

MATH 124: Matrixology (Linear Algebra)

Level Pac-Man (1980) ☑, 5 of 10 University of Vermont, Spring 2015

Dispersed: Thursday, February 19, 2015.

Due: By start of lecture, Thursday, February 26, 2015.

Sections covered: 3.1–3.5, some of 3.6.

Some useful reminders:

Instructor: Prof. Peter Dodds

Office: Farrell Hall, second floor, Trinity Campus

E-mail: peter.dodds@uvm.edu

Office hours: 2 to 2:45 pm, Mondays; 3 to 3:45 pm Tuesdays; and 1 to 2:30 pm Wednesdays

Course website: http://www.uvm.edu/~pdodds/teaching/courses/2015-01UVM-124

Textbook: "Introduction to Linear Algebra" (3rd or 4th edition) by Gilbert Strang (published

by Wellesley-Cambridge Press).

• All questions are worth 3 points unless marked otherwise.

• Please use a cover sheet and write your name on the back and the front of your assignment.

- You must show all your work clearly.
- You may use Matlab to check your answers for non-Matlab questions (usually Qs. 1-8).
- Please list the names of other students with whom you collaborated.
 - 1. For each of the following reduced row echelon forms of some original matrices, write down the following: m, n, r, the dimension of nullspace, and the dimension of column space, and the number of possible solutions $(0, 1, \text{ or } \infty)$ depending on \vec{b} :

(a)
$$\mathbf{R_A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, (b) $\mathbf{R_A} = \begin{bmatrix} 1 & -2 & 0 & 3 & -1 \\ 0 & 0 & 1 & 4 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$,

(c)
$$\mathbf{R_A} = \begin{bmatrix} 1 & -2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
.

2. Consider a matrix A which is given by the outer product $A=\vec{u}\vec{v}^{\mathrm{T}}$ where

$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 2 \\ -4 \\ 8 \end{bmatrix}$.

1

(a) Find m, n, the rank r for A.

- (b) Find column space C(A) and a basis for C(A).
- (c) Find nullspace N(A) and a basis for N(A).

(Note: this kind of matrix built from an outer product appears everywhere in real world problems; we'll see more of them later in the semester; you may need to lie down for a while to digest this thrilling detail about your future.)

- 3. Give all possible forms of $\mathbf{R}_{\mathbf{A}}$, if any exist, for all matrices satisfying the following conditions (use apples, campfires, whatever you like, for any unknowns).
 - (a) Rank = 4, dimension of nullspace = 0, m = 4.
 - (b) Dimension of column space = 5, n = 5, m = 4.
 - (c) Rank = 2, dimension of nullspace = 2, m = 3.

Please assume that the first column is always a pivot column.

- 4. (a) What is the row reduced form R_A of a 3 by 4 matrix A which has -1 in every entry?
 - **(b)** What are the dimensions of A's column space and nullspace?
 - (c) Write down a basis for column space.
- 5. If \vec{w}_1 , \vec{w}_2 , and \vec{w}_3 are independent vectors, show that the differences $\vec{v}_1 = \vec{w}_2 \vec{w}_3$, $\vec{v}_2 = \vec{w}_1 \vec{w}_3$, and $\vec{v}_3 = \vec{w}_1 \vec{w}_2$ are dependent. Do this by finding a combination of the \vec{v} 's that gives $\vec{0}$.
- 6. Determine whether or not these vectors are independent or dependent: $\vec{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$,

$$ec{v}_2 = \left[egin{array}{c} 2 \\ 1 \\ -3 \end{array}
ight]$$
 , and $ec{v}_3 = \left[egin{array}{c} -3 \\ 1 \\ 1 \end{array}
ight]$.

(Hint: you can test for dependence by placing vectors as rows in a matrix and performing row reduction. Or you can determine if a matrix with these vectors as its columns has a non-trivial nullspace or not.)

- 7. Suppose \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , and \vec{v}_4 are vectors in R^3 . Complete the following sentences:
 - (a) These four vectors are dependent because _____.
 - **(b)** The two vectors \vec{v}_1 and \vec{v}_2 will be dependent if _____.
 - (c) The vectors \vec{v}_1 and $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ are dependent because _____.
- 8. True or false (please give a reason if true and a counter example if false):
 - (a) The columns of a matrix are a basis for the column space.
 - (b) If a matrix contains a column that is all zeros, the columns are dependent.

2

(c) If the columns of a matrix are dependent, so are the rows.

9. Matlab question:

Taking

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{array} \right]$$

use Matlab's rref command to find the following reduced row echelon forms:

- (a) $\mathbf{R}_{\mathbf{A}}$,
- (b) $\mathbf{R}_{\mathbf{A}\mathbf{A}^{\mathrm{T}}}$,
- (c) $\mathbf{R}_{\mathbf{A}^{\mathrm{T}}\mathbf{A}}$,

and write down m, n, and rank r for all three.

10. Matlab question:

Consider the n by n family of matrices A(k;n) where $a_{ij}=(i-j)^k$, and k is an integer.

These matrices are a special kind of weight matrix where the entries increase in magnitude as a function of "distance" from the main diagonal.

Using Matlab's command "rank", and some experimentation for small k and n, determine how the rank of A(k;n) for general k and n.

Here's a small function for generating A(k;n). Create an empty file called weightmatrix.m and dump this text in:

function A = weightmatrix(k,n)

$$A = (ones(n,1)*(0:n-1) - (0:n-1)'*ones(1,n)).^k;$$

See if you can figure out how the above line of code works. The insides contain two outer products. What do they make?

Show an example weight matrix with k=3 and n=5:

>> weightmatrix(3,5)

Find its rank:

>> rank(weightmatrix(3,5))

Now play around.

11. Bonus time (1 point):

What is the lyrebird extremely good at doing?

See if you can find the David Attenborough BBC video online.