
Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

1 of 88

Social Contagion
Principles of Complex Systems

CSYS/MATH 300, Fall, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics | Center for Complex Systems |
Vermont Advanced Computing Center | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2011-08UVM-300
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~cems/mathstat/
http://www.uvm.edu/~cems/complexsystems/
http://www.uvm.edu/~vacc/
http://www.uvm.edu
http://www.uvm.edu
http://www.uvm.edu/~cems/complexsystems/
http://www.uvm.edu/~vacc/
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds


Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

2 of 88

Outline

Social Contagion Models
Background
Granovetter’s model
Network version
Groups
Chaos

References

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

4 of 88

Social Contagion

http://xkcd.com/610/ (�)
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Social Contagion

Examples abound

I fashion
I striking
I smoking (�) [6]

I residential
segregation [16]

I ipods
I obesity (�) [5]

I Harry Potter
I voting
I gossip

I Rubik’s cube
I religious beliefs
I leaving lectures

SIR and SIRS contagion possible
I Classes of behavior versus specific behavior: dieting

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://content.nejm.org/cgi/content/short/358/21/2249
http://content.nejm.org/cgi/content/full/357/4/370
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Framingham heart study:

Evolving network stories (Christakis and Fowler):
I The spread of quitting smoking (�) [6]

I The spread of spreading (�) [5]

I Also: happiness (�) [8], loneliness, ...
I The book: Connected: The Surprising Power of Our

Social Networks and How They Shape Our Lives (�)

Controversy:
I Are your friends making you fat? (�) (Clive

Thomspon, NY Times, September 10, 2009).
I Everything is contagious (�)—Doubts about the

social plague stir in the human superorganism (Dave
Johns, Slate, April 8, 2010).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.nejm.org/doi/full/10.1056/NEJMsa0706154
http://www.nejm.org/doi/full/10.1056/NEJMsa066082
http://www.bmj.com/content/337/bmj.a2338.full
http://www.amazon.com/Connected-Surprising-Power-Social-Networks/dp/0316036145
http://www.amazon.com/Connected-Surprising-Power-Social-Networks/dp/0316036145
http://www.nytimes.com/2009/09/13/magazine/13contagion-t.html?pagewanted=all
http://www.slate.com/id/2250102/
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Social Contagion

Two focuses for us
I Widespread media influence
I Word-of-mouth influence

We need to understand influence
I Who influences whom? Very hard to measure...
I What kinds of influence response functions are

there?
I Are some individuals super influencers?

Highly popularized by Gladwell [9] as ‘connectors’
I The infectious idea of opinion leaders (Katz and

Lazarsfeld) [13]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The hypodermic model of influence
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The two step model of influence [13]
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The general model of influence
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Social Contagion

Why do things spread?
I Because of properties of special individuals?
I Or system level properties?
I Is the match that lights the fire important?
I Yes. But only because we are narrative-making

machines...
I We like to think things happened for reasons...
I Reasons for success are usually ascribed to intrinsic

properties (e.g., Mona Lisa)
I System/group properties harder to understand
I Always good to examine what is said before and

after the fact...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The Mona Lisa

I “Becoming Mona Lisa: The Making of a Global
Icon”—David Sassoon

I Not the world’s greatest painting from the start...
I Escalation through theft, vandalism, parody, ...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The completely unpredicted fall of Eastern
Europe

Timur Kuran: [14, 15] “Now Out of Never: The Element of
Surprise in the East European Revolution of 1989”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The dismal predictive powers of editors...
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Social Contagion

Messing with social connections
I Ads based on message content

(e.g., Google and email)
I BzzAgent (�)
I Facebook’s advertising: Beacon (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://about.bzzagent.com/
http://en.wikipedia.org/wiki/Facebook_Beacon
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Getting others to do things for you

A very good book: ‘Influence’ [7] by Robert Cialdini (�)

Six modes of influence
1. Reciprocation: The Old Give and Take... and Take

e.g., Free samples, Hare Krishnas.
2. Commitment and Consistency: Hobgoblins of the

Mind
e.g., Hazing.

3. Social Proof: Truths Are Us
e.g., Catherine Genovese, Jonestown

4. Liking: The Friendly Thief
Separation into groups is enough to cause problems.

5. Authority: Directed Deference
Milgram’s obedience to authority experiment.

6. Scarcity: The Rule of the Few
Prohibition.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Robert_Cialdini
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Social contagion

I Cialdini’s modes are heuristics that help up us get
through life.

I Useful but can be leveraged...

Other acts of influence:
I Conspicuous Consumption (Veblen, 1912)
I Conspicuous Destruction (Potlatch)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Social Contagion

Some important models
I T ipping models—Schelling (1971) [16, 17, 18]

I Simulation on checker boards
I Idea of thresholds
I Explore the Netlogo (�) implementation [21]

I Threshold models—Granovetter (1978) [10]

I Herding models—Bikhchandani, Hirschleifer, Welch
(1992) [1, 2]

I Social learning theory, Informational cascades,...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://ccl.northwestern.edu/netlogo/
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Social contagion models

Thresholds
I Basic idea: individuals adopt a behavior when a

certain fraction of others have adopted
I ‘Others’ may be everyone in a population, an

individual’s close friends, any reference group.
I Response can be probabilistic or deterministic.
I Individual thresholds can vary
I Assumption: order of others’ adoption does not

matter... (unrealistic).
I Assumption: level of influence per person is uniform

(unrealistic).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Social Contagion

Some possible origins of thresholds:
I Desire to coordinate, to conform.
I Lack of information: impute the worth of a good or

behavior based on degree of adoption (social proof)
I Economics: Network effects or network externalities
I Externalities = Effects on others not directly involved

in a transaction
I Examples: telephones, fax machine, Facebook,

operating systems
I An individual’s utility increases with the adoption

level among peers and the population in general

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Social Contagion

Granovetter’s Threshold model—definitions
I φ∗ = threshold of an individual.
I f (φ∗) = distribution of thresholds in a population.
I F (φ∗) = cumulative distribution =

∫ φ∗
φ′
∗=0 f (φ′∗)dφ′∗

I φt = fraction of people ‘rioting’ at time step t .

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Threshold models
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I Example threshold influence response functions:
deterministic and stochastic

I φ = fraction of contacts ‘on’ (e.g., rioting)
I Two states: S and I.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Threshold models

I At time t + 1, fraction rioting = fraction with φ∗ ≤ φt .
I

φt+1 =

∫ φt

0
f (φ∗)dφ∗ = F (φ∗)|φt

0 = F (φt)

I ⇒ Iterative maps of the unit interval [0, 1].

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

28 of 88

Threshold models

Action based on perceived behavior of others.
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I Two states: S and I.
I φ = fraction of contacts ‘on’ (e.g., rioting)
I Discrete time update (strong assumption!)
I This is a Critical mass model

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Threshold models
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I Another example of critical mass model...

http://www.uvm.edu
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Threshold models
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I Example of single stable state model

http://www.uvm.edu
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Threshold models

Implications for collective action theory:
1. Collective uniformity 6⇒ individual uniformity
2. Small individual changes ⇒ large global changes

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Threshold models

Chaotic behavior possible [12, 11]
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I Period doubling arises as map amplitude r is
increased.

I Synchronous update assumption is crucial

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Threshold model on a network

Many years after Granovetter and Soong’s work:

“A simple model of global cascades on random networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 [20]

I Mean field model → network model
I Individuals now have a limited view of the world

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Threshold model on a network

I Interactions between individuals now represented by
a network

I Network is sparse
I Individual i has ki contacts
I Influence on each link is reciprocal and of unit weight
I Each individual i has a fixed threshold φi

I Individuals repeatedly poll contacts on network
I Synchronous, discrete time updating
I Individual i becomes active when

fraction of active contacts ai
ki
≥ φi

I Individuals remain active when switched (no
recovery = SI model)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Threshold model on a network

t=1 t=2 t=3

c
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e
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d dd

I All nodes have threshold φ = 0.2.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

37 of 88

Snowballing

The Cascade Condition:
1. If one individual is initially activated, what is the

probability that an activation will spread over a
network?

2. What features of a network determine whether a
cascade will occur or not?

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Snowballing

First study random networks:
I Start with N nodes with a degree distribution pk

I Nodes are randomly connected (carefully so)
I Aim: Figure out when activation will propagate
I Determine a cascade condition

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Snowballing

Follow active links
I An active link is a link connected to an activated

node.
I If an infected link leads to at least 1 more infected

link, then activation spreads.
I We need to understand which nodes can be

activated when only one of their neigbors becomes
active.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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The most gullible

Vulnerables:
I We call individuals who can be activated by just one

contact being active vulnerables
I The vulnerability condition for node i :

1/ki ≥ φi

I Which means # contacts ki ≤ b1/φic
I For global cascades on random networks, must have

a global cluster of vulnerables [20]

I Cluster of vulnerables = critical mass
I Network story: 1 node → critical mass → everyone.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Cascade condition

Back to following a link:
I A randomly chosen link, traversed in a random

direction, leads to a degree k node with probability
∝ kPk .

I Follows from there being k ways to connect to a
node with degree k .

I Normalization:
∞∑

k=0

kPk = 〈k〉

I So
P(linked node has degree k) =

kPk

〈k〉

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Cascade condition

Next: Vulnerability of linked node
I Linked node is vulnerable with probability

βk =

∫ 1/k

φ′
∗=0

f (φ′∗)dφ′∗

I If linked node is vulnerable, it produces k − 1 new
outgoing active links

I If linked node is not vulnerable, it produces no active
links.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Cascade condition

Putting things together:
I Expected number of active edges produced by an

active edge:

R =
∞∑

k=1

(k − 1) · βk ·
kPk

〈k〉︸ ︷︷ ︸
success

+ 0 · (1− βk ) · kPk

〈k〉︸ ︷︷ ︸
failure

=
∞∑

k=1

(k − 1) · βk ·
kPk

〈k〉

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Cascade condition

So... for random networks with fixed degree distributions,
cacades take off when:

∞∑
k=1

(k − 1) · βk ·
kPk

〈k〉
≥ 1.

I βk = probability a degree k node is vulnerable.
I Pk = probability a node has degree k .

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Cascade condition

Two special cases:
I (1) Simple disease-like spreading succeeds: βk = β

β ·
∞∑

k=1

(k − 1) · kPk

〈k〉
≥ 1.

I (2) Giant component exists: β = 1

1 ·
∞∑

k=1

(k − 1) · kPk

〈k〉
≥ 1.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Cascades on random networks
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I Cascades occur
only if size of max
vulnerable cluster
> 0.

I System may be
‘robust-yet-fragile’.

I ‘Ignorance’
facilitates
spreading.

http://www.uvm.edu
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Cascade window for random networks
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I ‘Cascade window’ widens as threshold φ decreases.
I Lower thresholds enable spreading.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Cascade window for random networks

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

49 of 88

Cascade window—summary

For our simple model of a uniform threshold:
1. Low 〈k〉: No cascades in poorly connected networks.

No global clusters of any kind.
2. High 〈k〉: Giant component exists but not enough

vulnerables.
3. Intermediate 〈k〉: Global cluster of vulnerables exists.

Cascades are possible in “Cascade window.”

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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All-to-all versus random networks
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Early adopters—degree distributions
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The multiplier effect:
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I Fairly uniform levels of individual influence.
I Multiplier effect is mostly below 1.
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The multiplier effect:
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I Skewed influence distribution example.
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Special subnetworks can act as triggers

i0

A

B

I φ = 1/3 for all nodes
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The power of groups...

despair.com

“A few harmless flakes
working together can
unleash an avalanche
of destruction.”
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Extensions

I Assumption of sparse interactions is good
I Degree distribution is (generally) key to a network’s

function
I Still, random networks don’t represent all networks
I Major element missing: group structure
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Group structure—Ramified random networks

p = intergroup connection probability
q = intragroup connection probability.
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Bipartite networks
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Context distance

eca

high school
teacher

occupation

health careeducation

nurse doctorteacher
kindergarten

db
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Generalized affiliation model

100

eca b d

geography occupation age

0

(Blau & Schwartz, Simmel, Breiger)

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

62 of 88

Generalized affiliation model networks with
triadic closure

I Connect nodes with probability ∝ exp−αd

where
α = homophily parameter
and
d = distance between nodes (height of lowest
common ancestor)

I τ1 = intergroup probability of friend-of-friend
connection

I τ2 = intragroup probability of friend-of-friend
connection
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Cascade windows for group-based networks
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Multiplier effect for group-based networks:
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I Multiplier almost always below 1.
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Assortativity in group-based networks
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I The most connected nodes aren’t always the most
‘influential.’

I Degree assortativity is the reason.
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Social contagion

Summary
I ‘Influential vulnerables’ are key to spread.
I Early adopters are mostly vulnerables.
I Vulnerable nodes important but not necessary.
I Groups may greatly facilitate spread.
I Seems that cascade condition is a global one.
I Most extreme/unexpected cascades occur in highly

connected networks
I ‘Influentials’ are posterior constructs.
I Many potential influentials exist.
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Social contagion

Implications
I Focus on the influential vulnerables.
I Create entities that can be transmitted successfully

through many individuals rather than broadcast from
one ‘influential.’

I Only simple ideas can spread by word-of-mouth.
(Idea of opinion leaders spreads well...)

I Want enough individuals who will adopt and display.
I Displaying can be passive = free (yo-yo’s, fashion),

or active = harder to achieve (political messages).
I Entities can be novel or designed to combine with

others, e.g. block another one.
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Chaotic contagion:

I What if individual response functions are not
monotonic?

I Consider a simple deterministic version:

I Node i has an ‘activation threshold’ φi,1

. . . and a ‘de-activation threshold’ φi,2

I Nodes like to imitate but only up to a
limit—they don’t want to be like
everyone else.
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Two population examples:
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I Randomly select (φi,1, φi,2) from gray regions shown
in plots B and C.

I Insets show composite response function averaged
over population.

I We’ll consider plot C’s example: the tent map.
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Chaotic contagion

Definition of the tent map:

F (x) =

{
rx for 0 ≤ x ≤ 1

2 ,

r(1− x) for 1
2 ≤ x ≤ 1.

I The usual business: look at how F iteratively maps
the unit interval [0, 1].
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The tent map

Effect of increasing r from 1 to 2.
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Orbit diagram:
Chaotic behavior increases
as map slope r is increased.
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Chaotic behavior

Take r = 2 case:
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I What happens if nodes have limited information?
I As before, allow interactions to take place on a

sparse random network.
I Vary average degree z = 〈k〉, a measure of

information
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Invariant densities—stochastic response
functions
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Invariant densities—stochastic response
functions
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Invariant densities—deterministic response
functions for one specific network with
〈k〉 = 18
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Invariant densities—stochastic response
functions
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Invariant densities—deterministic response
functions
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Connectivity leads to chaos:

Stochastic response functions:
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Chaotic behavior in coupled systems

Coupled maps are well explored
(Kaneko/Kuramoto):

xi,n+1 = f (xi,n) +
∑
j∈Ni

δi,j f (xj,n)

I Ni = neighborhood of node i

1. Node states are continuous
2. Increase δ and neighborhood size |N |

⇒ synchronization

But for contagion model:
1. Node states are binary
2. Asynchrony remains as connectivity increases
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Bifurcation diagram: Asynchronous updating
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