Optimal Supply Networks I: Branching

Last updated: 2025/09/22, 18:37:08 EDT

Principles of Complex Systems, Vols. 1, 2, 3D, 4 Fourever, V for Vendetta

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Institute University of Vermont | Santa Fe Institute

Optimal Supply Networks I 1 of 29 Optimal

Optimal branching

Optimal transportation

Optimal branching

Outline

Murray's law Murray meets Tokunaga

References

Optimal supply networks

Optimal Supply Networks I 2 of 29 Optimal

Optimal branching Murray's law

The PoCSverse

Networks I

References

6 of 29

Optimal Supply

Optimal branching

What's the best way to distribute stuff?

& Stuff = medical services, energy, people, ...

- Some fundamental network problems:
 - 1. Distribute stuff from a single source to many sinks
 - Distribute stuff from many sources to many sinks
 Redistribute stuff between nodes that are both sources and sinks
- Supply and Collection are equivalent problems

Optimal branching

Optimal Supply Networks I

The PoCSverse

Networks I

Optimal transportation

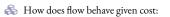
Optimal branchin

7 of 29

Optimal Supply

Single source optimal supply

Basic question for distribution/supply networks:



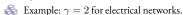
$$C = \sum_{i} I_{j}^{\gamma} Z_{j}$$

where

 I_j = current on link j

and

 $Z_i = \text{link } j$'s impedance.



The PoCSverse Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

The PoC Sverse

Networks I 8 of 29

Optimal

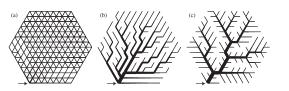
Reference

transportation

Optimal branchine

Optimal Supply

Single source optimal supply



(a) $\gamma > 1$: Braided (bulk) flow

(b) $\gamma < 1$: Local minimum: Branching flow

(c) $\gamma < 1$: Global minimum: Branching flow

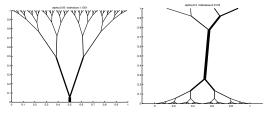
Note: This is a single source supplying a region.

From Bohn and Magnasco [3]

See also Banavar *et al.* ^[1]: "Topology of the Fittest Transportation Network"; focus is on presence or absence of loops—same story

Single source optimal supply

Optimal paths related to transport (Monge) problems 2:



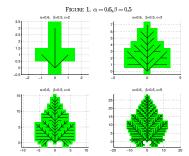
Qin Cor 251

"Optimal paths related to transport problems"

Qinglan Xia,

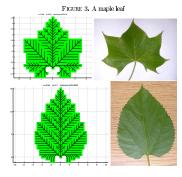
Communications in Contemporary Mathematics, 5, 251–279, 2003. [20]

Growing networks—two parameter model: [21]



- & Parameters control impedance ($0 \le \alpha < 1$) and angles of junctions ($0 < \beta$)
- $\ \, \mbox{\ensuremath{\&}} \,$ For this example: $\alpha=0.6$ and $\beta=0.5$

Growing networks: [21]



 $\alpha = 0.66, \beta = 0.38$; Bottom: $\alpha = 0.66, \beta = 0.70$

The PoCSverse Optimal Supply Networks I 9 of 29

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References

An immensely controversial issue ...

The form of natural branching networks: Random, optimal, or some combination? [6, 19, 2, 5, 4]

River networks, blood networks, trees, ...

Two observations:

- & Self-similar networks appear everywhere in nature for single source supply/single sink collection.
- Real networks differ in details of scaling but reasonably agree in scaling relations.

The PoCSverse
Optimal Supply
Networks I
10 of 29
Optimal
transportation
Optimal branching

Murray's law
Murray meets Tokunaga
References

References

River network models

Optimality:

- Optimal channel networks [13]
- A Thermodynamic analogy [14]

versus ...

Randomness:

- Scheidegger's directed random networks
- Undirected random networks

Optimization—Murray's law

Aside on P_{drag}

- Work done = $F \cdot d$ = energy transferred by force F
- Power = P = rate work is done = $F \cdot v$
- Δp = Pressure differential = Force per unit area
- Φ = Volume flow per unit time (current) = cross-sectional area · velocity

Optimization—Murray's law

Murray's law:

$$\Phi = kr^3$$

- Insert assignment question
- All of this means we have a groovy cube-law:

$$r_{
m parent}^3 = r_{
m offspring1}^3 + r_{
m offspring2}^3$$

Optimization—Murray's law Optimal Supply Networks I

Optimal branching

The PoCSverse

Optimal Supply Networks I

16 of 29

Optimal transportation

The PoC Svers

Networks I 19 of 29

Optimal

Murray's law

References

Optimal Supply

Optimal branchine

Optimal branching

Murray's law (1926) connects branch radii at forks: [11, 10, 12, 7, 17]

where r_{parent} = radius of 'parent' branch, and $r_{
m offspring1}$ and $r_{\text{offspring}2}$ are radii of the two 'offspring' sub-branches.

- Holds up well for outer branchings of blood networks [15].
- Also found to hold for trees [12, 8] when xylem is not a supporting structure [9].
- See D'Arcy Thompson's "On Growth and Form" for background and general inspiration [16, 17].

Optimization—Murray's law

Murray's law:

$$P = P_{\text{drag}} + P_{\text{metabolic}} = \Phi^2 \frac{8\eta\ell}{\pi r^4} + cr^2\ell$$

- But r's effect is nonlinear:
 - \widehat{v} increasing r makes flow easier but increases metabolic cost (as
 - decreasing r decrease metabolic cost but impedance goes up $(as r^{-4})$

Total power (cost):

$$P = P_{\text{drag}} + P_{\text{metabolic}} = \Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell$$

- & Observe power increases linearly with ℓ

Murray meets Tokunaga:

- Φ_{ω} = volume rate of flow into an order ω vessel segment
- Tokunaga picture:

$$\Phi_{\omega} = 2\Phi_{\omega-1} + \sum_{k=1}^{\omega-1} T_k \Phi_{\omega-k}$$

 \Leftrightarrow Using $\phi_{\omega} = kr_{\omega}^3$

$$(r_{\omega})^{3} = 2 \left(r_{\omega-1}\right)^{3} + \sum_{k=1}^{\omega-1} T_{k} \left(r_{\omega-k}\right)^{3}$$

Same form as:

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

Optimal Supply Networks I 14 of 29

Optimal branching Murray's law

Optimal Supply

Ontimal branching

17 of 29

Optimal

& Use hydraulic equivalent of Ohm's law:

$$\Delta p = \Phi Z \Leftrightarrow V = IR$$

where Δp = pressure difference, Φ = flux.

Fluid mechanics: Poiseuille impedance of for smooth Poiseuille flow \square in a tube of radius r and length ℓ:

$$Z = \frac{8\eta\ell}{\pi r^4}$$

- \Re η = dynamic viscosity \square (units: $ML^{-1}T^{-1}$).
- Power required to overcome impedance:

$$P_{\mathrm{drag}} = \Phi \Delta p = \Phi^2 Z.$$

Also have rate of energy expenditure in maintaining blood given metabolic constant c:

$$P_{\text{metabolic}} = cr^2\ell$$

Optimization—Murray's law

Murray's law:

Minimize P with respect to r:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left(\Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell \right)$$

Flow rates at each branching have to add up (else our organism is in serious trouble ...):

$$\Phi_0=\Phi_1+\Phi_2$$

where again 0 refers to the main branch and 1 and 2 refers to the offspring branches

Optimization

Networks I 21 of 29 Optimal

The PoC Suers

Optimal Supply

Optimal branching Murray meets Tokunag

Murray meets Tokunaga:

- Find Horton ratio for vessel radius $R_r = r_{\omega}/r_{\omega-1}$.
- $\mbox{\&}$ Find R_r^3 satisfies same equation as R_n and R_v (v is for volume):

$$R_r^3 = R_n = R_v$$

Is there more we could do here to constrain the Horton ratios and Tokunaga constants?

Optimal Supply Networks I Optimal transportation

Optimal Supply Networks I

15 of 29 Optimal

Optimal branching

The PoC Svers Optimal Supply Networks I Optimal

Optimal branchine Murray meets Tokunag Reference

Optimization

Murray meets Tokunaga:

- & Isometry: $V_{\omega} \propto \ell_{\omega}^3$
- Gives

$$R_\ell^3 = R_r^3 = R_n = R_v$$

- We need one more constraint ...
- West et al. (1997) [19] achieve similar results following Horton's laws (but this work is a disaster).
- So does Turcotte et al. (1998) [18] using Tokunaga (sort of).

References III

[9] K. A. McCulloh, J. S. Sperry, and F. R. Adler. Murray's law and the hydraulic vs mechanical functioning of

Functional Ecology, 18:931-938, 2004. pdf

- [10] C. D. Murray.
 - The physiological principle of minimum work applied to the angle of branching of arteries.

J. Gen. Physiol., 9(9):835–841, 1926. pdf

[11] C. D. Murray.

The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci., 12:207-214, 1926. pdf

References VI

[20] Q. Xia.

Optimal paths related to transport problems. Communications in Contemporary Mathematics, 5:251–279, 2003. pdf

[21] Q. Xia.

The formation of a tree leaf. ESAIM: Control, Optimisation and Calculus of Variations, 13:359–377, 2007. pdf

Optimal Supply Networks I

Optimal

The PoCSverse

Optimal Supply

Networks I

Optimal transportation

Murray's law

References

The PoC Sverse

References

Optimal Supply Networks I 29 of 29 Optimal Optimal branchine

Optimal branching

Optimal branching Murray meets Tokunaga

References I

- [1] J. R. Banavar, F. Colaiori, A. Flammini, A. Maritan, and A. Rinaldo. Topology of the fittest transportation network. Phys. Rev. Lett., 84:4745–4748, 2000. pdf
- [2] J. R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient transportation networks. Nature, 399:130–132, 1999. pdf
- [3] S. Bohn and M. O. Magnasco. Structure, scaling, and phase transition in the optimal transport network. Phys. Rev. Lett., 98:088702, 2007. pdf
- [4] P. S. Dodds. Optimal form of branching supply and collection networks. Phys. Rev. Lett., 104(4):048702, 2010. pdf

References IV

[12] C. D. Murray. A relationship between circumference and weight in trees and its bearing on branching angles. J. Gen. Physiol., 10:725-729, 1927. pdf

- [13] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997.
- [14] A. E. Scheidegger. Theoretical Geomorphology. Springer-Verlag, New York, third edition, 1991.
- [15] T. F. Sherman. On connecting large vessels to small. The meaning of Murray's law. The Journal of general physiology, 78(4):431-453, 1981. pdf 🖸

Optimal Supply Networks I 24 of 29

Optimal transportation Optimal branching

References

References II

- [5] P. S. Dodds and D. H. Rothman. Geometry of river networks. I. Scaling, fluctuations, and Physical Review E, 63(1):016115, 2001. pdf
- [6] J. W. Kirchner. Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591-594, 1993. pdf
- [7] P. La Barbera and R. Rosso. Reply. Water Resources Research, 26(9):2245-2248, 1990. pdf
- [8] K. A. McCulloh, J. S. Sperry, and F. R. Adler. Water transport in plants obeys Murray's law. Nature, 421:939-942, 2003. pdf

References V

[16] D. W. Thompson.

On Growth and Form.

Optimal branching

The PoCSverse

Networks I

27 of 29

Optimal Supply

References

[17] D. W. Thompson. On Growth and Form — Abridged Edition. Cambridge University Press, Great Britain, 1961.

[18] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577–592, 1998. pdf

Cambridge University Pres, Great Britain, 2nd edition, 1952.

[19] G. B. West, J. H. Brown, and B. J. Enquist. A general model for the origin of allometric scaling laws in Science, 276:122-126, 1997. pdf

Optimal Supply Networks I 25 of 29

Optimal

References

The PoCSverse Optimal Supply Networks I 28 of 29 Optimal transportation

Optimal branching

References

