propto M^{\,d/(d+1)}$$

...but also find

$$V_{
m network} \propto M^{\,(d+1)/d}$$

$$d = 3$$
:

$$V_{\rm blood} \propto M^{4/3}$$

Consider a 3 g shrew with $V_{blood} = 0.1 V_{body}$

The PoCSverse Optimal Supply Networks II 76 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Conclusion

Banavar et al. find 'most efficient' networks with

$$P \propto M^{\,d/(d+1)}$$

...but also find

$$V_{
m network} \propto M^{\,(d+1)/d}$$

$$d = 3$$
:

$$V_{\rm blood} \propto M^{4/3}$$

 \Leftrightarrow Consider a 3 g shrew with $V_{\text{blood}} = 0.1 V_{\text{body}}$

 \Leftrightarrow 3000 kg elephant with $V_{\text{blood}} = 10V_{\text{body}}$

The PoCSverse Optimal Supply Networks II 76 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks Earlier theories

Conclusion

"Optimal Form of Branching Supply and Collection Networks"

Peter Sheridan Dodds, Phys. Rev. Lett., **104**, 048702, 2010. ^[12] The PoCSverse Optimal Supply Networks II 78 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

"Optimal Form of Branching Supply and Collection Networks"

Peter Sheridan Dodds, Phys. Rev. Lett., **104**, 048702, 2010. ^[12]

Consider one source supplying many sinks in a *d*-dim. volume in a *D*-dim. ambient space.

The PoCSverse Optimal Supply Networks II 78 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

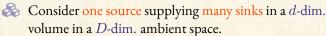
Earlier theories

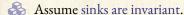
Geometric argument

Conclusion

"Optimal Form of Branching Supply and Collection Networks"

Peter Sheridan Dodds, Phys. Rev. Lett., **104**, 048702, 2010. [12]





The PoCSverse Optimal Supply Networks II 78 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

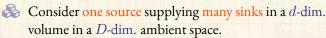
Earlier theories

Geometric argument

Conclusion

"Optimal Form of Branching Supply and Collection Networks"

Peter Sheridan Dodds, Phys. Rev. Lett., **104**, 048702, 2010. [12]



Assume sinks are invariant.

Assume sink density $\rho = \rho(V)$.

The PoCSverse Optimal Supply Networks II 78 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

"Optimal Form of Branching Supply and Collection Networks"

Peter Sheridan Dodds, Phys. Rev. Lett., **104**, 048702, 2010. [12]

- Consider one source supplying many sinks in a d-dim. volume in a D-dim. ambient space.
- Assume sinks are invariant.
- Assume sink density $\rho = \rho(V)$.
- Assume some cap on flow speed of material.

The PoCSverse Optimal Supply Networks II 78 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

"Optimal Form of Branching Supply and Collection Networks"

Peter Sheridan Dodds, Phys. Rev. Lett., **104**, 048702, 2010. [12]

- Consider one source supplying many sinks in a d-dim. volume in a D-dim. ambient space.
- Assume sinks are invariant.
- Assume sink density $\rho = \rho(V)$.
- Assume some cap on flow speed of material.
- See network as a bundle of virtual vessels:

The PoCSverse Optimal Supply Networks II 78 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

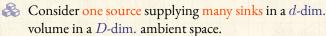
Farlier theories.

Carrier encorres

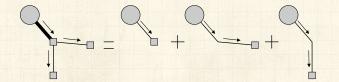
Geometric argument

"Optimal Form of Branching Supply and Collection Networks" 🗹

Peter Sheridan Dodds, Phys. Rev. Lett., **104**, 048702, 2010. [12]



- Assume sinks are invariant.
- Assume sink density $\rho = \rho(V)$.
- Assume some cap on flow speed of material.
- See network as a bundle of virtual vessels:



The PoCSverse Optimal Supply Networks II 78 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

The PoCSverse Optimal Supply Networks II 79 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theorie

Geometric argument

Conclusion

References

Q: how does the number of sustainable sinks N_{sinks} scale with volume V for the most efficient network design?

The PoCSverse Optimal Supply Networks II 79 of 125 Metabolism and

Death by fractions Measuring exponents

River networks

Farlier theories.

Geometric argument

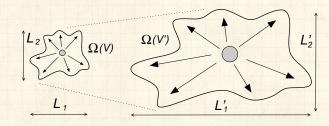
References

 $rac{2}{6}$ Or: what is the highest α for $N_{\text{sinks}} \propto V^{\alpha}$?

volume V for the most efficient network design?

 \mathbb{Q} : how does the number of sustainable sinks N_{sinks} scale with

Allometrically growing regions:



$$L_i \propto V^{\gamma_i}$$
 where $\gamma_1 + \gamma_2 + ... + \gamma_d = 1$.

 \Leftrightarrow For isometric growth, $\gamma_i = 1/d$.

 \mathfrak{F} For allometric growth, we must have at least two of the $\{\gamma_i\}$ being different

The PoCSverse Optimal Supply Networks II 80 of 125

Metabolism and Truthicide

Measuring exponents

River networks Farlier theories

Geometric argument Conclusion

Spherical cows and pancake cows:

Assume an isometrically Scaling family of cows:

Extremes of allometry: The pancake cows-

The PoCSverse Optimal Supply Networks II 81 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

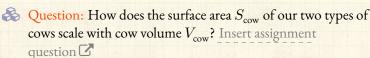
River networks

Earlier theories

Geometric argument

Conclusion

Spherical cows and pancake cows:



The PoCSverse Optimal Supply Networks II 84 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

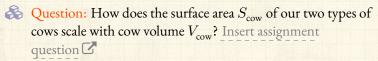
River networks

Earlier theories

Geometric argument

Conclusion

Spherical cows and pancake cows:



Question: For general families of regions, how does surface area S scale with volume V? Insert assignment question

The PoCSverse Optimal Supply Networks II 84 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

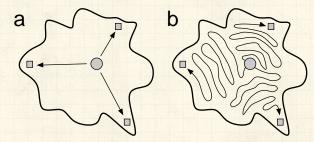
River networks

Earlier theories

Geometric argument

Conclusion

Best and worst configurations (Banavar et al.)



The PoCSverse Optimal Supply Networks II 85 of 125

Metabolism and Truthicide

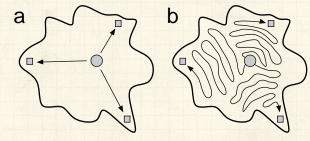
Death by fractions

Measuring exponents

River networks Earlier theories

Geometric argument

Best and worst configurations (Banavar et al.)



Rather obviously:

 $\min V_{\rm net} \propto \sum {\rm distances}$ from source to sinks.

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Real supply networks are close to optimal:

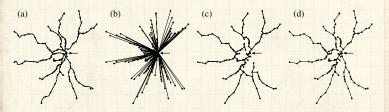


Figure 1. (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph. (c) Minimum spanning tree. (d) The model of equation (3) applied to the same set of stations.

Gastner and Newman (2006): "Shape and efficiency in spatial distribution networks" [16]

The PoCSverse Optimal Supply Networks II 86 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

Lariter theorie.

Geometric argument

Concidence

"Rules for Biologically Inspired Adaptive Network Design"

Tero et al.,

Science, 327, 439-442, 2010. [50]

Urban deslime in action:

https://www.youtube.com/watch?v=GwKuFREOgmo

The PoCSverse Optimal Supply Networks II 87 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

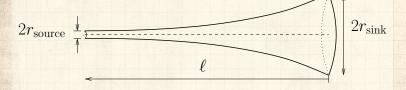
River networks

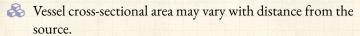
Earlier theories

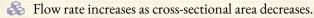
Geometric argument

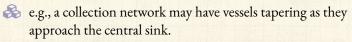
Conclusion

We add one more element:









The PoCSverse Optimal Supply Networks II 88 of 125

Metabolism and Truthicide

Death by fractio

Measuring exponents

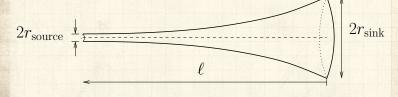
River networks

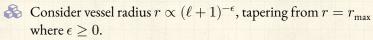
Farlier theories.

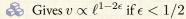
Geometric argument

Conclusion

Effecting scaling:







$$\Leftrightarrow$$
 Gives $v \propto 1 - \ell^{-(2\epsilon - 1)} \rightarrow 1$ for large ℓ if $\epsilon > 1/2$

 \red Previously, we looked at $\epsilon=0$ only.

The PoCSverse Optimal Supply Networks II 89 of 125

Metabolism and Truthicide

Death by fraction

Measuring exponents

River networks

Farlier theories.

Darrier Circorres

Geometric argument

For $0 \le \epsilon < 1/2$, approximate network volume by integral over region:

$$\min V_{\rm net} \propto \int_{\Omega_{d,D}(V)} \rho \, ||\vec{x}||^{1-2\epsilon} \, \mathrm{d}\vec{x}$$

Insert assignment question

The PoCSverse Optimal Supply Networks II 90 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

For $0 \le \epsilon < 1/2$, approximate network volume by integral over region:

$$\min V_{\rm net} \propto \int_{\Omega_{d,D}(V)} \rho \, ||\vec{x}||^{1-2\epsilon} \, \mathrm{d}\vec{x}$$

Insert assignment question

$$\propto
ho V^{1+\gamma_{
m max}(1-2\epsilon)}$$
 where $\gamma_{
m max}=\max_i \gamma_i.$

The PoCSverse Optimal Supply Networks II 90 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

For $0 \le \epsilon < 1/2$, approximate network volume by integral over region:

$$\min V_{\rm net} \propto \int_{\Omega_{d,D}(V)} \rho \, ||\vec{x}||^{1-2\epsilon} \, \mathrm{d}\vec{x}$$

Insert assignment question

$$\propto
ho V^{1+\gamma_{\max}(1-2\epsilon)}$$
 where $\gamma_{\max} = \max_i \gamma_i.$

For $\epsilon > 1/2$, find simply that

$$\min V_{\rm net} \propto \rho V$$

The PoCSverse Optimal Supply Networks II 90 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories.

Lariici tiicories

Geometric argument

Conclusion

For $0 \le \epsilon < 1/2$, approximate network volume by integral over region:

$$\min V_{\rm net} \propto \int_{\Omega_{d,D}(V)} \rho \, ||\vec{x}||^{1-2\epsilon} \, \mathrm{d}\vec{x}$$

Insert assignment question

$$\propto
ho V^{1+\gamma_{ ext{max}}(1-2\epsilon)}$$
 where $\gamma_{ ext{max}} = \max_i \gamma_i.$

For $\epsilon > 1/2$, find simply that

$$\min V_{
m net} \propto
ho V$$

So if supply lines can taper fast enough and without limit, minimum network volume can be made negligible.

The PoCSverse Optimal Supply Networks II 90 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

For $0 \leq \epsilon < 1/2$: $\iff \boxed{\min V_{\mathrm{net}} \propto \rho V^{1+\gamma_{\mathrm{max}}(1-2\epsilon)}}$

The PoCSverse Optimal Supply Networks II 91 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

For $0 \le \epsilon < 1/2$:

 $\mbox{\&}$ If scaling is isometric, we have $\gamma_{\rm max} = 1/d$:

$$\min V_{\rm net/iso} \propto \rho V^{1+(1-2\epsilon)/d}$$

The PoCSverse Optimal Supply Networks II 91 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

For $0 \le \epsilon < 1/2$:

$$\iff \boxed{\min V_{\rm net} \propto \rho V^{1+\gamma_{\rm max}(1-2\epsilon)}}$$

$$\min V_{\rm net/iso} \propto \rho V^{1+(1-2\epsilon)/d}$$

 \Re If scaling is allometric, we have $\gamma_{\max} = \gamma_{\text{allo}} > 1/d$: and

$$\min V_{\rm net/allo} \propto \rho V^{1+(1-2\epsilon)\gamma_{\rm allo}}$$

The PoCSverse Optimal Supply Networks II 91 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks

Farlier theories.

Geometric argument

For $0 < \epsilon < 1/2$:

$$\iff$$
 $\min V_{\mathrm{net}} \propto
ho V^{1+\gamma_{\mathrm{max}}(1-2\epsilon)}$

$$\min V_{\rm net/iso} \propto \rho V^{1+(1-2\epsilon)/d}$$

 \Leftrightarrow If scaling is allometric, we have $\gamma_{\text{max}} = \gamma_{\text{allo}} > 1/d$: and

$$\min V_{\rm net/allo} \propto \rho V^{1+(1-2\epsilon)\gamma_{\rm allo}}$$

Isometrically growing volumes require less network volume than allometrically growing volumes:

$$\frac{\min V_{\rm net/iso}}{\min V_{\rm net/allo}} \rightarrow 0$$
 as $V \rightarrow \infty$

The PoCSverse Optimal Supply Networks II 91 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

For $\epsilon > 1/2$:

 $\red{8} \mod V_{
m net} \propto
ho V$

The PoCSverse Optimal Supply Networks II 92 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

For $\epsilon > 1/2$:

$$\min V_{\rm net} \propto \rho V$$

Network volume scaling is now independent of overall shape scaling.

The PoCSverse Optimal Supply Networks II 92 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

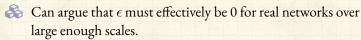
Geometric argument

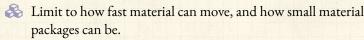
For $\epsilon > 1/2$:

$$\min V_{
m net} \propto
ho V$$

Network volume scaling is now independent of overall shape scaling.

Limits to scaling





& e.g., blood velocity and blood cell size.

The PoCSverse Optimal Supply Networks II 92 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

This is a really clean slide

The PoCSverse Optimal Supply Networks II 93 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Velocity at capillaries and aorta approximately constant across body size [52]: $\epsilon = 0$.

The PoCSverse Optimal Supply Networks II 94 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks Earlier theories

Geometric argument

Velocity at capillaries and aorta approximately constant across body size [52]: $\epsilon = 0$.

 $V_{\rm per} \propto \rho V^{(d+1)/d}$ to be followed closely.

The PoCSverse Optimal Supply Networks II 94 of 125

Metabolism and Truthicide

Death by fractions

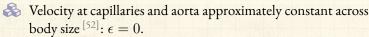
Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion



Material costly \Rightarrow expect lower optimal bound of $V_{\rm net} \propto \rho V^{(d+1)/d}$ to be followed closely.

For cardiovascular networks, d = D = 3.

The PoCSverse Optimal Supply Networks II 94 of 125

Metabolism and Truthicide

Death by fractions

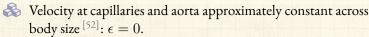
Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion



Material costly \Rightarrow expect lower optimal bound of $V_{\rm net} \propto \rho V^{(d+1)/d}$ to be followed closely.

Solution For cardiovascular networks, d = D = 3.

 $\ensuremath{\mathfrak{S}}$ Blood volume scales linearly with body volume [48], $V_{\rm net} \propto V$.

The PoCSverse Optimal Supply Networks II 94 of 125

Metabolism and Truthicide

Measuring exponents

Earlier theories

Geometric argument

Conclusion

Welocity at capillaries and aorta approximately constant across body size [52]: $\epsilon = 0$.

Material costly \Rightarrow expect lower optimal bound of $V_{\rm net} \propto \rho V^{(d+1)/d}$ to be followed closely.

Solution For cardiovascular networks, d = D = 3.

 $\ensuremath{\mathfrak{S}}$ Blood volume scales linearly with body volume [48], $V_{\rm net} \propto V$.

Sink density must : decrease as volume increases:

$$\rho \propto V^{-1/d}$$
.

The PoCSverse Optimal Supply Networks II 94 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

Welocity at capillaries and aorta approximately constant across body size [52]: $\epsilon=0$.

Material costly \Rightarrow expect lower optimal bound of $V_{\rm ner} \propto \rho V^{(d+1)/d}$ to be followed closely.

Solution For cardiovascular networks, d = D = 3.

 $\ensuremath{\mathfrak{S}}$ Blood volume scales linearly with body volume [48], $V_{\rm net} \propto V$.

Sink density must ∴ decrease as volume increases:

$$ho \propto V^{-1/d}$$
.

Density of suppliable sinks decreases with organism size.

The PoCSverse Optimal Supply Networks II 94 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

 \clubsuit Then P, the rate of overall energy use in Ω , can at most scale with volume as

 $P \propto \rho V$

The PoCSverse Optimal Supply Networks II 95 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

 \clubsuit Then P, the rate of overall energy use in Ω , can at most scale with volume as

$$P \propto \rho V \propto \rho M$$

The PoCSverse Optimal Supply Networks II 95 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks Earlier theories

Geometric argument

 \clubsuit Then P, the rate of overall energy use in Ω , can at most scale with volume as

$$P \propto \rho V \propto \rho \, M \propto M^{\,(d-1)/d}$$

The PoCSverse Optimal Supply Networks II 95 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks Earlier theories

Geometric argument

 \mathbb{R} Then P, the rate of overall energy use in Ω , can at most scale with volume as

$$P \propto \rho V \propto \rho M \propto M^{(d-1)/d}$$

For d=3 dimensional organisms, we have

 $P \propto M^{2/3}$

The PoCSverse Optimal Supply Networks II 95 of 125 Metabolism and

Truthicide Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

Then P, the rate of overall energy use in Ω , can at most scale with volume as

$$P \propto \rho V \propto \rho \, M \propto M^{\,(d-1)/d}$$

$$P \propto M^{2/3}$$

Including other constraints may raise scaling exponent to a higher, less efficient value. The PoCSverse Optimal Supply Networks II 95 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

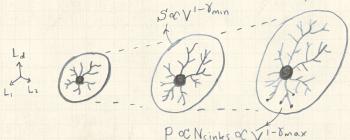
Geometric argument

Conclusion

Exciting bonus: Scaling obtained by the supply network story and the surface-area law only match for isometrically growing shapes.

Insert assignment question

The surface area-supply network mismatch for allometrically growing shapes:



The PoCSverse Optimal Supply Networks II 96 of 125 Metabolism and

Truthicide

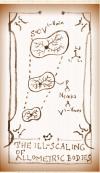
Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion



to 10-30 kg

The PoCSverse Optimal Supply Networks II 98 of 125 Metabolism and

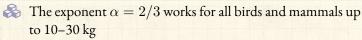
Death by fractions

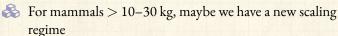
Measuring exponents

River networks

Earlier theories

Geometric argument





The PoCSverse Optimal Supply Networks II 98 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

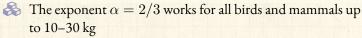
Treasuring expone

River networks

Earlier theories

Geometric argument

Conclusion



For mammals > 10-30 kg, maybe we have a new scaling regime

🙈 Economos: limb length break in scaling around 20 kg

The PoCSverse Optimal Supply Networks II 98 of 125 Metabolism and

Truthicide

Death by fractions

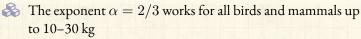
Measuring exponents

River networks

Larner theories

Geometric argument

Conclusion



For mammals > 10-30 kg, maybe we have a new scaling regime

🙈 Economos: limb length break in scaling around 20 kg

White and Seymour, 2005: unhappy with large herbivore measurements. Find $\alpha \simeq 0.686 + 0.014$

The PoCSverse Optimal Supply Networks II 98 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories.

Larner theories

Geometric argument

Conclusion

Prefactor:

Stefan-Boltzmann law:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sigma S T^4$$

where S is surface and T is temperature.

The PoCSverse Optimal Supply Networks II 99 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Prefactor:

Stefan-Boltzmann law:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sigma S T^4$$

where S is surface and T is temperature.

Very rough estimate of prefactor based on scaling of normal mammalian body temperature and surface area S:

$$B \simeq 10^5 M^{2/3} {\rm erg/sec.}$$

The PoCSverse Optimal Supply Networks II 99 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents River networks

Farlier theories.

Geometric argument

Conclusion

Prefactor:

Stefan-Boltzmann law:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sigma S T^4$$

where S is surface and T is temperature.

Wery rough estimate of prefactor based on scaling of normal mammalian body temperature and surface area S:

$$B \simeq 10^5 M^{2/3} {\rm erg/sec.}$$

 \clubsuit Measured for $M \leq 10$ kg:

$$B=2.57\times 10^5 M^{2/3} {\rm erg/sec.}$$

The PoCSverse Optimal Supply Networks II 99 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Wiew river networks as collection networks.

The PoCSverse Optimal Supply Networks II 100 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Wiew river networks as collection networks.

Many sources and one sink.

The PoCSverse Optimal Supply Networks II 100 of 125

Metabolism and Truthicide

Death by fractions

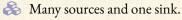
Measuring exponents

River networks

Earlier theories

Geometric argument

Wiew river networks as collection networks.



Death by fractions

The PoCSverse Optimal Supply Networks II

100 of 125 Metabolism and

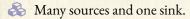
Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument



 ϵ ?

Assume ρ is constant over time and $\epsilon = 0$:

$$V_{\rm net} \propto \rho V^{(d+1)/d} = {\rm constant} \times V^{3/2}$$

The PoCSverse Optimal Supply Networks II 100 of 125

Metabolism and Truthicide

Death by fractions

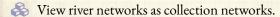
Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion



Many sources and one sink.

& ϵ ?

Assume ρ is constant over time and $\epsilon = 0$:

$$V_{
m net} \propto
ho V^{(d+1)/d} = {
m constant} imes V^{3/2}$$

Network volume grows faster than basin 'volume' (really area).

The PoCSverse Optimal Supply Networks II 100 of 125

Metabolism and
Truthicide

Death by fractions

Death by madeions

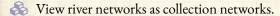
Measuring exponents

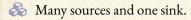
River networks

Earlier theories

Geometric argument

Conclusion





Assume ρ is constant over time and $\epsilon = 0$:

$$V_{
m net} \propto
ho V^{(d+1)/d} = {
m constant} imes V^{3/2}$$

Network volume grows faster than basin 'volume' (really area).

It's all okay:

Landscapes are d=2 surfaces living in D=3 dimensions.

The PoCSverse Optimal Supply Networks II 100 of 125

Metabolism and Truthicide

Death by fractions

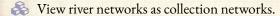
Measuring exponents

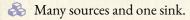
River networks

Earlier theories

Geometric argument

Conclusion





Assume ρ is constant over time and $\epsilon = 0$:

$$V_{
m net} \propto
ho V^{(d+1)/d} = {
m constant} imes V^{3/2}$$

Network volume grows faster than basin 'volume' (really area).

Landscapes are d=2 surfaces living in D=3 dimensions.

Streams can grow not just in width but in depth ...

The PoCSverse Optimal Supply Networks II 100 of 125

Metabolism and Truthicide

Death by fractions

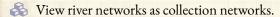
Measuring exponents

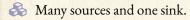
River networks

Earlier theories

Geometric argument

Conclusion





Assume ρ is constant over time and $\epsilon = 0$:

$$V_{
m net} \propto
ho V^{(d+1)/d} = {
m constant} imes V^{3/2}$$

Network volume grows faster than basin 'volume' (really area).

🚓 It's all okay:

Landscapes are d=2 surfaces living in D=3 dimensions.

🙈 Streams can grow not just in width but in depth ...

 \Leftrightarrow If $\epsilon > 0$, $V_{\rm net}$ will grow more slowly but 3/2 appears to be confirmed from real data.

The PoCSverse Optimal Supply Networks II 100 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Nolume of water in river network can be calculated by adding up basin areas

The PoCSverse Optimal Supply Networks II 101 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Volume of water in river network can be calculated by adding up basin areas

Flows sum in such a way that

$$V_{\rm net} = \sum_{\rm all\ pixels} a_{\rm pixel\ \it i}$$

The PoCSverse Optimal Supply Networks II 101 of 125

Metabolism and

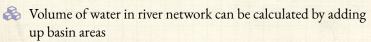
Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument



🙈 Flows sum in such a way that

$$V_{
m net} = \sum_{
m all\ pixels} a_{
m pixel\ \it i}$$

A Hack's law again:

 $\ell \sim a^h$

The PoCSverse Optimal Supply Networks II 101 of 125 Metabolism and

Truthicide

Death by fractions

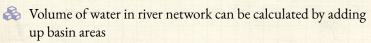
Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion



Flows sum in such a way that

$$V_{
m net} = \sum_{
m all\ pixels} a_{
m pixel\ \it i}$$

A Hack's law again:

$$\ell \sim a^h$$

🙈 Can argue

$$V_{
m net} \propto V_{
m basin}^{1+h} = a_{
m basin}^{1+h}$$

where h is Hack's exponent.

The PoCSverse Optimal Supply Networks II 101 of 125 Metabolism and

Truthicide

Death by macrons

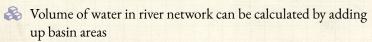
Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion



Flows sum in such a way that

$$V_{
m net} = \sum_{
m all\ pixels} a_{
m pixel\ \it i}$$

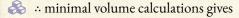
A Hack's law again:

$$\ell \sim a^h$$

名 Can argue

$$V_{\rm net} \propto V_{\rm basin}^{1+h} = a_{\rm basin}^{1+h}$$

where h is Hack's exponent.



$$h = 1/2$$

The PoCSverse Optimal Supply Networks II 101 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Banavar et al.'s approach [1] is okay because ρ really is

constant.

The PoCSverse Optimal Supply Networks II 102 of 125 Metabolism and

Truthicide Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Banavar et al.'s approach [1] is okay because ρ really is constant.

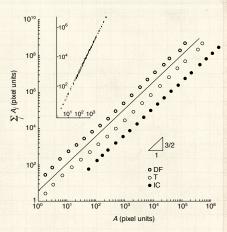


Figure 2 Allometric scaling in river networks. Double logarithmic plot of $C \simeq \Sigma_{\rm Ke}/A_{\rm X}$ versus A for three river networks characterized by different climates, geology and geographic locations (Dry Fork, West Virginia, 586 km², digital terrain map (DTM) size $30 \times 30\,{\rm m}^2$; Island Creek, Idaho, 260 km², DTM size $30 \times 30\,{\rm m}^2$; Tirso, Italy, $2.024\,{\rm km}^2$, DTM size $237 \times 237\,{\rm m}^3$). The experimental points are obtained by binning total contributing areas, and computing the ensemble average of the sum of the inner areas for each sub-basin within the binned interval. The figure uses pixel units in which the smallest area element is assigned a unit value. Also plotted is the predicted scaling relationship with slope 3/2. The inset shows the raw data from the Tirso basin before any binning

The PoCSverse Optimal Supply Networks II 102 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Banavar et al.'s approach [1] is okay because ρ really is constant.

The irony: shows optimal basins are isometric

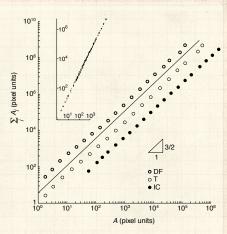


Figure 2 Allometric scaling in river networks. Double logarithmic plot of $C \simeq \Sigma_{\rm Ke}/A_{\rm X}$ versus A for three river networks characterized by different climates, geology and geographic locations (Dry Fork, West Virginia, 586 km², digital terrain map (DTM) size $30 \times 30\,{\rm m}^2$; Island Creek, Idaho, 260 km², DTM size $30 \times 30\,{\rm m}^2$; Tirso, Italy, $2.024\,{\rm km}^2$, DTM size $237 \times 237\,{\rm m}^3$). The experimental points are obtained by binning total contributing areas, and computing the ensemble average of the sum of the inner areas for each sub-basin within the binned interval. The figure uses pixel units in which the smallest area element is assigned a unit value. Also plotted is the predicted scaling relationship with slope 3/2. The inset shows the raw data from the Tirso basin before any binning

The PoCSverse Optimal Supply Networks II 102 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Banavar et al.'s approach [1] is okay because ρ really is constant.

The irony: shows optimal basins are isometric

Optimal Hack's law: $\ell \sim a^h$ with h = 1/2

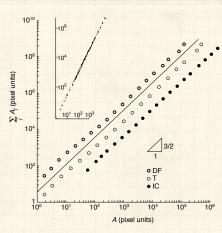


Figure 2 Allometric scaling in river networks. Double logarithmic plot of $C \simeq \Sigma_{\rm Ke} A_{\rm K}$ versus A for three river networks characterized by different climates, geology and geographic locations (Dry Fork, West Virginia, 586 km², digital terrain map (DTM) size $30 \times 30 \, {\rm m}^2$; Island Creek, Idaho, $260 \, {\rm km}^2$, DTM size $30 \times 30 \, {\rm m}^2$; Tirso, Italy, $2.024 \, {\rm km}^2$, DTM size $237 \times 237 \, {\rm m}^2$). The experimental points are obtained by binning total contributing areas, and computing the ensemble average of the sum of the inner areas for each sub-basin within the binned interval. The figure uses pixel units in which the smallest area element is assigned a unit value. Also plotted is the predicted scaling relationship with slope $342. \, {\rm The}$ insert shows the raw data from the Tirso basin before any binning

The PoCSverse Optimal Supply Networks II 102 of 125

Metabolism and Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Banavar et al.'s approach [1] is okay because ρ really is constant.

The irony: shows optimal basins are isometric

Optimal Hack's law: $\ell \sim a^h$ with h = 1/2

(Zzzzz)

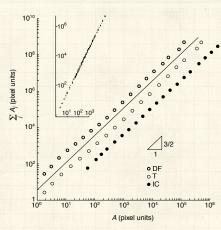


Figure 2 Allometric scaling in river networks. Double logarithmic plot of $C \propto \Sigma_{\rm ex} A_{\rm fx}$ versus A for three river networks characterized by different climates, geology and geographic locations (Dry Fork, West Virginia, 586 km², digital terrain map (DTM) size $30 \times 30\,{\rm m}^2$; Island Creek, Idaho, 260 km², DTM size $30 \times 30\,{\rm m}^2$; Tirso, Italy, $2.024\,{\rm km}^2$, DTM size $237 \times 237\,{\rm m}^2$). The experimental points are obtained by binning total contributing areas, and computing the ensemble average of the sum of the inner areas for each sub-basin within the binned interval. The figure uses pixel units in which the smallest area element is assigned a unit value. Also plotted is the predicted scaling relationship with slope 3½. The inset shows the raw data from the Tirso basin before any binning

The PoCSverse Optimal Supply Networks II 102 of 125

Metabolism and Truthicide

Measuring exponents

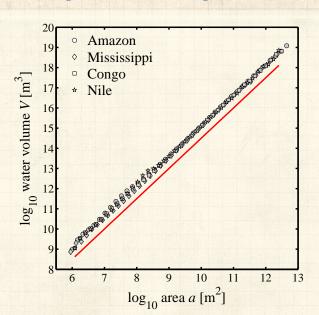
River networks

Earlier theories

Geometric argument

Conclusion

Even better—prefactors match up:



The PoCSverse Optimal Supply Networks II 103 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

The Cabal strikes back:

Banavar et al., 2010, PNAS: "A general basis for quarter-power scaling in animals." [2]

The PoCSverse Optimal Supply Networks II 104 of 125

Metabolism and

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

The Cabal strikes back:

Banavar et al., 2010, PNAS:

"A general basis for quarter-power scaling in animals." [2]

It has been known for decades that the metabolic rate of animals scales with body mass with an exponent that is almost always < 1, > 2/3, and often very close to 3/4."

The PoCSverse Optimal Supply Networks II 104 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories.

Geometric argument

Conclusion

The Cabal strikes back:

Banavar et al., 2010, PNAS:

"A general basis for quarter-power scaling in animals." [2]

"It has been known for decades that the metabolic rate of animals scales with body mass with an exponent that is almost always < 1, > 2/3, and often very close to 3/4."

& Cough, cough, hack, wheeze, cough.

The PoCSverse Optimal Supply Networks II 104 of 125 Metabolism and

Truthicide

Death by fractio

Measuring exponents

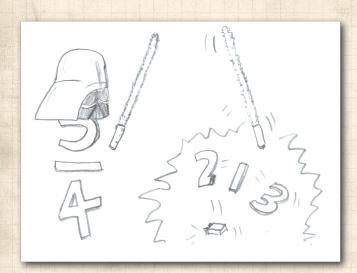
River networks

Earlier theories

Geometric argument

Conclusion

Stories—Darth Quarter:



The PoCSverse Optimal Supply Networks II 105 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Some people understand it's truly a disaster:

Peter Sheridan Dodds, Theoretical Biology's Buzzkill

By Mark Changizi | February 9th 2010 03:24 PM | 1 comment | 🖶 Print | 🖾 E-mail | Track Comments

Mark Changizi

Search This Blog

There is an apocryphal story about a graduate mathematics student at the University of Virginia studying the properties of certain mathematical objects. In his fifth year some killjoy bastard elsewhere published a paper proving that there are no such mathematical objects. He dropped out of the program, and I never did hear where

he is today. He's probably making my cappuccino right now.

This week, a professor named Peter Sheridan Dodds published a new paper in *Physical Review Letters* further fleshing out a theory concerning why a 2/3 power law may apply for metabolic rate. The 2/3 law says that metabolic rate in animals rises as the 2/3 power of body mass. It was in a 2001 *Journal of Theoretical Biology* paper that he first arqued that perhaps a 2/3 law applies, and that paper – along with others such as the one that just appeared — is what has put him in the Killigo Hall of Fame. The University of Virginia's killiow was a mere amateur.

Mark Changizi

MORE ARTICLES

- The Ravenous Color-Blind: New Developments For Color-Deficients
- Don't Hold Your Breath Waiting For Artificial Brains
- Welcome To Humans,

 Version 3.0

All Arti

ABOUT MARK

Mark Changizi is Director of Human Cognition at 2Al, and the author of *The Vision Revolution* (Benbella 2009) and *Harnessed: How...*

ew Mark's Profil

The PoCSverse Optimal Supply Networks II 106 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

The unnecessary bafflement continues:

"Testing the metabolic theory of ecology" [41]

C. Price, J. S. Weitz, V. Savage, J. Stegen, A. Clarke, D. Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K. McCulloh, K. Niklas, H. Olff, and N. Swenson Ecology Letters, **15**, 1465–1474, 2012.

The PoCSverse Optimal Supply Networks II 107 of 125

Metabolism and Truthicide

Measuring exponents

River networks

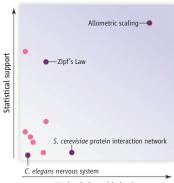
Farlier theories

Geometric argument

Conclusion

Artisanal, handcrafted silliness:

"Critical truths about power laws" [49] Stumpf and Porter, Science, 2012



Mechanistic sophistication

How good is your power law? The chart reflects the level of statistical support—as measured in (16, 21)—and our opinion about the mechanistic sophistication underlying hypothetical generative models for various reported power laws. Some relationships are identified by name; the others reflect the general characteristics of a wide range of reported

The PoCSverse Optimal Supply Networks II 108 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents
River nerworks

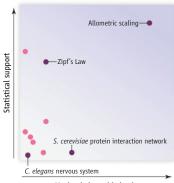
Farlier theories

Geometric argument

Conclusion

Artisanal, handcrafted silliness:

"Critical truths about power laws" [49] Stumpf and Porter, Science, 2012



Mechanistic sophistication

How good is your power law? The chart reflects the level of statistical support—as measured in (16, 21)—and our opinion about the mechanistic sophistication underlying hypothetical generative models for various reported power laws. Some relationships are identified by name; the others reflect the general characteristics of a wide range of reported

The PoCSverse Optimal Supply Networks II 108 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents
River nerworks

Farlier theories

Geometric argument

Conclusion

Supply network story consistent with dimensional analysis.

The PoCSverse Optimal Supply Networks II 109 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Supply network story consistent with dimensional analysis.

Isometrically growing regions can be more efficiently supplied than allometrically growing ones.

The PoCSverse Optimal Supply Networks II 109 of 125 Metabolism and

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

Supply network story consistent with dimensional analysis.

Isometrically growing regions can be more efficiently supplied than allometrically growing ones.

Ambient and region dimensions matter (D = d versus D > d).

The PoCSverse Optimal Supply Networks II 109 of 125

Metabolism and Truthicide

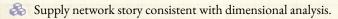
Death by fractions

Measuring exponents

River networks Farlier theories.

Geometric argument

Conclusion



Isometrically growing regions can be more efficiently supplied than allometrically growing ones.

Ambient and region dimensions matter (D = d versus D > d).

Deviations from optimal scaling suggest inefficiency (e.g., gravity for organisms, geological boundaries).

The PoCSverse Optimal Supply Networks II 109 of 125

Metabolism and Truthicide

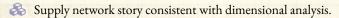
Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion



Isometrically growing regions can be more efficiently supplied than allometrically growing ones.

Ambient and region dimensions matter (D = d versus D > d).

Deviations from optimal scaling suggest inefficiency (e.g., gravity for organisms, geological boundaries).

Actual details of branching networks not that important.

The PoCSverse Optimal Supply Networks II 109 of 125

Metabolism and Truthicide

Measuring exponents

River networks Farlier theories

Geometric argument

Conclusion

- Supply network story consistent with dimensional analysis.
- Isometrically growing regions can be more efficiently supplied than allometrically growing ones.
- Ambient and region dimensions matter (D = d versus D > d).
- Deviations from optimal scaling suggest inefficiency (e.g., gravity for organisms, geological boundaries).
- Actual details of branching networks not that important.
- Exact nature of self-similarity varies.

The PoCSverse Optimal Supply Networks II 109 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

- Supply network story consistent with dimensional analysis.
- 🚵 Isometrically growing regions can be more efficiently supplied than allometrically growing ones.
- Ambient and region dimensions matter (D = d versus D > d).
- Deviations from optimal scaling suggest inefficiency (e.g., gravity for organisms, geological boundaries).
- Actual details of branching networks not that important.
- Exact nature of self-similarity varies.
- 2/3-scaling lives on, largely in hiding.

The PoCSverse Optimal Supply Networks II 109 of 125 Metabolism and

Truthicide

Measuring exponents

River networks Farlier theories

Conclusion

- Supply network story consistent with dimensional analysis.
- Isometrically growing regions can be more efficiently supplied than allometrically growing ones.
- Ambient and region dimensions matter (D = d versus D > d).
- Deviations from optimal scaling suggest inefficiency (e.g., gravity for organisms, geological boundaries).
- & Actual details of branching networks not that important.
- Exact nature of self-similarity varies.
- 2/3-scaling lives on, largely in hiding.
- 3/4-scaling? Jury ruled a mistrial.

The PoCSverse Optimal Supply Networks II 109 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

- Supply network story consistent with dimensional analysis.
- Isometrically growing regions can be more efficiently supplied than allometrically growing ones.
- Ambient and region dimensions matter (D = d versus D > d).
- Deviations from optimal scaling suggest inefficiency (e.g., gravity for organisms, geological boundaries).
- Actual details of branching networks not that important.
- Exact nature of self-similarity varies.
- 2/3-scaling lives on, largely in hiding.
- 3/4-scaling? Jury ruled a mistrial.
- The truth will out.

The PoCSverse Optimal Supply Networks II 109 of 125

Metabolism and Truthicide

Deach by macron

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

- Supply network story consistent with dimensional analysis.
- Isometrically growing regions can be more efficiently supplied than allometrically growing ones.
- Ambient and region dimensions matter (D = d versus D > d).
- Deviations from optimal scaling suggest inefficiency (e.g., gravity for organisms, geological boundaries).
- Actual details of branching networks not that important.
- Exact nature of self-similarity varies.
- 2/3-scaling lives on, largely in hiding.
- 3/4-scaling? Jury ruled a mistrial.
- The truth will out. Maybe.

The PoCSverse Optimal Supply Networks II 109 of 125

Metabolism and Truthicide

Death by fraction

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References I

- [1] J. R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient transportation networks. Nature, 399:130–132, 1999. pdf
- [2] J. R. Banavar, M. E. Moses, J. H. Brown, J. Damuth, A. Rinaldo, R. M. Sibly, and A. Maritan. A general basis for quarter-power scaling in animals. Proc. Natl. Acad. Sci., 107:15816–15820, 2010. pdf
- [3] P. Bennett and P. Harvey.

 Active and resting metabolism in birds—allometry, phylogeny and ecology.

 J. Zool., 213:327–363, 1987. pdf
- [4] K. L. Blaxter, editor.

 Energy Metabolism; Proceedings of the 3rd symposium held at Troon, Scotland, May 1964.

 Academic Press, New York, 1965.

The PoCSverse Optimal Supply Networks II 110 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References II

[5] J. J. Blum.
On the geometry of four-dimensions and the relationship between metabolism and body mass.
J. Theor. Biol., 64:599–601, 1977. pdf

- [6] S. Brody.

 Bioenergetics and Growth.

 Reinhold, New York, 1945.
 reprint, . pdf
- [7] J. H. Brown, G. B. West, and B. J. Enquist. Yes, West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? Functional Ecology, 19:735—738, 2005. pdf

The PoCSverse Optimal Supply Networks II 111 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References III

[8] A. B. Brummer, S. V. M., and B. J. Enquist. A general model for metabolic scaling in self-similar asymmetric networks. PLoS Comput Biol, 13, 2017. pdf

[9] E. Buckingham.

On physically similar systems: Illustrations of the use of dimensional equations.

Phys. Rev., 4:345-376, 1914. pdf

[10] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data.

SIAM Review, 51:661–703, 2009. pdf

[11] M. H. DeGroot.

Probability and Statistics.

Addison-Wesley, Reading, Massachusetts, 1975.

The PoCSverse Optimal Supply Networks II 112 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References IV

[12] P. S. Dodds.

Optimal form of branching supply and collection networks.

Phys. Rev. Lett., 104(4):048702, 2010. pdf

[13] P. S. Dodds and D. H. Rothman.
Scaling, universality, and geomorphology.
Annu. Rev. Earth Planet. Sci., 28:571–610, 2000. pdf

[14] P. S. Dodds, D. H. Rothman, and J. S. Weitz.
Re-examination of the "3/4-law" of metabolism.
Journal of Theoretical Biology, 209:9–27, 2001. pdf

[15] A. E. Economos. Elastic and/or geometric similarity in mammalian design. Journal of Theoretical Biology, 103:167–172, 1983. pdf The PoCSverse Optimal Supply Networks II 113 of 125 Metabolism and

Death by fractions

Measuring exponents

River networks

Truthicide

Earlier theories

Geometric argument

Conclusion

References V

[16] M. T. Gastner and M. E. J. Newman. Shape and efficiency in spatial distribution networks. J. Stat. Mech.: Theor. & Exp., 1:P01015, 2006. pdf

[17] J. H. Gayford, D. J. Irschick, J. Martin, A. Chin, and J. L. Rummer.

The geometry of life: Testing the scaling of whole-organism surface area and volume using sharks.

Royal Society Open Science, 12(6):242205, 2025. pdf

[18] D. S. Glazier.

Beyond the '3/4-power law': variation in the intra- and interspecific scaling of metabolic rate in animals.

Biol. Rev., 80:611–662, 2005. pdf

The PoCSverse Optimal Supply Networks II 114 of 125

Death by fractions

Measuring exponents

River networks

Farlier theories

Truthicide

Geometric argument

Conclusion

References VI

[19] D. S. Glazier.

The 3/4-power law is not universal: Evolution of isometric, ontogenetic metabolic scaling in pelagic animals. BioScience, 56:325–332, 2006. pdf

[20] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf

[21] A. Hemmingsen.

The relation of standard (basal) energy metabolism to total fresh weight of living organisms.

Rep. Steno Mem. Hosp., 4:1-58, 1950. pdf

The PoCSverse Optimal Supply Networks II 115 of 125 Metabolism and

Truthicide

Measuring exponents

Aeasuring expon

River networks

Earlier theories

Geometric argument

Conclusion

References VII

[22] A. Hemmingsen.

Energy metabolism as related to body size and respiratory surfaces, and its evolution.

Rep. Steno Mem. Hosp., 9:1-110, 1960. pdf

[23] A. A. Heusner.

Size and power in mammals.

Journal of Experimental Biology, 160:25-54, 1991. pdf

[24] M. R. Hirt, W. Jetz, B. C. Rall, and U. Brose. A general scaling law reveals why the largest animals are not the fastest.

Nature Ecology & Evolution, 1:1116, 2017. pdf

[25] N. Juster.

The Phantom Tollbooth.

Random House, 1961.

The PoCSverse Optimal Supply Networks II 116 of 125

Metabolism and Truthicide

Death by Maccions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References VIII

[26] M. Kleiber.

Body size and metabolism.

Hilgardia, 6:315–353, 1932. pdf

[27] M. Kleiber.

The Fire of Life. An Introduction to Animal Energetics.

Wiley, New York, 1961.

[28] T. Kolokotrones, V. Savage, E. J. Deeds, and W. Fontana. Curvature in metabolic scaling. Nature, 464:753, 2010. pdf

[29] J. Kozłowski and M. Konarzewski. Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? Functional Ecology, 18:283—289, 2004. pdf The PoCSverse Optimal Supply Networks II 117 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

References IX

[30] M. LaBarbera.

Analyzing body size as a factor of ecology and evolution.

Annu. Rev. Ecol. Syst., 20:97–117, 1989. pdf

[31] N. Lane.

Power, Sex, Suicide: Mitochondria and the Meaning of Life.

Oxford University Press, Oxford, UK, 2005.

[32] L. B. Leopold.
 A View of the River.
 Harvard University Press, Cambridge, MA, 1994.

[33] T. McMahon.
Size and shape in biology.
Science, 179:1201–1204, 1973. pdf

The PoCSverse Optimal Supply Networks II 118 of 125 Metabolism and

Death by fractions

Measuring exponents

River networks

Truthicide

Earlier theories

Geometric argument

Conclusion

References X

[34] T. A. McMahon.
Allometry and biomechanics: Limb bones in adult ungulates.

The American Naturalist, 109:547-563, 1975. pdf

[35] T. A. McMahon and J. T. Bonner.

On Size and Life.

Scientific American Library, New York, 1983.

[36] N. Meyer-Vernet and J.-P. Rospars. How fast do living organisms move: Maximum speeds from bacteria to elephants and whales. American Journal of Physics, pages 719–722, 2015. pdf

[37] D. R. Montgomery and W. E. Dietrich.
Channel initiation and the problem of landscape scale.
Science, 255:826–30, 1992. pdf

The PoCSverse Optimal Supply Networks II 119 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References XI

[38] C. D. Murray. A relationship between circumference and weight in trees and its bearing on branching angles. J. Gen. Physiol., 10:725–729, 1927. pdf

[39] M. G. Newberry, E. D. B., and S. V. M.

Testing foundations of biological scaling theory using automated measurements of vascular networks.

PLoS Comput Biol, 11:e1004455, 2015. pdf

[40] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C.

Cambridge University Press, second edition, 1992.

The PoCSverse Optimal Supply Networks II 120 of 125 Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References XII

[41] C. Price, J. S. Weitz, V. Savage, S. Stegen, A. Clarke, D. Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K. McCulloh, K. Niklas, H. Olff, and N. Swenson. Testing the metabolic theory of ecology. Ecology Letters, 15:1465–1474, 2012. pdf

[42] J. M. V. Rayner.

Linear relations in biomechanics: the statistics of scaling functions.

J. Zool. Lond. (A), 206:415-439, 1985. pdf

[43] M. Rubner.

Ueber den einfluss der körpergrösse auf stoffund kraftwechsel.

Z. Biol., 19:535-562, 1883. pdf

The PoCSverse Optimal Supply Networks II 121 of 125

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References XIII

[44] P. A. Samuelson.
A note on alternative regressions.
Econometrica, 10:80–83, 1942. pdf

[45] Sarrus and Rameaux.
Rapport sur une mémoire adressé à l'Académie de Médecine.
Bull. Acad. R. Méd. (Paris), 3:1094–1100, 1838–39.

[46] V. M. Savage, E. J. Deeds, and W. Fontana.
Sizing up allometric scaling theory.
PLoS Computational Biology, 4:e1000171, 2008. pdf

[47] J. Speakman.
 On Blum's four-dimensional geometric explanation for the 0.75 exponent in metabolic allometry.
 J. Theor. Biol., 144(1):139–141, 1990. pdf

The PoCSverse Optimal Supply Networks II 122 of 125 Metabolism and

Death by fractions

Truthicide

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References XIV

[48] W. R. Stahl.

Scaling of respiratory variables in mammals.

Journal of Applied Physiology, 22:453–460, 1967.

[49] M. P. H. Stumpf and M. A. Porter. Critical truths about power laws. Science, 335:665–666, 2012. pdf

[50] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki. Rules for biologically inspired adaptive network design. Science, 327(5964):439–442, 2010. pdf

[51] D. L. Turcotte, J. D. Pelletier, and W. I. Newman.
Networks with side branching in biology.
Journal of Theoretical Biology, 193:577–592, 1998. pdf

The PoCSverse Optimal Supply Networks II 123 of 125 Metabolism and

Truthicide

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

References XV

[52] P. D. Weinberg and C. R. Ethier.

Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas.

Journal of Biomechanics, 40(7):1594–1598, 2007. pdf

[53] G. B. West.

Scale: The Universal Laws of Growth, Innovation,
Sustainability, and the Pace of Life in Organisms, Cities,
Economies, and Companies.

Penguin Press, New York, 2017.

[54] G. B. West, J. H. Brown, and B. J. Enquist. A general model for the origin of allometric scaling laws in biology.

Science, 276:122-126, 1997. pdf

The PoCSverse Optimal Supply Networks II 124 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References XVI

[55] G. B. West, J. H. Brown, and J. Enquist.

The fourth dimension of life: Fractal geometry and allometric scaling of organisms.

Science, 284:1677-1679, 1999. pdf

[56] G. B. West, J. H. Brown, and J. Enquist. Nature.

Nature, 400:664-667, 1999. pdf

[57] C. R. White and R. S. Seymour.

Allometric scaling of mammalian metabolism.

J. Exp. Biol., 208:1611–1619, 2005. pdf

The PoCSverse Optimal Supply Networks II 125 of 125 Metabolism and

Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories.

Conclusion

