Properties of Complex Networks

Last updated: 2024/11/19, 09:31:33 EST

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024-2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Outline

Properties of Complex Networks

A problem

Degree distributions

Assortativity

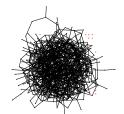
Clustering

Motifs

Concurrency

Branching ratios

Network distances


Interconnectedness

Nutshell

References

A notable feature of large-scale networks:

Graphical renderings are often just a big mess.

← Typical hairball

 \bigcirc number of nodes N = 500

number of edges m = 1000

 \geqslant average degree $\langle k \rangle = 4$

And even when renderings somehow look good: "That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way"

said Ponder [Stibbons] -Making Money, T. Pratchett.

We need to extract digestible, meaningful aspects.

Properties of Complex Networks 1 of 38 Some key aspects of real complex networks:

& degree distribution*

assortativity

The PoCSverse

Properties of Complex Network

Properties of Complex Networks

Properties of Complex Network

Nutshell

Properties of Complex Networks 5 of 38

Properties of Complex Network

& homophily

clustering

motifs

8

modularity

efficiency robustness

🚳 centrality

multilayerness

concurrency

network distances

& hierarchical scaling

Plus coevolution of network structure and processes on networks.

* Degree distribution is the elephant in the room that we are now all very aware of...

Properties

1. degree distribution P_{ι}

A P_{l} is the probability that a randomly selected node has degree

& ex 1: Erdős-Rényi random networks have Poisson degree distributions:

Insert assignment question 2

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

 \Leftrightarrow ex 2: "Scale-free" networks: $P_k \propto k^{-\gamma} \Rightarrow$ 'hubs'.

link cost controls skew.

hubs may facilitate or impede contagion.

& k = node degree = number of connections.

$$P_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

Properties

Note:

& Erdős-Rényi random networks are a mathematical construct.

& 'Scale-free' networks are growing networks that form according to a plausible mechanism.

Randomness is out there, just not to the degree of a completely random network.

Properties

Properties of Complex Networks

Properties of Complex Networks

Properties of Complex Network

Nutshell

References

Properties of

Properties of Complex Networks

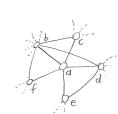
Properties of Complex Networks

Nutshell References

2. Assortativity/3. Homophily:

Social networks: Homophily = birds of a feather

& e.g., degree is standard property for sorting: measure degree-degree correlations.


Assortative network: [5] similar degree nodes connecting to Often social: company directors, coauthors, actors.

Disassortative network: high degree nodes connecting to low

Often techological or biological: Internet, WWW, protein interactions, neural networks, food webs.

Local socialness:

4. Clustering:

Example network:

Calculation of C_1 :

Nour friends tend to know each other.

Two measures (explained on following slides):

1. Watts & Strogatz [8]

$$C_1 = \left\langle \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle$$

2. Newman [6]

are connected is

Properties of Complex Networks

The PoCSverse

Properties of Complex Networks

Properties of Complex Network

Nutshell

Properties of Complex Network

The PoCSverse Properties of Complex Networks 17 of 38

Fraction of pairs of neighbors who

where k_i is node i's degree, and N_i is the set of i's neighbors.

of neighbors who are connected.

 $\frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2}$

 \mathcal{L}_1 is the average fraction of pairs

Properties of Complex Network

Averaging over all nodes, we have:

 $\bigg\langle \frac{\sum_{j_1 j_2 \in N_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \bigg\rangle$

Triples and triangles

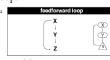
Example network:

Triangles:

Triples:

- \aleph Nodes i_1 , i_2 , and i_3 form a triple around i_1 if i_1 is connected to i_2 and i_3 .
- Nodes i_1 , i_2 , and i_3 form a triangle if each pair of nodes is connected
- $\ \ \, \mbox{ The definition } C_2 = \frac{3\times \mbox{\tt \#triangles}}{\mbox{\tt \#triples}}$ measures the fraction of closed triples
- The '3' appears because for each triangle, we have 3 closed triples.
- Social Network Analysis (SNA): fraction of transitive triples.

Properties Properties of Complex Networks


Properties of Complex Networks

The PoCSverse Properties of Complex Networks

Properties of Complex Netw

5. motifs:

- small, recurring functional subnetworks
- & e.g., Feed Forward Loop:

Shen-Orr, Uri Alon, et al. [7]

Properties

7. concurrency:

Properties of Complex Networks

Properties of Complex Networks

Nutshell

Properties of Complex Networks

Complex Networks

Properties of

Nutshell

transmission of a contagious element only occurs during

arther obvious but easily missed in a simple model

& dynamic property—static networks are not enough

& knowledge of previous contacts crucial

& beware cumulated network data

Kretzschmar and Morris, 1996 [4]

"Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

The PoCSverse

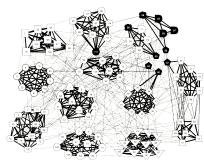
Properties of Complex Networks 26 of 38

Properties of Complex Network

Clustering:

Sneaky counting for undirected, unweighted networks:

- \Re If the path $i-j-\ell$ exists then $a_{ij}a_{i\ell}=1$.
- \Re Otherwise, $a_{ij}a_{i\ell} = 0$.
- & We want $i \neq \ell$ for good triples.
- \Re In general, a path of n edges between nodes i_1 and i_n travelling through nodes $i_2, i_3, ... i_{n-1}$ exists \iff $a_{i_1i_2}a_{i_2i_3}a_{i_3i_4}\cdots a_{i_{n-2}i_{n-1}}a_{i_{n-1}i_n}=1.$


$$\# \mathrm{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \mathrm{Tr} A^2 \right)$$

$$\#$$
triangles $=\frac{1}{6}$ Tr A^3

Properties

6. modularity and structure/community detection:

Clauset et al., 2006 [2]: NCAA football

Properties

8. Horton-Strahler ratios:

- Metrics for branching networks:
 - Method for ordering streams hierarchically
 - Number: $R_n = N_\omega/N_{\omega+1}$
 - Segment length: $R_l = \langle l_{\omega+1} \rangle / \langle l_{\omega} \rangle$
 - Area/Volume: $R_a = \langle a_{\omega+1} \rangle / \langle a_{\omega} \rangle$

Properties of Complex Networks

Properties of Complex Network

References

Properties

- & For sparse networks, C_1 tends to discount highly connected nodes.
- \mathcal{E}_2 is a useful and often preferred variant
- \Re In general, $C_1 \neq C_2$.
- \mathcal{E}_1 is a global average of a local ratio.
- \mathcal{E}_2 is a ratio of two global quantities.

Bipartite/multipartite affiliation structures:

- Many real-world networks have an underlying multi-partite structure.
 - Stories-tropes.
 - Boards and directors. Films-actors-directors.
 - Classes-teachersstudents.
 - Upstairs-downstairs.
- Unipartite networks may be induced or co-exist.

Properties

Properties of Complex Networks

Properties of Complex Networks 24 of 38

Nutshell References 9. network distances:

(a) shortest path length $d_{i,i}$:

- \Re Fewest number of steps between nodes i and j.
- A (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ij} \rangle$:

- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.

Properties of Complex Networks 30 of 38

Properties of Complex Network

Nutshell

References

Properties

9. network distances:

 $\stackrel{\text{left}}{\Leftrightarrow}$ network diameter d_{max} : Maximum shortest path length between any two nodes.

& closeness $d_{\rm cl} = [\sum_{ij} d_{ij}^{-1} / {n \choose 2}]^{-1}$: Average 'distance' between any two nodes.

& Closeness handles disconnected networks $(d_{ij} = \infty)$

 $d_{cl} = \infty$ only when all nodes are isolated.

Closeness perhaps compresses too much into one number

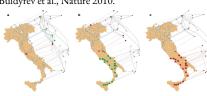
Properties

10. centrality:

Many such measures of a node's 'importance.'

 \Leftrightarrow ex 1: Degree centrality: k_i .

& ex 2: Node *i*'s betweenness = fraction of shortest paths that pass through i.


 \Leftrightarrow ex 3: Edge ℓ 's betweenness = fraction of shortest paths that travel along ℓ .

& ex 4: Recursive centrality: Hubs and Authorities (Jon Kleinberg [3])

Properties

Interconnected networks and robustness (two for one deal):

"Catastrophic cascade of failures in interdependent networks" [1]. Buldyrev et al., Nature 2010.

Properties of Complex Networks 31 of 38

Properties of Complex Networks

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- Three main (blurred) categories:
 - 1. Physical (e.g., river networks),
 - 2. Interactional (e.g., social networks),
 - 3. Abstract (e.g., thesauri).

Properties of Complex Networks 32 of 38

Properties of Complex Networks

Properties of Complex Networks 34 of 38

Properties of Complex Network

Nutshell:

Properties of Complex Networks

The PoCSverse

Properties of Complex Networks

Nutshell

References

scale-free-networks,

References I

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin. Catastrophic cascade of failures in interdependent networks. Nature, 464:1025-1028, 2010. pdf

[2] A. Clauset, C. Moore, and M. E. J. Newman. Structural inference of hierarchies in networks, 2006. pdf

[3] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf 🖸

[4] M. Kretzschmar and M. Morris. Measures of concurrency in networks and the spread of infectious disease. Math. Biosci., 133:165-95, 1996. pdf

Properties of Complex Networks

Properties of Complex Networks

Nutshell

References

References II

[5] M. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701, 2002. pdf

[6] M. E. J. Newman. The structure and function of complex networks. SIAM Rev., 45(2):167–256, 2003. pdf

[7] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31:64-68, 2002. pdf

[8] D. J. Watts and S. J. Strogatz. Collective dynamics of 'small-world' networks. Nature, 393:440-442, 1998. pdf

Properties of Complex Networks 38 of 38

The PoCSverse

Properties of Complex Networks

Properties of Complex Network

Nutshell

References

Properties of Complex Network

References