Properties of Complex Networks

Last updated: 2024/11/19, 09:29:56 EST

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024–2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution 4.0 International

The PoCSverse Properties of Complex Networks

Properties of Complex Network

A problem

Degree distributions

Clustering

Motifs

Concurrency

Network distances

Interconnectedn

Nutshell

These slides are brought to you by:

The PoCSverse Properties of Complex Networks 2 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Concurrency

Branching ratios Network distances

Interconnectedne

Nutshell

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Properties of Complex Networks 3 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Concurrency

Branching ratios Network distances

Interconnected

Nutshell

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering

Motifs

Concurrency

Branching ratios

Network distances

Interconnectedness

Nutshell

References

The PoCSverse Properties of Complex Networks 4 of 40

Properties of Complex Networks

A problem

Degree distrib

Chiererine

Motifs

Concurrency

Branching ratios
Nerwork distances

Interconnectedr

Nutshell

Outline

Properties of Complex Networks A problem

Degree distributions

Assortativit

Clustering

Motif

Concurrency

Branching ratio

Network distance

Interconnectednes

Nutshel

References

The PoCSverse Properties of Complex Networks 6 of 40

Properties of Complex Networks

A problem

Degree distributions
Assortativity

Clustering

Motifs

Concurrency Branching ratios

Network distances

Interconnectedne

Nutshell

The PoCSverse Properties of Complex Networks 7 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Motifs

Branching ratios

Network distances

Interconnectedne

Nutshell

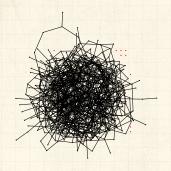
Graphical renderings are often just a big mess.

The PoCSverse Properties of Complex Networks 7 of 40

Properties of Complex Networks

A problem

Branching ratios


Network distances

Nutshell

Graphical renderings are often just a big mess.

← Typical hairball

- number of nodes N = 500
- number of edges m = 1000
- average degree $\langle k \rangle = 4$

The PoCSverse Properties of Complex Networks 7 of 40

Complex Networks

A problem

Branching ratios Nerwork distances

Nutshell

Graphical renderings are often just a big mess.

← Typical hairball

- number of nodes N = 500
- number of edges m = 1000
- average degree $\langle k \rangle = 4$

And even when renderings somehow look good:

The PoCSverse Properties of Complex Networks 7 of 40

A problem

Nerwork distances

Nutshell

Graphical renderings are often just a big mess.

← Typical hairball

- number of nodes N = 500
- number of edges m = 1000
- ightharpoonup average degree $\langle k \rangle = 4$

And even when renderings somehow look good:

"That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way"

said Ponder [Stibbons] — Making Money, T. Pratchett.

The PoCSverse Properties of Complex Networks 7 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Concurrency

Branching ratios Network distances

Interconnectedne

Nutshell

Graphical renderings are often just a big mess.

← Typical hairball

- number of nodes N = 500
- number of edges m = 1000
- \bigcirc average degree $\langle k \rangle = 4$

And even when renderings somehow look good:

"That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way"

said Ponder [Stibbons] — Making Money, T. Pratchett.

We need to extract digestible, meaningful aspects.

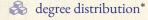
The PoCSverse Properties of Complex Networks 7 of 40

Properties of Complex Networks

A problem

Degree distributio

Motifs


Concurrency

Branching ratios Network distances

Nutshell

Some key aspects of real complex networks:

assortativity

A homophily

clustering

motifs

modularity

A hierarchical scaling

Plus coevolution of network structure and processes on networks.

* Degree distribution is the elephant in the room that we are now all very aware of...

TEX TICEWOTKS.

& concurrency

გ network distances

🚓 centrality

multilayerness

🚓 efficiency

robustness

The PoCSverse Properties of Complex Networks 8 of 40

Properties of Complex Networks

A problem

Degree distribution

Clustering

Concurrency

Network distances

Nutshell

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering

Motifs

Concurrency

Branching ratio

Network distance

Interconnectednes

Nutshel

References

The PoCSverse Properties of Complex Networks 9 of 40

Properties of Complex Networks

A problem

Degree distributions

Clusterin

Concurrency

Branching ratios

Network distances

Interconnectedn

Nutshell

1. degree distribution P_k

The PoCSverse Properties of Complex Networks 11 of 40

Properties of Complex Networks

A probler

Degree distributions

Assortativity
Clustering
Motifs

Concurrency

Branching ratios Network distances

Interconnectedne

Nutshell

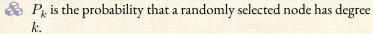
1. degree distribution P_k

 $\Re P_k$ is the probability that a randomly selected node has degree k.

The PoCSverse Properties of Complex Networks 11 of 40

Properties of Complex Networks

Degree distributions


Branching ratios

Network distances

Nutshell

1. degree distribution P_k

& k = node degree = number of connections.

The PoCSverse Properties of Complex Networks 11 of 40

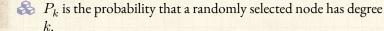
Complex Networks

A problem

Degree distributions

Morife

Concurrency


Branching ratios

Interconnectedne

Nutshell

1. degree distribution P_k

& k = node degree = number of connections.

ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert assignment question

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

The PoCSverse Properties of Complex Networks 11 of 40

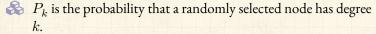
Complex Networks

A problem

Degree distributions

Motifs

Concurrency


Network distances

Interconnectedn

Nutshell

1. degree distribution P_k

& k = node degree = number of connections.

ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert assignment question

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

 \Leftrightarrow ex 2: "Scale-free" networks: $P_k \propto k^{-\gamma} \Rightarrow$ 'hubs'.

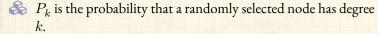
The PoCSverse Properties of Complex Networks 11 of 40

Properties of Complex Networks

A problem

Degree distributions

Motifs


Concurrency

Network distances

Nurshell

1. degree distribution P_k

ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert assignment question

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

 \Leftrightarrow ex 2: "Scale-free" networks: $P_k \propto k^{-\gamma} \Rightarrow$ 'hubs'.

link cost controls skew.

The PoCSverse Properties of Complex Networks 11 of 40

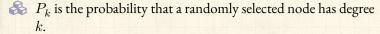
Properties of Complex Networks

A problem

Degree distributions

Motifs

Concurrency


Branching ratios
Nerwork distances

Interconnectedne

Nutshell

1. degree distribution P_k

ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert assignment question

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

 \Leftrightarrow ex 2: "Scale-free" networks: $P_k \propto k^{-\gamma} \Rightarrow$ 'hubs'.

link cost controls skew.

🗞 hubs may facilitate or impede contagion.

The PoCSverse Properties of Complex Networks 11 of 40

Properties of Complex Networks

A problem

Degree distributions

Morifs

Concurrency

Nerwork distances

Interconnectedne

Nutshell

Note:

🙈 Erdős-Rényi random networks are a mathematical construct.

The PoCSverse Properties of Complex Networks 12 of 40

Properties of Complex Networks

Degree distributions

Motifs

Branching ratios

Network distances

Nutshell

Note:

Erdős-Rényi random networks are a mathematical construct.

Scale-free' networks are growing networks that form according to a plausible mechanism.

The PoCSverse Properties of Complex Networks 12 of 40

Degree distributions

Nerwork distances

Nutshell

Note:

Erdős-Rényi random networks are a mathematical construct.

Scale-free' networks are growing networks that form according to a plausible mechanism.

Randomness is out there, just not to the degree of a completely random network.

The PoCSverse Properties of Complex Networks 12 of 40

Degree distributions

Nerwork distances

Nutshell

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering

Motif

Concurrency

Branching ratio

Network distance

Interconnectednes

Nutshel

References

The PoCSverse Properties of Complex Networks 13 of 40

Properties of Complex Networks

A problem

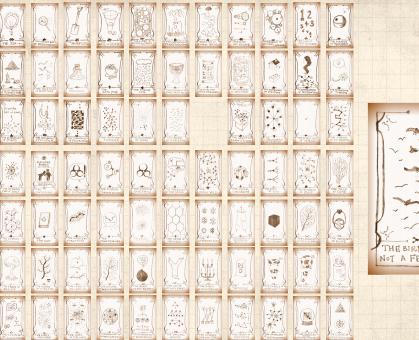
Degree distributions

Assortativity

Motifs

Concurrency

Branching ratios
Nerwork distances


Interconnectedn

Nutshell

2. Assortativity/3. Homophily:

Social networks: Homophily 🗹 = birds of a feather

The PoCSverse Properties of Complex Networks 16 of 40

Properties of Complex Networks

Assortativity

Branching ratios

Network distances

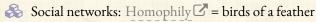
Nutshell

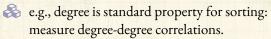
2. Assortativity/3. Homophily:

Social networks: Homophily = birds of a feather

e.g., degree is standard property for sorting: measure degree-degree correlations.

The PoCSverse Properties of Complex Networks 16 of 40


Assortativity


Nerwork distances

Nutshell

2. Assortativity/3. Homophily:

Assortative network: [5] similar degree nodes connecting to each other.

The PoCSverse Properties of Complex Networks 16 of 40

Properties of Complex Networks

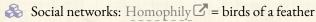
A problem

Degree distrib

Assortativity

Motifs

Concurrency


Network distances

Interconnectedne

Nutshell

2. Assortativity/3. Homophily:

e.g., degree is standard property for sorting: measure degree-degree correlations.

Assortative network: [5] similar degree nodes connecting to each other.

Disassortative network: high degree nodes connecting to low degree nodes.

The PoCSverse Properties of Complex Networks 16 of 40

Complex Networks

A problem

Degree distrib

Assortativity

Motifs

oncurrency

Network distances

Interconnectedne

Nutshell

2. Assortativity/3. Homophily:

- e.g., degree is standard property for sorting: measure degree-degree correlations.
- Assortative network: [5] similar degree nodes connecting to each other.
 - Often social: company directors, coauthors, actors.
- Disassortative network: high degree nodes connecting to low degree nodes.

The PoCSverse Properties of Complex Networks 16 of 40

Properties of Complex Networks

A problem

Degree distrib

Assortativity

Motifs .

Concurrency

Network distances

Interconnectedne

Nutshell

2. Assortativity/3. Homophily:

- e.g., degree is standard property for sorting: measure degree-degree correlations.
- Assortative network: [5] similar degree nodes connecting to each other.
 - Often social: company directors, coauthors, actors.
- Disassortative network: high degree nodes connecting to low degree nodes.
 - Often techological or biological: Internet, WWW, protein interactions, neural networks, food webs.

The PoCSverse Properties of Complex Networks 16 of 40

Properties of Complex Networks

A problem

Degree distri

Assortativity

Motifs

Concurrency

Network distances

Interconnectedne

Nutshell

Outline

Properties of Complex Networks

A problem
Degree distributions

Clustering

Motifs
Concurrency
Branching ratios
Network distance

Nutshell

References

The PoCSverse Properties of Complex Networks 17 of 40

Properties of Complex Networks

A problem

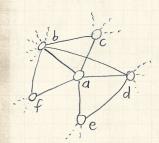
Degree distributions Assortativity

Clustering

Motifs

Concurrency

Branching ratios


Interconnectedne:

Nutshell

Local socialness:

4. Clustering:

The PoCSverse Properties of Complex Networks 18 of 40

Properties of Complex Networks

A problen

Degree distributions

Clustering

Motifs

Branching ratios

Network distances

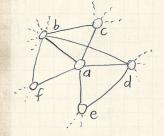
Interconnectedne

Nutshell

Local socialness:

4. Clustering:

Your friends tend to know each other.


Properties of Complex Networks

Clustering

Branching ratios

Network distances

Nutshell

Local socialness:

4. Clustering:

- Your friends tend to know each other.
- Two measures (explained on following slides):
 - 1. Watts & Strogatz [8]

$$C_1 = \left\langle \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle_i$$

2. Newman [6]

$$C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$$

The PoCSverse Properties of Complex Networks 18 of 40

Properties of Complex Networks

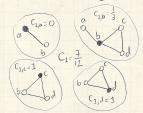
A problem

Degree distribution

Assortativity
Clustering

Motifs

Concurrency


Network distances

Mutchell

Calculation of C_1 :

The PoCSverse Properties of Complex Networks 19 of 40

Properties of Complex Networks

A problem

Degree distribution

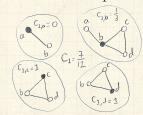
Clustering

.


Branching ratios

Network distances

Interconnectedne


Nutshell

C₁ is the average fraction of pairs of neighbors who are connected.

Calculation of C_1 :

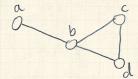
The PoCSverse Properties of Complex Networks 19 of 40

Properties of Complex Networks

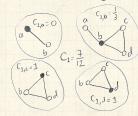
A problem

Degree distributions Assortativity

Clustering


Concurrency

Branching ratios


Network distances

Nutshell

Calculation of C_1 :

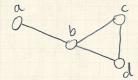
 C_1 is the average fraction of pairs of neighbors who are connected.

Fraction of pairs of neighbors who are connected is

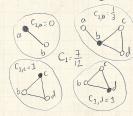
$$\frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$$

where k_i is node i's degree, and N_i is the set of *i*'s neighbors.

The PoCSverse Properties of Complex Networks 19 of 40


Properties of

Clustering


Nerwork distances

Nutshell

Calculation of C_1 :

 C_1 is the average fraction of pairs of neighbors who are connected.

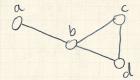
Fraction of pairs of neighbors who are connected is

$$\frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$$

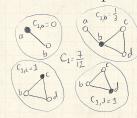
where k_i is node i's degree, and N_i is the set of i's neighbors.

Averaging over all nodes, we have:

$$C_1 = \frac{1}{n} \sum_{i=1}^n \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$$



Clustering


Nerwork distances

Nutshell

Calculation of C_1 :

 C_1 is the average fraction of pairs of neighbors who are connected.

Fraction of pairs of neighbors who are connected is

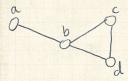
$$\frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$$

where k_i is node i's degree, and N_i is the set of i's neighbors.

Averaging over all nodes, we have:

$$C_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} = \left\langle \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle_i$$

The PoCSverse Properties of Complex Networks 19 of 40


Clustering

Nerwork distances

Nurshell

Example network:

 $\red{8}$ Nodes i_1, i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .

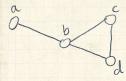
Triangles:

Triples:

The PoCSverse Properties of Complex Networks 20 of 40

Properties of Complex Networks

Clustering


Branching ratios

Network distances

Nutshell

Example network:

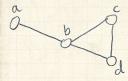
Triangles:

Triples:

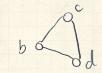
 \aleph Nodes i_1, i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .

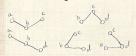
Nodes i_1, i_2 , and i_3 form a triangle if each pair of nodes is connected

The PoCSverse Properties of Complex Networks 20 of 40


Clustering

Nerwork distances


Nutshell


Example network:

Triangles:

Triples:

Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .

- Nodes i_1 , i_2 , and i_3 form a triangle if each pair of nodes is connected
- $\text{The definition } C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$ measures the fraction of closed triples

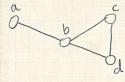
The PoCSverse Properties of Complex Networks 20 of 40

Properties of Complex Networks

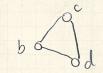
A problem

Degree distributions

Clustering Motifs


Concurrency

Network distances


Nutchall

Example network:

Triangles:

Triples:

Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .

- Nodes i_1 , i_2 , and i_3 form a triangle if each pair of nodes is connected
- $\text{The definition } C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$ measures the fraction of closed triples
- The '3' appears because for each triangle, we have 3 closed triples.

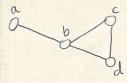
The PoCSverse Properties of Complex Networks 20 of 40

Properties of Complex Networks

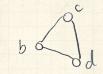
A problem

Clustering

Motits


Concurrency

Branching ratios Network distances


Nutshell

Example network:

Triangles:

Triples:

- Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .
- Nodes i_1 , i_2 , and i_3 form a triangle if each pair of nodes is connected
- $\text{The definition } C_2 = \frac{3 \times \text{\#triangles}}{\text{\#triples}}$ measures the fraction of closed triples
- The '3' appears because for each triangle, we have 3 closed triples.
- Social Network Analysis (SNA): fraction of transitive triples.

The PoCSverse Properties of Complex Networks 20 of 40

Properties of Complex Networks

A problem

Degree distribution

Clustering

Concurrency

Network distances Interconnectednes

Nutshell

Sneaky counting for undirected, unweighted networks:

The PoCSverse Properties of Complex Networks 21 of 40

Properties of Complex Networks

A problem

Degree distributions Assortativity

Clustering

Motifs

Branching ratios

Network distances

Interconnectedne

Nutshell

Sneaky counting for undirected, unweighted networks:

If the path $i-j-\ell$ exists then $a_{ij}a_{i\ell}=1$.

The PoCSverse Properties of Complex Networks 21 of 40

Properties of Complex Networks

Assortativity

Clustering

Branching ratios

Network distances

Nutshell

Sneaky counting for undirected, unweighted networks:

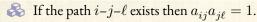
If the path $i-j-\ell$ exists then $a_{ij}a_{i\ell}=1$.

 \clubsuit Otherwise, $a_{ij}a_{i\ell}=0$.

The PoCSverse Properties of Complex Networks 21 of 40

Assortativity

Clustering


Branching ratios

Network distances

Nutshell

Sneaky counting for undirected, unweighted networks:

 \Leftrightarrow Otherwise, $a_{ij}a_{j\ell}=0$.

 $\mbox{\&}$ We want $i \neq \ell$ for good triples.

The PoCSverse Properties of Complex Networks 21 of 40

Properties of Complex Networks

A problem

Degree distribution

Clustering

Concurrency

Branching ratios
Nerwork distances

Interconnectedness

Nutshell

Sneaky counting for undirected, unweighted networks:

 $\begin{cases} \& \end{cases}$ If the path $i-j-\ell$ exists then $a_{ij}a_{j\ell}=1$.

 $\ensuremath{\&}$ We want $i \neq \ell$ for good triples.

 $\text{In general, a path of } n \text{ edges between nodes } i_1 \text{ and } i_n \\ \text{travelling through nodes } i_2, i_3, ... i_{n-1} \text{ exists} \iff \\ a_{i_1 i_2} a_{i_2 i_3} a_{i_3 i_4} \cdots a_{i_{n-2} i_{n-1}} a_{i_{n-1} i_n} = 1.$

The PoCSverse Properties of Complex Networks 21 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Concurrency

Branchine ratio

Network distances

Nutshell

Sneaky counting for undirected, unweighted networks:

 $\begin{cases} \& \end{cases}$ If the path $i-j-\ell$ exists then $a_{ij}a_{j\ell}=1$.

 $\ensuremath{\mathfrak{S}}$ We want $i \neq \ell$ for good triples.

 $\text{In general, a path of } n \text{ edges between nodes } i_1 \text{ and } i_n \\ \text{travelling through nodes } i_2, i_3, ... i_{n-1} \text{ exists } \Longleftrightarrow \\ a_{i_1 i_2} a_{i_2 i_3} a_{i_3 i_4} \cdots a_{i_{n-2} i_{n-1}} a_{i_{n-1} i_n} = 1.$

$$\# \text{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \text{Tr} A^2 \right)$$

The PoCSverse Properties of Complex Networks 21 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Motifs

Branchine ratio

Network distances

Interconnectedn

Nutshell

Sneaky counting for undirected, unweighted networks:

 $\begin{cases} \& \end{cases}$ If the path $i-j-\ell$ exists then $a_{ij}a_{j\ell}=1$.

 $\ensuremath{\mathfrak{S}}$ We want $i \neq \ell$ for good triples.

 $\text{In general, a path of } n \text{ edges between nodes } i_1 \text{ and } i_n \\ \text{travelling through nodes } i_2, i_3, ... i_{n-1} \text{ exists } \Longleftrightarrow \\ a_{i_1 i_2} a_{i_2 i_3} a_{i_3 i_4} \cdots a_{i_{n-2} i_{n-1}} a_{i_{n-1} i_n} = 1.$

8

$$\# \text{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \text{Tr} A^2 \right)$$

$$\# {\rm triangles} = \frac{1}{6} {\rm Tr} A^3$$

The PoCSverse Properties of Complex Networks 21 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Concurrency

Network distances

Interconnectedn

Nutshell

 \clubsuit For sparse networks, C_1 tends to discount highly connected nodes.

The PoCSverse Properties of Complex Networks 22 of 40

Properties of Complex Networks

Assortativity

Clustering

Branching ratios

Network distances

Nutshell

 $\ensuremath{\mathfrak{S}}$ For sparse networks, C_1 tends to discount highly connected nodes.

 \cite{C}_2 is a useful and often preferred variant

The PoCSverse Properties of Complex Networks 22 of 40

Complex Networks

A problem

Degree distributions
Assortativity

Clustering

Concurrency

Branching ratios

Network distances Interconnectedness

Nutshell

For sparse networks, C_1 tends to discount highly connected nodes.

 $\begin{cases} \&\begin{cases} \&\begin{cases} C_2 \end{cases} is a useful and often preferred variant \end{cases}$

 \clubsuit In general, $C_1 \neq C_2$.

The PoCSverse Properties of Complex Networks 22 of 40

Complex Networks

A problem

Degree distributions

Clustering

Concurrency Branching ratios

Network distances

Interconnectednes

Nutshell

For sparse networks, C_1 tends to discount highly connected nodes.

 $\cline{6}$ C_2 is a useful and often preferred variant

 \Leftrightarrow In general, $C_1 \neq C_2$.

 \mathcal{L}_1 is a global average of a local ratio.

The PoCSverse Properties of Complex Networks 22 of 40

Complex Networks

A problem

Degree distributions

Clustering

Concurrency

Network distances

Nutshell

For sparse networks, C_1 tends to discount highly connected nodes.

 $\cite{line}{\cite{line}{C_2}}$ is a useful and often preferred variant

 \clubsuit In general, $C_1 \neq C_2$.

 $\ensuremath{\mathfrak{S}} C_1$ is a global average of a local ratio.

& C_2 is a ratio of two global quantities.

The PoCSverse Properties of Complex Networks 22 of 40

Complex Networks

A problem

Degree distributions

Clustering

Concurrency

Network distances

interconnectedin

Nutshell

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering

Motifs

Concurrency
Branching ratios
Network distance
Interconnectedne

Nutshel

References

The PoCSverse Properties of Complex Networks 23 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Motifs

Concurrency

Branching ratios
Nerwork distances

Interconnectedne

Nutshell

5. motifs:

The PoCSverse Properties of Complex Networks 24 of 40

Properties of Complex Networks

A proble

Degree distributions

Clustering

Motifs

Concurrency

Branching ratios Network distances

Interconnectedne

Nutshell

5. motifs:

small, recurring functional subnetworks

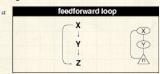
The PoCSverse Properties of Complex Networks 24 of 40

Properties of Complex Networks

Motifs

Branching ratios Network distances

Nutshell


5. motifs:

small, recurring functional subnetworks

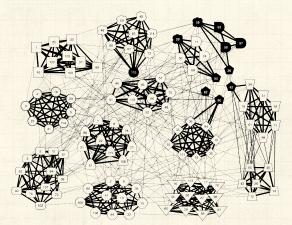
& e.g., Feed Forward Loop:

Shen-Orr, Uri Alon, et al. [7]

The PoCSverse Properties of Complex Networks 24 of 40

Complex Networks

Motifs


Branching ratios

Nerwork distances

Nutshell

6. modularity and structure/community detection:

Clauset et al., 2006 [2]: NCAA football

The PoCSverse Properties of Complex Networks 25 of 40

Properties of Complex Networks

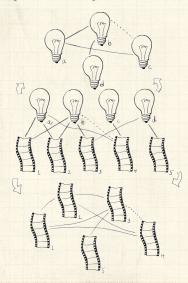
A problem

Degree distributions

Clustering

Motifs

Concurr


Branching ratios Network distances

Interconnectedn

Nutshell

Bipartite/multipartite affiliation structures:

Many real-world networks have an underlying multi-partite structure.

- Stories-tropes.
- Boards and directors.
- Films-actors-directors.
- Classes-teachersstudents.
- Upstairs-downstairs.

Unipartite networks may be induced or co-exist.

Motifs

Nerwork distances

Nutshell

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering

Motifs

Concurrency

Branching ratios
Network distance
Interconnectedne

Nutshell

References

The PoCSverse Properties of Complex Networks 27 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Motifs

Concurrency

Branching ratios Network distances

Interconnectednes

Nutshell

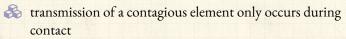
7. concurrency:

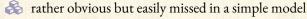
transmission of a contagious element only occurs during contact

The PoCSverse Properties of Complex Networks 28 of 40

Properties of Complex Networks

Motifs


Concurrency


Network distances

Nutshell

7. concurrency:

The PoCSverse Properties of Complex Networks 28 of 40

Properties of Complex Networks

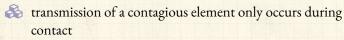
A problem

Degree distrib

Clustering

Motifs

Concurrency


Network distances

Interconnected

Nutshell

7. concurrency:

arther obvious but easily missed in a simple model

& dynamic property—static networks are not enough

The PoCSverse Properties of Complex Networks 28 of 40

Properties of Complex Networks

A problem

Degree distribut

Clustering

Concurrency

Branching ratios

Interconnectedne

Nutshell

7. concurrency:

- transmission of a contagious element only occurs during contact
- arther obvious but easily missed in a simple model
- 🚓 dynamic property—static networks are not enough
- & knowledge of previous contacts crucial

The PoCSverse Properties of Complex Networks 28 of 40

Properties of Complex Networks

A problem

Degree distribu

Clustering

Concurrency

Branching ratios

Interconnectedne

Nutshell

7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- 🙈 dynamic property—static networks are not enough
- & knowledge of previous contacts crucial
- & beware cumulated network data

The PoCSverse Properties of Complex Networks 28 of 40

Properties of Complex Networks

A problem

Degree distribut

Clustering

Motifs

Concurrency

Network distances

Nutshell

7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- 🙈 dynamic property—static networks are not enough
- & knowledge of previous contacts crucial
- & beware cumulated network data
- & Kretzschmar and Morris, 1996 [4]

The PoCSverse Properties of Complex Networks 28 of 40

Properties of Complex Networks

A problem

Degree distrib

Clustering

Concurrency

Network distances

Nutshell

7. concurrency:

- transmission of a contagious element only occurs during contact
- rather obvious but easily missed in a simple model
- 🙈 dynamic property—static networks are not enough
- & knowledge of previous contacts crucial
- 🙈 beware cumulated network data
- & Kretzschmar and Morris, 1996 [4]
- "Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

The PoCSverse Properties of Complex Networks 28 of 40

Properties of Complex Networks

A problem

Degree distribi

Justering

Concurrency

Network distances

Interconnected

Nutshell

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering

Motifs

Concurrence

Branching ratios

Network distances
Interconnectednes

Nutshell

References

The PoCSverse Properties of Complex Networks 29 of 40

Properties of Complex Networks

A problem

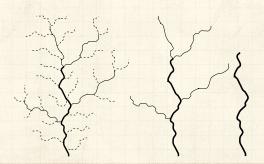
Degree distributions

Clustering

Motifs

Concurrency

Branching ratios Network distances


Nutshell

8. Horton-Strahler ratios:

Metrics for branching networks:

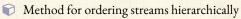
The PoCSverse Properties of Complex Networks 30 of 40

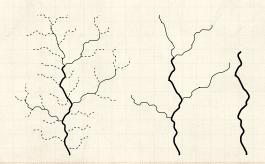
Properties of Complex Networks

Motifs

Branching ratios

Network distances


Nutshell



8. Horton-Strahler ratios:

Metrics for branching networks:

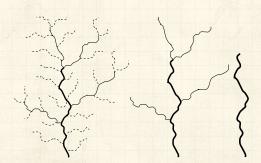
The PoCSverse Properties of Complex Networks 30 of 40

Properties of Complex Networks

Branching ratios

Network distances

Nutshell


8. Horton-Strahler ratios:

Metrics for branching networks:

Method for ordering streams hierarchically

Number: $R_n = N_{\omega}/N_{\omega+1}$

The PoCSverse Properties of Complex Networks 30 of 40

Complex Networks

Branching ratios Nerwork distances

Nutshell

8. Horton-Strahler ratios:

Metrics for branching networks:

Method for ordering streams hierarchically

Number: $R_n = N_{\omega}/N_{\omega+1}$

Segment length: $R_l = \langle l_{\omega+1} \rangle / \langle l_{\omega} \rangle$

The PoCSverse Properties of Complex Networks 30 of 40

Branching ratios Nerwork distances

Nutshell

8. Horton-Strahler ratios:

Metrics for branching networks:

Method for ordering streams hierarchically

Number: $R_n = N_\omega/N_{\omega+1}$

Segment length: $R_l = \langle l_{\omega+1} \rangle / \langle l_{\omega} \rangle$

ightharpoonup Area/Volume: $R_a = \langle a_{\omega+1} \rangle / \langle a_{\omega} \rangle$

The PoCSverse Properties of Complex Networks 30 of 40

Branching ratios Nerwork distances

Nutshell

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering

Motifs

Concurrency

Branching ratio

Network distances

Interconnectednes

Nutshel

References

The PoCSverse Properties of Complex Networks 31 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Motifs

Concurrency Branching ratios

Network distances

Nutshell

9. network distances:

The PoCSverse Properties of Complex Networks 32 of 40

Properties of Complex Networks

A problen

Degree distributions

Clustering

Motifs

Branching ratios

Network distances Interconnectedness

Nutshell

9. network distances:

(a) shortest path length d_{ij} :

The PoCSverse Properties of Complex Networks 32 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Motifs

Concurrency Branching ratios

Network distances

Nutshell

References

9. network distances:

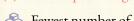
(a) shortest path length d_{ij} :

 \clubsuit Fewest number of steps between nodes i and j.

The PoCSverse Properties of Complex Networks 32 of 40

Properties of Complex Networks

Branching ratios


Network distances

Nutshell

9. network distances:

(a) shortest path length d_{ij} :

Rewest number of steps between nodes i and j.

A (Also called the chemical distance between i and j.)

The PoCSverse Properties of Complex Networks 32 of 40

Properties of Complex Networks

A problem

Degree distribution

Clustering

Concurrency

Branching ratios Network distances

Interconnecte

Nutshell

- 9. network distances:
- (a) shortest path length d_{ij} :
- Rewest number of steps between nodes i and j.
- (Also called the chemical distance between i and j.)
- (b) average path length $\langle d_{ij} \rangle$:

The PoCSverse Properties of Complex Networks 32 of 40

Properties of Complex Networks

A problem

Degree distribu

Clustering

Concurrency

Network distances

Nurshell

9. network distances:

(a) shortest path length d_{ij} :

 \clubsuit Fewest number of steps between nodes i and j.

A (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:

Average shortest path length in whole network.

The PoCSverse Properties of Complex Networks 32 of 40

Properties of Complex Networks

A problem

Degree distribution

Clustering

Concurrency

Network distances

Nutshell

9. network distances:

(a) shortest path length d_{ij} :

Rewest number of steps between nodes i and j.

A (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:

Average shortest path length in whole network.

Good algorithms exist for calculation.

The PoCSverse Properties of Complex Networks 32 of 40

Properties of Complex Networks

A problem

Degree distribution

Clustering

Motifs

Bean china sarias

Network distances

Nutshell

9. network distances:

(a) shortest path length d_{ij} :

- \Leftrightarrow Fewest number of steps between nodes i and j.
- & (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:

- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.

The PoCSverse Properties of Complex Networks 32 of 40

Properties of Complex Networks

A problem

Degree distribut

Clustering

Concurrency

Branching ratios Network distances

Interconnectedne

Nutshell

9. network distances:

 \Leftrightarrow network diameter d_{max} :

Maximum shortest path length between any two nodes.

The PoCSverse Properties of Complex Networks 33 of 40

Properties of Complex Networks

Branching ratios

Network distances

Nutshell

9. network distances:

 \red network diameter d_{\max} :

Maximum shortest path length between any two nodes.

 $\mbox{\ensuremath{\&}}$ closeness $d_{\rm cl} = [\sum_{ij} d_{ij}^{-1}/\binom{n}{2}]^{-1}$:

Average 'distance' between any two nodes.

The PoCSverse Properties of Complex Networks 33 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Concurrency

Branching ratios

Network distances

Interconnected

Nutshell

9. network distances:

 $\red { }$ network diameter d_{\max} :

Maximum shortest path length between any two nodes.

 \Leftrightarrow closeness $d_{\rm cl} = \left[\sum_{ij} d_{ij}^{-1}/\binom{n}{2}\right]^{-1}$:

Average 'distance' between any two nodes.

The PoCSverse Properties of Complex Networks 33 of 40

Properties of Complex Networks

A problem

Degree distribu

Clustering

Concurrency

Network distances

Nutshell

9. network distances:

 $\begin{cases} \& \end{cases}$ network diameter d_{\max} :

Maximum shortest path length between any two nodes.

 \Leftrightarrow closeness $d_{\rm cl} = \left[\sum_{ij} d_{ij}^{-1}/\binom{n}{2}\right]^{-1}$:

Average 'distance' between any two nodes.

- & Closeness handles disconnected networks $(d_{ij} = \infty)$
- $d_{\rm cl} = \infty$ only when all nodes are isolated.
- Closeness perhaps compresses too much into one number

The PoCSverse Properties of Complex Networks 33 of 40

Properties of Complex Networks

A problem

Degree distrib

Clustering

Concurrency

Branching ratios

Network distances Interconnectedness

Nutshell

10. centrality:

The PoCSverse Properties of Complex Networks 34 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Motifs

Branching ratios

Network distances Interconnectedness

Nutshell

10. centrality:

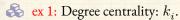
Many such measures of a node's 'importance.'

The PoCSverse Properties of Complex Networks 34 of 40

Properties of Complex Networks

Branching ratios

Network distances


Nutshell

10. centrality:

Many such measures of a node's 'importance.'

The PoCSverse Properties of Complex Networks 34 of 40

Properties of Complex Networks

Branching ratios

Network distances

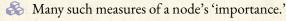
Nutshell

10. centrality:

Many such measures of a node's 'importance.'

 \Leftrightarrow ex 1: Degree centrality: k_i .

= fraction of shortest paths that pass through i.


The PoCSverse Properties of Complex Networks 34 of 40

Network distances

Nutshell

10. centrality:

 \Leftrightarrow ex 1: Degree centrality: k_i .

ex 2: Node i's betweenness = fraction of shortest paths that pass through i.

ex 3: Edge ℓ 's betweenness = fraction of shortest paths that travel along ℓ .

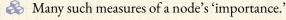
The PoCSverse Properties of Complex Networks 34 of 40

Properties of Complex Networks

A problem

Degree distributions

Mosife


Concurrency

Network distances

Nutshell

10. centrality:

 \Leftrightarrow ex 1: Degree centrality: k_i .

ex 2: Node i's betweenness = fraction of shortest paths that pass through i.

ex 3: Edge ℓ 's betweenness = fraction of shortest paths that travel along ℓ .

ex 4: Recursive centrality: Hubs and Authorities (Jon Kleinberg [3]) The PoCSverse Properties of Complex Networks 34 of 40

Properties of Complex Networks

A problem

Degree distribut

Clustering

Concurrency

Network distances

Nutshell

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

Clustering

Motif

Concurrence

Branching ratio

Network distance

Interconnectedness

Nutshell

References

The PoCSverse Properties of Complex Networks 35 of 40

Properties of Complex Networks

A problem

Degree distribution

Clustering

Motifs

Concurrency Branching ratios

Nerwork distances

Interconnectedness

Nutshell

Interconnected networks and robustness (two for one deal):

"Catastrophic cascade of failures in interdependent networks" $^{[1]}$. Buldyrev et al., Nature 2010.

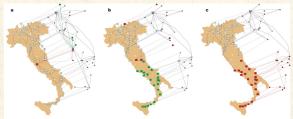


Figure 1 [Modelling a blackout in lally. Illustration of an iterative process of a cascade of failure using real-world after from a power network (footsted on the map of lanly) and an Internet network (shifted above the map) that were 2000. The network of the map of the power of the map of the power of the map of the power of th

at the next step are marked in green. b, Additional nodes that were disconnected from the Internet communication network gain component are removed (red nodes above map). As a result the power stations depending on them are removed from the power network (feel nodes on map). Again, the nodes that will be disconnected from the gaint cluster at the next step are marked in green. C, Additional nodes that were disconnected may be a seen as the proper seal of the property of the

The PoCSverse Properties of Complex Networks 36 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Motifs

Concurrency

Network distances

Interconnectedness

Nutshell

Overview Key Points:

The field of complex networks came into existence in the late 1990s.

The PoCSverse Properties of Complex Networks 37 of 40

Properties of Complex Networks

Branching ratios Network distances

Nutshell

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.

The PoCSverse Properties of Complex Networks 37 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Concurrency

Branching ratios

Network distances

Interconnected

Nutshell

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- A Hardened up much thinking about complex systems.

The PoCSverse Properties of Complex Networks 37 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Concurrency

Branching ratios
Nerwork distances

Interconnectedn

Nutshell

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- & Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.

The PoCSverse Properties of Complex Networks 37 of 40

Properties of Complex Networks

A problem

Degree distributio

Clustering

Concurrency

Branching ratios
Network distances

Interconnectedn

Nutshell

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- A Three main (blurred) categories:
 - 1. Physical (e.g., river networks),
 - 2. Interactional (e.g., social networks),
 - 3. Abstract (e.g., thesauri).

The PoCSverse Properties of Complex Networks 37 of 40

Properties of Complex Networks

A problem

Degree distrib

Clustering

Concurrency

Branching ratios

Network distances

Interconnectedr

Nutshell

scale-free-networks,

The PoCSverse Properties of Complex Networks 38 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Motifs

Concurrency Branching ratios

Network distances

Interconnectedne

Nutshell

Neural reboot (NR):

Mouse

The PoCSverse Properties of Complex Networks 38 of 40

Properties of Complex Networks

A problem

Degree distributions

Clustering

Motifs

Concurrency

Branching ratios Network distances

Interconnectedne

Nutshell

References

https://www.you

References I

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin.

Catastrophic cascade of failures in interdependent networks.

Nature, 464:1025–1028, 2010. pdf

- [2] A. Clauset, C. Moore, and M. E. J. Newman. Structural inference of hierarchies in networks, 2006. pdf
- [3] J. M. Kleinberg.
 Authoritative sources in a hyperlinked environment.

 Proc. 9th ACM-SIAM Symposium on Discrete Algorithms,
 1998. pdf
- [4] M. Kretzschmar and M. Morris. Measures of concurrency in networks and the spread of infectious disease. Math. Biosci., 133:165–95, 1996. pdf

The PoCSverse Properties of Complex Networks 39 of 40

Properties of Complex Networks

A problem

Accorpativity

Morifo

Concurrency

Network distances

Interconnectedn

Nutshell

References II

[5] M. Newman.

Assortative mixing in networks.

Phys. Rev. Lett., 89:208701, 2002. pdf

[6] M. E. J. Newman.

The structure and function of complex networks.

SIAM Rev., 45(2):167−256, 2003. pdf ✓

[7] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of *Escherichia coli*. Nature Genetics, 31:64–68, 2002. pdf

[8] D. J. Watts and S. J. Strogatz.
Collective dynamics of 'small-world' networks.
Nature, 393:440–442, 1998. pdf

The PoCSverse Properties of Complex Networks 40 of 40

Properties of Complex Networks

A problem

Degree distril

Clustering

Concurrency

Branching ratios

Network distances

Nutshell

