P <. What's Principles of Complex Systems, CSYS/MATH 300
8 The University of Vermont, Fall 2014
S g Story? Assignment 4 e code name: Adora Belle

Dispersed: Thursday, September 18, 2014.

Due: By start of lecture, 1:00 pm, Fhursday—September25 Tuesday, September 30, 2014.
Some useful reminders:

Instructor: Peter Dodds

Office: Farrell Hall, second floor, Trinity Campus

E-mail: peter.dodds@uvm.edu

Office hours: 2:30 pm to 3:45 pm on Tuesday, 12:30 pm to 2:00 pm on Wednesday
Course website: http://www.uvm.edu/~pdodds/teaching/courses/2014-08UVM-300

All parts are worth 3 points unless marked otherwise. Please show all your working
clearly and list the names of others with whom you collaborated.

Graduate students are requested to use BTEX (or related TEX variant).

1. (3+3+23)
A courageous coding festival:

Code up the discrete HOT model in 1-d. Let's see if we find any of these
super-duper power laws everyone keeps talking about. We'll follow the same
approach as the 2-d forest discussed in lectures.

Main goal: extract yield curves as a function of the design D parameter as
described below.

Suggested simulations elements:

» N = 10% as a start. Then see if N = 10° or N = 10° is possible.
= Start with no trees.

= Probability of a spark at the ith site: P(i) oc e~/ where i is tree position
(i =1to N). (You will need to normalize this properly.) The quantity ¢ is
the characteristic scale for this distribution; try £ = 2 x 10°.

= Consider a design problem of D =1, 2, N2 and N. (If N/? and N are
too much, you can drop them. Perhaps sneak out to D = 3.) Recall that the
design problem is to test D randomly chosen placements of the next tree
against the spark distribution.

» For each test tree, measure the average yield (number of trees left) with
n = 100 randomly selected sparks. Select the tree location with the highest
average yield and plant a tree there.


http://www.uvm.edu/~pdodds/teaching/courses/2014-08UVM-300

» Add trees until the linear forest is full, measuring average yield as a function
of trees added.

= Only trees and adjacent trees burn. In effect, you will be burning un-treed
intervals of the line (much less complicated than 2-d).

(a) Plot the yield curves for each value of D.
(b) Identify peak yield for each value of D.

(c) Plot distributions of connected tree interval sizes at peak yield (you will have
to rebuild forests and stop at the peak yield value of D to find these
distributions.

Hint: keeping a list of un-treed locations will make choosing the next location
easier. Hopefully.

Highly optional territory: Code up the 2-d version and share the goodness on
Github.

. The discrete version of HOT theory:

From lectures, we had the follwoing.

Cost: Expected size of ‘fire’ in a d-dimensional lattice:

Nsites Nsites

Cire X Z (piai)ai = Z Pz‘afa
i=1 i=1

where a; = area of ith site's region, and p; = avg. prob. of fire at site in ith site's
region.

From lectures, the constraint for building and maintaining (d — 1)-dimensional
firewalls in d-dimensions is

Nsites )/

z : (d=1)/d —1
Cfirewalls X a,; a; -,

i=1

where we are assuming isometry.

Using Lagrange Multipliers, safety goggles, rubber gloves, a pair of tongs, and a
maniacal laugh, determine that:
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. (3 + 3 + 3) Highly Optimized Tolerance:

This question is based on Carlson and Doyle's 1999 paper “Highly optimized
tolerance: A mechanism for power laws in design systems” [1]. In class, we made
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our way through a discrete version of a toy HOT model of forest fires. This paper
revolves around the equivalent continuous model’s derivation. You do not have to
perform the derivation but rather carry out some manipulations of probability
distributions using their main formula.

Our interest is in Table | on p. 1415:

p(x) P cum(X) Peum(A)
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and Equation 8 on the same page:
PE(A) = / p(X)dX =p> (pil (AJY)) ,
pmH(AT)
where v = o+ 1/ and we'll write P> for Peyp.
Please note that Ps(A) for 2741 is not correct. Find the right one!

Here, A(x) is the area connected to the point x (think connected patch of trees
for forest fires). The cost of a ‘failure’ (e.g., lightning) beginning at x scales as
A(x)® which in turn occurs with probability p(x). The function p~! is the inverse
function of p.

Resources associated with point x are denoted as R(x) and area is assumed to
scale with resource as A(x) ~ R7%(x).

Finally, p> is the complementary cumulative distribution function for p.
As per the table, determine p>(x) and P> (A) for the following (3 pts each):
(a) p(z) = ca™@*D,

(b) p(x) = ce™*, and

Note that these forms are for the tails of p only, and you should incorporate a
constant of proportionality ¢, which is not shown in the paper.

. In lectures on lognormals and other heavy-tailed distributions, we came across a
super fun and interesting integral when considering organization size distributions
arising from growth processes with variable lifespans.

< 1 (In ﬁ)2)
P(x) = e M——— ex (— o dt
( ) [0 x/ 27t P 2t
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Show that




leads to:

P(z) < xte™V 2An 502

and therefore, surprisingly, two different scaling regimes. Enjoyable suffering may
be involved. Really enjoyable suffering. But many monks have found a way so you
should follow their path laid out below.

Hints and steps:

» Make the substitution ¢ = u? to find an integral of the form (excluding a
constant of proportionality)

Ii(a,b) = / exp (—au® — b/u?) du
0

where in our case a = XA and b = (In £)?/2.

» Substitute au? = t? into the above to find
1 o0
Ii(a,b) = — —t* —ab/t?) dt
1(0‘7 ) \/6/0 eXp( a / )
= Now work on this integral:

Ly(r) = /000 exp (—t* —r/t%) dt

where r = ab.

» Differentiate I, with respect to r to create a simple differential equation for
I, You will need to use the substitution u = /7 /t and your differential
equation should be of the (very simple) form

%ﬁ?ﬂ) = —(something)l5(r).

= Solve the differential equation you find. To find the constant of integration,
you can evaluate /5(0) separately:

L) = [ ew(-)a,

where our friend I'(1/2) comes into play.
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